Recent development and biomedical applications of probabilistic Boolean networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-07-01

AUTHORS

Panuwat Trairatphisan, Andrzej Mizera, Jun Pang, Alexandru Adrian Tantar, Jochen Schneider, Thomas Sauter

ABSTRACT

Probabilistic Boolean network (PBN) modelling is a semi-quantitative approach widely used for the study of the topology and dynamic aspects of biological systems. The combined use of rule-based representation and probability makes PBN appealing for large-scale modelling of biological networks where degrees of uncertainty need to be considered.A considerable expansion of our knowledge in the field of theoretical research on PBN can be observed over the past few years, with a focus on network inference, network intervention and control. With respect to areas of applications, PBN is mainly used for the study of gene regulatory networks though with an increasing emergence in signal transduction, metabolic, and also physiological networks. At the same time, a number of computational tools, facilitating the modelling and analysis of PBNs, are continuously developed.A concise yet comprehensive review of the state-of-the-art on PBN modelling is offered in this article, including a comparative discussion on PBN versus similar models with respect to concepts and biomedical applications. Due to their many advantages, we consider PBN to stand as a suitable modelling framework for the description and analysis of complex biological systems, ranging from molecular to physiological levels. More... »

PAGES

46-46

References to SciGraph publications

  • 2011-01-01. Metabolomic correlation-network modules in Arabidopsis based on a graph-clustering approach in BMC SYSTEMS BIOLOGY
  • 1999-06. Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery in JOURNAL OF MOLECULAR MEDICINE
  • 2009-01-01. Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance in BMC SYSTEMS BIOLOGY
  • 2010-01-24. Systems Analysis of EGF Receptor Signaling Dynamics with Micro-Western Arrays in NATURE METHODS
  • 2011-07-11. Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles in BMC SYSTEMS BIOLOGY
  • 2008-05-25. Inference of Boolean Networks Using Sensitivity Regularization in EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY
  • 2011-07-20. ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra in BMC BIOINFORMATICS
  • 2009-06-15. Intervention in gene regulatory networks via greedy control policies based on long-run behavior in BMC SYSTEMS BIOLOGY
  • 2012-10-18. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms in BMC SYSTEMS BIOLOGY
  • 1969-10. Homeostasis and Differentiation in Random Genetic Control Networks in NATURE
  • 2007-11-01. Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks in BMC BIOINFORMATICS
  • 2009-09-03. From gene expression to gene regulatory networks in Arabidopsis thaliana in BMC SYSTEMS BIOLOGY
  • 2010-09-13. On finite-horizon control of genetic regulatory networks with multiple hard-constraints in BMC SYSTEMS BIOLOGY
  • 2007-05-07. Inference of a Probabilistic Boolean Network from a Single Observed Temporal Sequence in EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY
  • 1993. An overview of evolutionary computation in MACHINE LEARNING: ECML-93
  • 2000-08-01. Molecular classification of cutaneous malignant melanoma by gene expression profiling in NATURE
  • 2008-04-16. Optimal Constrained Stationary Intervention in Gene Regulatory Networks in EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY
  • 2006-05-08. Applying dynamic Bayesian networks to perturbed gene expression data in BMC BIOINFORMATICS
  • 2000. Branching and interacting particle systems approximations of feynman-kac formulae with applications to non-linear filtering in SÉMINAIRE DE PROBABILITÉS XXXIV
  • 2000-10. The large-scale organization of metabolic networks in NATURE
  • 2003-07. External Control in Markovian Genetic Regulatory Networks in MACHINE LEARNING
  • 2008-02-12. Inference of Gene Regulatory Networks Based on a Universal Minimum Description Length in EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY
  • 2003-07. On Learning Gene Regulatory Networks Under the Boolean Network Model in MACHINE LEARNING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1478-811x-11-46

    DOI

    http://dx.doi.org/10.1186/1478-811x-11-46

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018743583

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23815817


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Regulatory Networks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Statistical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Probability", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Life Sciences Research Unit, University of Luxembourg, Luxembourg", 
              "id": "http://www.grid.ac/institutes/grid.16008.3f", 
              "name": [
                "Life Sciences Research Unit, University of Luxembourg, Luxembourg"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trairatphisan", 
            "givenName": "Panuwat", 
            "id": "sg:person.0662205447.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662205447.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computer Science and Communications Research Unit, University of Luxembourg, Luxembourg", 
              "id": "http://www.grid.ac/institutes/grid.16008.3f", 
              "name": [
                "Computer Science and Communications Research Unit, University of Luxembourg, Luxembourg"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mizera", 
            "givenName": "Andrzej", 
            "id": "sg:person.013634676636.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013634676636.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computer Science and Communications Research Unit, University of Luxembourg, Luxembourg", 
              "id": "http://www.grid.ac/institutes/grid.16008.3f", 
              "name": [
                "Computer Science and Communications Research Unit, University of Luxembourg, Luxembourg"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pang", 
            "givenName": "Jun", 
            "id": "sg:person.012337724337.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012337724337.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg", 
              "id": "http://www.grid.ac/institutes/grid.16008.3f", 
              "name": [
                "Computer Science and Communications Research Unit, University of Luxembourg, Luxembourg", 
                "Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tantar", 
            "givenName": "Alexandru Adrian", 
            "id": "sg:person.012203126757.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012203126757.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Saarland University Medical Center, Department of Internal Medicine II, Homburg, Saarland, Germany", 
              "id": "http://www.grid.ac/institutes/grid.411937.9", 
              "name": [
                "Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg", 
                "Saarland University Medical Center, Department of Internal Medicine II, Homburg, Saarland, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schneider", 
            "givenName": "Jochen", 
            "id": "sg:person.01150221442.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150221442.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Life Sciences Research Unit, University of Luxembourg, Luxembourg", 
              "id": "http://www.grid.ac/institutes/grid.16008.3f", 
              "name": [
                "Life Sciences Research Unit, University of Luxembourg, Luxembourg"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sauter", 
            "givenName": "Thomas", 
            "id": "sg:person.010471240723.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010471240723.58"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/224177a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025962364", 
              "https://doi.org/10.1038/224177a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1023909812213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005099351", 
              "https://doi.org/10.1023/a:1023909812213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/2008/620767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042808774", 
              "https://doi.org/10.1155/2008/620767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/2008/780541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047668146", 
              "https://doi.org/10.1155/2008/780541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049298519", 
              "https://doi.org/10.1186/1471-2105-7-249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0103798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033246677", 
              "https://doi.org/10.1007/bfb0103798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/2007/32454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003144903", 
              "https://doi.org/10.1155/2007/32454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-5-109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041264278", 
              "https://doi.org/10.1186/1752-0509-5-109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-s7-s13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042484352", 
              "https://doi.org/10.1186/1471-2105-8-s7-s13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35020115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039076321", 
              "https://doi.org/10.1038/35020115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-3-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049490622", 
              "https://doi.org/10.1186/1752-0509-3-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021668026", 
              "https://doi.org/10.1038/nmeth.1418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-295", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023633219", 
              "https://doi.org/10.1186/1471-2105-12-295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-5-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019077511", 
              "https://doi.org/10.1186/1752-0509-5-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-4-s2-s14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050443978", 
              "https://doi.org/10.1186/1752-0509-4-s2-s14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-6-133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038933649", 
              "https://doi.org/10.1186/1752-0509-6-133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35036627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051510804", 
              "https://doi.org/10.1038/35036627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-56602-3_163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005985798", 
              "https://doi.org/10.1007/3-540-56602-3_163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-3-85", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000349163", 
              "https://doi.org/10.1186/1752-0509-3-85"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001099900023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027676634", 
              "https://doi.org/10.1007/s001099900023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1023905711304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009508577", 
              "https://doi.org/10.1023/a:1023905711304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-3-61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019062076", 
              "https://doi.org/10.1186/1752-0509-3-61"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/2008/482090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051258534", 
              "https://doi.org/10.1155/2008/482090"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-07-01", 
        "datePublishedReg": "2013-07-01", 
        "description": "Probabilistic Boolean network (PBN) modelling is a semi-quantitative approach widely used for the study of the topology and dynamic aspects of biological systems. The combined use of rule-based representation and probability makes PBN appealing for large-scale modelling of biological networks where degrees of uncertainty need to be considered.A considerable expansion of our knowledge in the field of theoretical research on PBN can be observed over the past few years, with a focus on network inference, network intervention and control. With respect to areas of applications, PBN is mainly used for the study of gene regulatory networks though with an increasing emergence in signal transduction, metabolic, and also physiological networks. At the same time, a number of computational tools, facilitating the modelling and analysis of PBNs, are continuously developed.A concise yet comprehensive review of the state-of-the-art on PBN modelling is offered in this article, including a comparative discussion on PBN versus similar models with respect to concepts and biomedical applications. Due to their many advantages, we consider PBN to stand as a suitable modelling framework for the description and analysis of complex biological systems, ranging from molecular to physiological levels.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1478-811x-11-46", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1032046", 
            "issn": [
              "1478-811X"
            ], 
            "name": "Cell Communication and Signaling", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "probabilistic Boolean networks", 
          "Boolean networks", 
          "large-scale modelling", 
          "suitable modelling framework", 
          "network inference", 
          "gene regulatory networks", 
          "areas of application", 
          "biological networks", 
          "network modelling", 
          "complex biological systems", 
          "computational tools", 
          "modelling framework", 
          "biological systems", 
          "degree of uncertainty", 
          "theoretical research", 
          "modelling", 
          "similar models", 
          "regulatory networks", 
          "network", 
          "rule-based representation", 
          "topology", 
          "applications", 
          "physiological networks", 
          "inference", 
          "comparative discussion", 
          "uncertainty", 
          "recent developments", 
          "probability", 
          "system", 
          "field", 
          "representation", 
          "description", 
          "respect", 
          "model", 
          "dynamic aspects", 
          "framework", 
          "approach", 
          "expansion", 
          "same time", 
          "semi-quantitative approach", 
          "number", 
          "state", 
          "analysis", 
          "concise", 
          "network intervention", 
          "advantages", 
          "tool", 
          "concept", 
          "control", 
          "degree", 
          "time", 
          "biomedical applications", 
          "comprehensive review", 
          "aspects", 
          "art", 
          "discussion", 
          "article", 
          "emergence", 
          "use", 
          "knowledge", 
          "focus", 
          "study", 
          "combined use", 
          "area", 
          "research", 
          "considerable expansion", 
          "PBN", 
          "development", 
          "levels", 
          "review", 
          "years", 
          "intervention", 
          "transduction", 
          "signal transduction", 
          "physiological levels", 
          "Probabilistic Boolean network (PBN) modelling", 
          "Boolean network (PBN) modelling", 
          "analysis of PBNs", 
          "PBN modelling"
        ], 
        "name": "Recent development and biomedical applications of probabilistic Boolean networks", 
        "pagination": "46-46", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018743583"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1478-811x-11-46"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23815817"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1478-811x-11-46", 
          "https://app.dimensions.ai/details/publication/pub.1018743583"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_598.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1478-811x-11-46"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1478-811x-11-46'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1478-811x-11-46'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1478-811x-11-46'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1478-811x-11-46'


     

    This table displays all metadata directly associated to this object as RDF triples.

    299 TRIPLES      22 PREDICATES      133 URIs      101 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1478-811x-11-46 schema:about N25dfa6eb571a4c21bcc7803f759bcd7a
    2 N339d6a3d97a34f739360f060ab28a76c
    3 N35b108efba6b40c6a9a59b4f4dad4993
    4 N9ca7f5608324417289ec10569d9138ca
    5 Nf7c3241674ab486f9154269c6d1f597d
    6 anzsrc-for:06
    7 anzsrc-for:0601
    8 anzsrc-for:0604
    9 schema:author N9ee1b1e3f3154ea0aa1e448a363cc3bf
    10 schema:citation sg:pub.10.1007/3-540-56602-3_163
    11 sg:pub.10.1007/bfb0103798
    12 sg:pub.10.1007/s001099900023
    13 sg:pub.10.1023/a:1023905711304
    14 sg:pub.10.1023/a:1023909812213
    15 sg:pub.10.1038/224177a0
    16 sg:pub.10.1038/35020115
    17 sg:pub.10.1038/35036627
    18 sg:pub.10.1038/nmeth.1418
    19 sg:pub.10.1155/2007/32454
    20 sg:pub.10.1155/2008/482090
    21 sg:pub.10.1155/2008/620767
    22 sg:pub.10.1155/2008/780541
    23 sg:pub.10.1186/1471-2105-12-295
    24 sg:pub.10.1186/1471-2105-7-249
    25 sg:pub.10.1186/1471-2105-8-s7-s13
    26 sg:pub.10.1186/1752-0509-3-1
    27 sg:pub.10.1186/1752-0509-3-61
    28 sg:pub.10.1186/1752-0509-3-85
    29 sg:pub.10.1186/1752-0509-4-s2-s14
    30 sg:pub.10.1186/1752-0509-5-1
    31 sg:pub.10.1186/1752-0509-5-109
    32 sg:pub.10.1186/1752-0509-6-133
    33 schema:datePublished 2013-07-01
    34 schema:datePublishedReg 2013-07-01
    35 schema:description Probabilistic Boolean network (PBN) modelling is a semi-quantitative approach widely used for the study of the topology and dynamic aspects of biological systems. The combined use of rule-based representation and probability makes PBN appealing for large-scale modelling of biological networks where degrees of uncertainty need to be considered.A considerable expansion of our knowledge in the field of theoretical research on PBN can be observed over the past few years, with a focus on network inference, network intervention and control. With respect to areas of applications, PBN is mainly used for the study of gene regulatory networks though with an increasing emergence in signal transduction, metabolic, and also physiological networks. At the same time, a number of computational tools, facilitating the modelling and analysis of PBNs, are continuously developed.A concise yet comprehensive review of the state-of-the-art on PBN modelling is offered in this article, including a comparative discussion on PBN versus similar models with respect to concepts and biomedical applications. Due to their many advantages, we consider PBN to stand as a suitable modelling framework for the description and analysis of complex biological systems, ranging from molecular to physiological levels.
    36 schema:genre article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N07651709fb114080838d460764e8e22a
    40 N4a7de9ead65d4146b981d5f0a17b0f08
    41 sg:journal.1032046
    42 schema:keywords Boolean network (PBN) modelling
    43 Boolean networks
    44 PBN
    45 PBN modelling
    46 Probabilistic Boolean network (PBN) modelling
    47 advantages
    48 analysis
    49 analysis of PBNs
    50 applications
    51 approach
    52 area
    53 areas of application
    54 art
    55 article
    56 aspects
    57 biological networks
    58 biological systems
    59 biomedical applications
    60 combined use
    61 comparative discussion
    62 complex biological systems
    63 comprehensive review
    64 computational tools
    65 concept
    66 concise
    67 considerable expansion
    68 control
    69 degree
    70 degree of uncertainty
    71 description
    72 development
    73 discussion
    74 dynamic aspects
    75 emergence
    76 expansion
    77 field
    78 focus
    79 framework
    80 gene regulatory networks
    81 inference
    82 intervention
    83 knowledge
    84 large-scale modelling
    85 levels
    86 model
    87 modelling
    88 modelling framework
    89 network
    90 network inference
    91 network intervention
    92 network modelling
    93 number
    94 physiological levels
    95 physiological networks
    96 probabilistic Boolean networks
    97 probability
    98 recent developments
    99 regulatory networks
    100 representation
    101 research
    102 respect
    103 review
    104 rule-based representation
    105 same time
    106 semi-quantitative approach
    107 signal transduction
    108 similar models
    109 state
    110 study
    111 suitable modelling framework
    112 system
    113 theoretical research
    114 time
    115 tool
    116 topology
    117 transduction
    118 uncertainty
    119 use
    120 years
    121 schema:name Recent development and biomedical applications of probabilistic Boolean networks
    122 schema:pagination 46-46
    123 schema:productId N1327f737c961493091cdd597f5d8c9f6
    124 N5dfbe04d3348438da7c42ce1f4b1a05a
    125 N5ee98e795f884929bc2cc8702df897cb
    126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018743583
    127 https://doi.org/10.1186/1478-811x-11-46
    128 schema:sdDatePublished 2022-01-01T18:29
    129 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    130 schema:sdPublisher Nddee1804ba9c46f49b2da3007e7998fa
    131 schema:url https://doi.org/10.1186/1478-811x-11-46
    132 sgo:license sg:explorer/license/
    133 sgo:sdDataset articles
    134 rdf:type schema:ScholarlyArticle
    135 N047815bcf524444381d4c3bcaa14ec1b rdf:first sg:person.01150221442.23
    136 rdf:rest Nd7334956c6ad44a190df9f3834ad0157
    137 N07651709fb114080838d460764e8e22a schema:issueNumber 1
    138 rdf:type schema:PublicationIssue
    139 N1327f737c961493091cdd597f5d8c9f6 schema:name pubmed_id
    140 schema:value 23815817
    141 rdf:type schema:PropertyValue
    142 N25dfa6eb571a4c21bcc7803f759bcd7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Humans
    144 rdf:type schema:DefinedTerm
    145 N339d6a3d97a34f739360f060ab28a76c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Models, Statistical
    147 rdf:type schema:DefinedTerm
    148 N35b108efba6b40c6a9a59b4f4dad4993 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Models, Biological
    150 rdf:type schema:DefinedTerm
    151 N4a7de9ead65d4146b981d5f0a17b0f08 schema:volumeNumber 11
    152 rdf:type schema:PublicationVolume
    153 N5dfbe04d3348438da7c42ce1f4b1a05a schema:name doi
    154 schema:value 10.1186/1478-811x-11-46
    155 rdf:type schema:PropertyValue
    156 N5ee98e795f884929bc2cc8702df897cb schema:name dimensions_id
    157 schema:value pub.1018743583
    158 rdf:type schema:PropertyValue
    159 N69acec8bc81f46b986bab341f3becf8a rdf:first sg:person.013634676636.12
    160 rdf:rest Nd18e0a9b386d41a9822136bb1661f79a
    161 N6e790aed33f74dbfb8e36ca950d75ae4 rdf:first sg:person.012203126757.71
    162 rdf:rest N047815bcf524444381d4c3bcaa14ec1b
    163 N9ca7f5608324417289ec10569d9138ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Probability
    165 rdf:type schema:DefinedTerm
    166 N9ee1b1e3f3154ea0aa1e448a363cc3bf rdf:first sg:person.0662205447.11
    167 rdf:rest N69acec8bc81f46b986bab341f3becf8a
    168 Nd18e0a9b386d41a9822136bb1661f79a rdf:first sg:person.012337724337.08
    169 rdf:rest N6e790aed33f74dbfb8e36ca950d75ae4
    170 Nd7334956c6ad44a190df9f3834ad0157 rdf:first sg:person.010471240723.58
    171 rdf:rest rdf:nil
    172 Nddee1804ba9c46f49b2da3007e7998fa schema:name Springer Nature - SN SciGraph project
    173 rdf:type schema:Organization
    174 Nf7c3241674ab486f9154269c6d1f597d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Gene Regulatory Networks
    176 rdf:type schema:DefinedTerm
    177 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Biological Sciences
    179 rdf:type schema:DefinedTerm
    180 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    181 schema:name Biochemistry and Cell Biology
    182 rdf:type schema:DefinedTerm
    183 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    184 schema:name Genetics
    185 rdf:type schema:DefinedTerm
    186 sg:journal.1032046 schema:issn 1478-811X
    187 schema:name Cell Communication and Signaling
    188 schema:publisher Springer Nature
    189 rdf:type schema:Periodical
    190 sg:person.010471240723.58 schema:affiliation grid-institutes:grid.16008.3f
    191 schema:familyName Sauter
    192 schema:givenName Thomas
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010471240723.58
    194 rdf:type schema:Person
    195 sg:person.01150221442.23 schema:affiliation grid-institutes:grid.411937.9
    196 schema:familyName Schneider
    197 schema:givenName Jochen
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150221442.23
    199 rdf:type schema:Person
    200 sg:person.012203126757.71 schema:affiliation grid-institutes:grid.16008.3f
    201 schema:familyName Tantar
    202 schema:givenName Alexandru Adrian
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012203126757.71
    204 rdf:type schema:Person
    205 sg:person.012337724337.08 schema:affiliation grid-institutes:grid.16008.3f
    206 schema:familyName Pang
    207 schema:givenName Jun
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012337724337.08
    209 rdf:type schema:Person
    210 sg:person.013634676636.12 schema:affiliation grid-institutes:grid.16008.3f
    211 schema:familyName Mizera
    212 schema:givenName Andrzej
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013634676636.12
    214 rdf:type schema:Person
    215 sg:person.0662205447.11 schema:affiliation grid-institutes:grid.16008.3f
    216 schema:familyName Trairatphisan
    217 schema:givenName Panuwat
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662205447.11
    219 rdf:type schema:Person
    220 sg:pub.10.1007/3-540-56602-3_163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005985798
    221 https://doi.org/10.1007/3-540-56602-3_163
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/bfb0103798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033246677
    224 https://doi.org/10.1007/bfb0103798
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s001099900023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027676634
    227 https://doi.org/10.1007/s001099900023
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1023/a:1023905711304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009508577
    230 https://doi.org/10.1023/a:1023905711304
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1023/a:1023909812213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005099351
    233 https://doi.org/10.1023/a:1023909812213
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/224177a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025962364
    236 https://doi.org/10.1038/224177a0
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/35020115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039076321
    239 https://doi.org/10.1038/35020115
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/35036627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051510804
    242 https://doi.org/10.1038/35036627
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nmeth.1418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021668026
    245 https://doi.org/10.1038/nmeth.1418
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1155/2007/32454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003144903
    248 https://doi.org/10.1155/2007/32454
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1155/2008/482090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051258534
    251 https://doi.org/10.1155/2008/482090
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1155/2008/620767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042808774
    254 https://doi.org/10.1155/2008/620767
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1155/2008/780541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047668146
    257 https://doi.org/10.1155/2008/780541
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1186/1471-2105-12-295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023633219
    260 https://doi.org/10.1186/1471-2105-12-295
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1186/1471-2105-7-249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049298519
    263 https://doi.org/10.1186/1471-2105-7-249
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1186/1471-2105-8-s7-s13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042484352
    266 https://doi.org/10.1186/1471-2105-8-s7-s13
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1186/1752-0509-3-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049490622
    269 https://doi.org/10.1186/1752-0509-3-1
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1186/1752-0509-3-61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019062076
    272 https://doi.org/10.1186/1752-0509-3-61
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1186/1752-0509-3-85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000349163
    275 https://doi.org/10.1186/1752-0509-3-85
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1186/1752-0509-4-s2-s14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050443978
    278 https://doi.org/10.1186/1752-0509-4-s2-s14
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1186/1752-0509-5-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019077511
    281 https://doi.org/10.1186/1752-0509-5-1
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1186/1752-0509-5-109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041264278
    284 https://doi.org/10.1186/1752-0509-5-109
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1186/1752-0509-6-133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038933649
    287 https://doi.org/10.1186/1752-0509-6-133
    288 rdf:type schema:CreativeWork
    289 grid-institutes:grid.16008.3f schema:alternateName Computer Science and Communications Research Unit, University of Luxembourg, Luxembourg
    290 Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg
    291 Life Sciences Research Unit, University of Luxembourg, Luxembourg
    292 schema:name Computer Science and Communications Research Unit, University of Luxembourg, Luxembourg
    293 Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg
    294 Life Sciences Research Unit, University of Luxembourg, Luxembourg
    295 rdf:type schema:Organization
    296 grid-institutes:grid.411937.9 schema:alternateName Saarland University Medical Center, Department of Internal Medicine II, Homburg, Saarland, Germany
    297 schema:name Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
    298 Saarland University Medical Center, Department of Internal Medicine II, Homburg, Saarland, Germany
    299 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...