Automated quantitative multiplex immunofluorescence in situ imaging identifies phospho-S6 and phospho-PRAS40 as predictive protein biomarkers for prostate cancer lethality View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Michail Shipitsin, Clayton Small, Eldar Giladi, Summar Siddiqui, Sibgat Choudhury, Sadiq Hussain, Yi E Huang, Hua Chang, David L Rimm, David M Berman, Thomas P Nifong, Peter Blume-Jensen

ABSTRACT

BACKGROUND: We have witnessed significant progress in gene-based approaches to cancer prognostication, promising early intervention for high-risk patients and avoidance of overtreatment for low-risk patients. However, there has been less advancement in protein-based approaches, even though perturbed protein levels and post-translational modifications are more directly linked with phenotype. Most current, gene expression-based platforms require tissue lysis resulting in loss of structural and molecular information, and hence are blind to tumor heterogeneity and morphological features. RESULTS: Here we report an automated, integrated multiplex immunofluorescence in situ imaging approach that quantitatively measures protein biomarker levels and activity states in defined intact tissue regions where the biomarkers of interest exert their phenotype. Using this approach, we confirm that four previously reported prognostic markers, PTEN, SMAD4, CCND1 and SPP1, can predict lethal outcome of human prostate cancer. Furthermore, we show that two PI3K pathway-regulated protein activities, pS6 (RPS6-phosphoserines 235/236) and pPRAS40 (AKT1S1-phosphothreonine 246), correlate with prostate cancer lethal outcome as well (individual marker hazard ratios of 2.04 and 2.03, respectively). Finally, we incorporate these 2 markers into a novel 5-marker protein signature, SMAD4, CCND1, SPP1, pS6, and pPRAS40, which is highly predictive for prostate cancer-specific death. The ability to substitute PTEN with phospho-markers demonstrates the potential of quantitative protein activity state measurements on intact tissue. CONCLUSIONS: In summary, our approach can reproducibly and simultaneously quantify and assess multiple protein levels and functional activities on intact tissue specimens. We believe it is broadly applicable to not only cancer but other diseases, and propose that it should be well suited for prognostication at early stages of pathogenesis where key signaling protein levels and activities are perturbed. More... »

PAGES

40

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1477-5956-12-40

DOI

http://dx.doi.org/10.1186/1477-5956-12-40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037887223

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25075204


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Metamark Genetics Inc, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shipitsin", 
        "givenName": "Michail", 
        "id": "sg:person.01120367051.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120367051.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Metamark Genetics Inc, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Small", 
        "givenName": "Clayton", 
        "id": "sg:person.0766726334.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766726334.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Metamark Genetics Inc, Cambridge, MA, USA", 
            "Atreca, San Carlos, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giladi", 
        "givenName": "Eldar", 
        "id": "sg:person.01164030611.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164030611.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moderna Therapeutics (United States)", 
          "id": "https://www.grid.ac/institutes/grid.479574.c", 
          "name": [
            "Metamark Genetics Inc, Cambridge, MA, USA", 
            "Moderna, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siddiqui", 
        "givenName": "Summar", 
        "id": "sg:person.01030245714.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030245714.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Metamark Genetics Inc, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choudhury", 
        "givenName": "Sibgat", 
        "id": "sg:person.0655242457.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655242457.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Metamark Genetics Inc, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hussain", 
        "givenName": "Sadiq", 
        "id": "sg:person.01217403334.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217403334.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Metamark Genetics Inc, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Yi E", 
        "id": "sg:person.01265516534.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265516534.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Metamark Genetics Inc, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Hua", 
        "id": "sg:person.01333631734.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333631734.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University Medical School, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rimm", 
        "givenName": "David L", 
        "id": "sg:person.0754207153.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen's University", 
          "id": "https://www.grid.ac/institutes/grid.410356.5", 
          "name": [
            "Department of Pathology and Molecular Medicine, Queen\u2019s University, Kingston, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berman", 
        "givenName": "David M", 
        "id": "sg:person.01070373002.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070373002.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Metamark Genetics Inc, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nifong", 
        "givenName": "Thomas P", 
        "id": "sg:person.01031636317.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031636317.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Metamark Genetics Inc, Cambridge, MA, USA", 
            "XTuit Pharmaceuticals, Inc, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blume-Jensen", 
        "givenName": "Peter", 
        "id": "sg:person.07730176555.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07730176555.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1097/01.pas.0000173646.99337.b1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003431780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.pas.0000173646.99337.b1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003431780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.pas.0000173646.99337.b1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003431780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81688-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006800132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6603924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007699438", 
          "https://doi.org/10.1038/sj.bjc.6603924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cellsig.2011.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010084979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/joim.12097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011163138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrclinonc.2012.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012182053", 
          "https://doi.org/10.1038/nrclinonc.2012.123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.201004104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015106753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nbt.2012.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018116551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471142727.mb1419s84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018431846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.humpath.2011.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019701041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2007.15.3155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019780623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/erm.12.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021281838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023480717", 
          "https://doi.org/10.1038/nature09677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2559.2011.04083.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028235547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2010.05.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028349062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1006448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029333869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132345", 
          "https://doi.org/10.1038/nm791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132345", 
          "https://doi.org/10.1038/nm791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/modpathol.2012.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030805874", 
          "https://doi.org/10.1038/modpathol.2012.123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m210837200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033460340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1369/jhc.6a6987.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035180977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1369/jhc.6a6987.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035180977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.2013.248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035740280", 
          "https://doi.org/10.1038/bjc.2013.248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035817137", 
          "https://doi.org/10.1038/nmeth.2089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35077225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037528958", 
          "https://doi.org/10.1038/35077225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35077225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037528958", 
          "https://doi.org/10.1038/35077225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2008.245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038283584", 
          "https://doi.org/10.1038/onc.2008.245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(10)70295-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039886139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm3330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040868228", 
          "https://doi.org/10.1038/nrm3330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10520295.2011.591832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045343923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/14737159.6.6.803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051851721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-08-0124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053714977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3001065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062686672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074521016", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078420556", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2008.4540992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094603958"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: We have witnessed significant progress in gene-based approaches to cancer prognostication, promising early intervention for high-risk patients and avoidance of overtreatment for low-risk patients. However, there has been less advancement in protein-based approaches, even though perturbed protein levels and post-translational modifications are more directly linked with phenotype. Most current, gene expression-based platforms require tissue lysis resulting in loss of structural and molecular information, and hence are blind to tumor heterogeneity and morphological features.\nRESULTS: Here we report an automated, integrated multiplex immunofluorescence in situ imaging approach that quantitatively measures protein biomarker levels and activity states in defined intact tissue regions where the biomarkers of interest exert their phenotype. Using this approach, we confirm that four previously reported prognostic markers, PTEN, SMAD4, CCND1 and SPP1, can predict lethal outcome of human prostate cancer. Furthermore, we show that two PI3K pathway-regulated protein activities, pS6 (RPS6-phosphoserines 235/236) and pPRAS40 (AKT1S1-phosphothreonine 246), correlate with prostate cancer lethal outcome as well (individual marker hazard ratios of 2.04 and 2.03, respectively). Finally, we incorporate these 2 markers into a novel 5-marker protein signature, SMAD4, CCND1, SPP1, pS6, and pPRAS40, which is highly predictive for prostate cancer-specific death. The ability to substitute PTEN with phospho-markers demonstrates the potential of quantitative protein activity state measurements on intact tissue.\nCONCLUSIONS: In summary, our approach can reproducibly and simultaneously quantify and assess multiple protein levels and functional activities on intact tissue specimens. We believe it is broadly applicable to not only cancer but other diseases, and propose that it should be well suited for prognostication at early stages of pathogenesis where key signaling protein levels and activities are perturbed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1477-5956-12-40", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2705220", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1032054", 
        "issn": [
          "1477-5956"
        ], 
        "name": "Proteome Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Automated quantitative multiplex immunofluorescence in situ imaging identifies phospho-S6 and phospho-PRAS40 as predictive protein biomarkers for prostate cancer lethality", 
    "pagination": "40", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b47ba4cd59613582d11601538bca1f8378f17c96540f7a470bf404ea30366dc6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25075204"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101170539"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1477-5956-12-40"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037887223"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1477-5956-12-40", 
      "https://app.dimensions.ai/details/publication/pub.1037887223"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1477-5956-12-40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1477-5956-12-40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1477-5956-12-40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1477-5956-12-40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1477-5956-12-40'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1477-5956-12-40 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N4117c09e15d04607b74f9741772b9e15
4 schema:citation sg:pub.10.1038/35077225
5 sg:pub.10.1038/bjc.2013.248
6 sg:pub.10.1038/modpathol.2012.123
7 sg:pub.10.1038/nature09677
8 sg:pub.10.1038/nm791
9 sg:pub.10.1038/nmeth.2089
10 sg:pub.10.1038/nrclinonc.2012.123
11 sg:pub.10.1038/nrm3330
12 sg:pub.10.1038/onc.2008.245
13 sg:pub.10.1038/sj.bjc.6603924
14 https://app.dimensions.ai/details/publication/pub.1074521016
15 https://app.dimensions.ai/details/publication/pub.1078420556
16 https://doi.org/10.1002/0471142727.mb1419s84
17 https://doi.org/10.1016/j.ccr.2010.05.026
18 https://doi.org/10.1016/j.cellsig.2011.08.010
19 https://doi.org/10.1016/j.humpath.2011.11.005
20 https://doi.org/10.1016/j.nbt.2012.02.002
21 https://doi.org/10.1016/s0092-8674(00)81688-8
22 https://doi.org/10.1016/s1470-2045(10)70295-3
23 https://doi.org/10.1056/nejmoa1006448
24 https://doi.org/10.1074/jbc.m210837200
25 https://doi.org/10.1083/jcb.201004104
26 https://doi.org/10.1097/01.pas.0000173646.99337.b1
27 https://doi.org/10.1109/isbi.2008.4540992
28 https://doi.org/10.1111/j.1365-2559.2011.04083.x
29 https://doi.org/10.1111/joim.12097
30 https://doi.org/10.1126/scitranslmed.3001065
31 https://doi.org/10.1158/1078-0432.ccr-08-0124
32 https://doi.org/10.1200/jco.2007.15.3155
33 https://doi.org/10.1369/jhc.6a6987.2006
34 https://doi.org/10.1586/14737159.6.6.803
35 https://doi.org/10.1586/erm.12.146
36 https://doi.org/10.3109/10520295.2011.591832
37 schema:datePublished 2014-12
38 schema:datePublishedReg 2014-12-01
39 schema:description BACKGROUND: We have witnessed significant progress in gene-based approaches to cancer prognostication, promising early intervention for high-risk patients and avoidance of overtreatment for low-risk patients. However, there has been less advancement in protein-based approaches, even though perturbed protein levels and post-translational modifications are more directly linked with phenotype. Most current, gene expression-based platforms require tissue lysis resulting in loss of structural and molecular information, and hence are blind to tumor heterogeneity and morphological features. RESULTS: Here we report an automated, integrated multiplex immunofluorescence in situ imaging approach that quantitatively measures protein biomarker levels and activity states in defined intact tissue regions where the biomarkers of interest exert their phenotype. Using this approach, we confirm that four previously reported prognostic markers, PTEN, SMAD4, CCND1 and SPP1, can predict lethal outcome of human prostate cancer. Furthermore, we show that two PI3K pathway-regulated protein activities, pS6 (RPS6-phosphoserines 235/236) and pPRAS40 (AKT1S1-phosphothreonine 246), correlate with prostate cancer lethal outcome as well (individual marker hazard ratios of 2.04 and 2.03, respectively). Finally, we incorporate these 2 markers into a novel 5-marker protein signature, SMAD4, CCND1, SPP1, pS6, and pPRAS40, which is highly predictive for prostate cancer-specific death. The ability to substitute PTEN with phospho-markers demonstrates the potential of quantitative protein activity state measurements on intact tissue. CONCLUSIONS: In summary, our approach can reproducibly and simultaneously quantify and assess multiple protein levels and functional activities on intact tissue specimens. We believe it is broadly applicable to not only cancer but other diseases, and propose that it should be well suited for prognostication at early stages of pathogenesis where key signaling protein levels and activities are perturbed.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf Nf3bf4a99f518415dab03ba15c149b8ba
44 Nfe0d295bcef847a2bbf31be712fa7755
45 sg:journal.1032054
46 schema:name Automated quantitative multiplex immunofluorescence in situ imaging identifies phospho-S6 and phospho-PRAS40 as predictive protein biomarkers for prostate cancer lethality
47 schema:pagination 40
48 schema:productId N706664d3b23f4a1388051b5a851018d8
49 N752fa9e6ff814d57b21b24338ee4b9e2
50 N9bed97b9e0b24eb9956d46cbdfbb6c9f
51 Nceb5f5eeddda4b7bacc79f9acf081e1a
52 Nfca0ff34937849f9bf8a57465ff6702f
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037887223
54 https://doi.org/10.1186/1477-5956-12-40
55 schema:sdDatePublished 2019-04-10T16:43
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N15a5a7f358934c35aa8b22e299fede34
58 schema:url http://link.springer.com/10.1186%2F1477-5956-12-40
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0835844521bf4627963fe54c3dd45528 rdf:first sg:person.0754207153.13
63 rdf:rest Na98a7e2fe3544e38a733482a21d4f71c
64 N15a5a7f358934c35aa8b22e299fede34 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N2e7b8952804d48478e8ba65df4e83a82 schema:name Metamark Genetics Inc, Cambridge, MA, USA
67 rdf:type schema:Organization
68 N4117c09e15d04607b74f9741772b9e15 rdf:first sg:person.01120367051.62
69 rdf:rest Nffcd7dad730742e0b57ad7c4fe6ff454
70 N43441b1fdab449d283da5cb626643c3b rdf:first sg:person.01265516534.06
71 rdf:rest N88181ae2b9e8421ebe8bf607e7ec35fe
72 N5d2612f0707a433f9df8fd1a848174f1 rdf:first sg:person.01031636317.00
73 rdf:rest N7a4c9318afd94d21ac7ad14df4c57796
74 N706664d3b23f4a1388051b5a851018d8 schema:name doi
75 schema:value 10.1186/1477-5956-12-40
76 rdf:type schema:PropertyValue
77 N752fa9e6ff814d57b21b24338ee4b9e2 schema:name dimensions_id
78 schema:value pub.1037887223
79 rdf:type schema:PropertyValue
80 N7a4c9318afd94d21ac7ad14df4c57796 rdf:first sg:person.07730176555.55
81 rdf:rest rdf:nil
82 N8191b166c3e746f6a5b0785e8a086c06 rdf:first sg:person.01030245714.67
83 rdf:rest Nfac4483de1c94cddb6b5212ced35fd66
84 N88181ae2b9e8421ebe8bf607e7ec35fe rdf:first sg:person.01333631734.75
85 rdf:rest N0835844521bf4627963fe54c3dd45528
86 N93e0aab662744457846b87e298fd0bd6 schema:name Metamark Genetics Inc, Cambridge, MA, USA
87 rdf:type schema:Organization
88 N9693fb28117b4f4e9084fe1aaaa5e010 schema:name Metamark Genetics Inc, Cambridge, MA, USA
89 rdf:type schema:Organization
90 N97c384fda8fb4b03b99e41e77b18bb6b schema:name Atreca, San Carlos, CA, USA
91 Metamark Genetics Inc, Cambridge, MA, USA
92 rdf:type schema:Organization
93 N9bed97b9e0b24eb9956d46cbdfbb6c9f schema:name readcube_id
94 schema:value b47ba4cd59613582d11601538bca1f8378f17c96540f7a470bf404ea30366dc6
95 rdf:type schema:PropertyValue
96 N9d55389ff5ee4fa3b2a4c179ed312594 schema:name Metamark Genetics Inc, Cambridge, MA, USA
97 rdf:type schema:Organization
98 Na98a7e2fe3544e38a733482a21d4f71c rdf:first sg:person.01070373002.63
99 rdf:rest N5d2612f0707a433f9df8fd1a848174f1
100 Nc22d01460c2144699cbd80078760e031 rdf:first sg:person.01217403334.37
101 rdf:rest N43441b1fdab449d283da5cb626643c3b
102 Nc94575c3fa3544eba6a01d778eb5ba60 rdf:first sg:person.01164030611.87
103 rdf:rest N8191b166c3e746f6a5b0785e8a086c06
104 Nceb5f5eeddda4b7bacc79f9acf081e1a schema:name nlm_unique_id
105 schema:value 101170539
106 rdf:type schema:PropertyValue
107 Ndb5a1f0d972a40f0a218834a99a01fbe schema:name Metamark Genetics Inc, Cambridge, MA, USA
108 rdf:type schema:Organization
109 Nde16b026e4c744058f83e6d45a8bddf8 schema:name Metamark Genetics Inc, Cambridge, MA, USA
110 rdf:type schema:Organization
111 Ne53fbed60fe344b2b3ced2d5263e4b9d schema:name Metamark Genetics Inc, Cambridge, MA, USA
112 XTuit Pharmaceuticals, Inc, Cambridge, MA, USA
113 rdf:type schema:Organization
114 Nf3bf4a99f518415dab03ba15c149b8ba schema:volumeNumber 12
115 rdf:type schema:PublicationVolume
116 Nfac4483de1c94cddb6b5212ced35fd66 rdf:first sg:person.0655242457.63
117 rdf:rest Nc22d01460c2144699cbd80078760e031
118 Nfca0ff34937849f9bf8a57465ff6702f schema:name pubmed_id
119 schema:value 25075204
120 rdf:type schema:PropertyValue
121 Nfe0d295bcef847a2bbf31be712fa7755 schema:issueNumber 1
122 rdf:type schema:PublicationIssue
123 Nff078d607b4548c3a9a38cffb73f5e03 schema:name Metamark Genetics Inc, Cambridge, MA, USA
124 rdf:type schema:Organization
125 Nffcd7dad730742e0b57ad7c4fe6ff454 rdf:first sg:person.0766726334.68
126 rdf:rest Nc94575c3fa3544eba6a01d778eb5ba60
127 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
128 schema:name Medical and Health Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
131 schema:name Oncology and Carcinogenesis
132 rdf:type schema:DefinedTerm
133 sg:grant.2705220 http://pending.schema.org/fundedItem sg:pub.10.1186/1477-5956-12-40
134 rdf:type schema:MonetaryGrant
135 sg:journal.1032054 schema:issn 1477-5956
136 schema:name Proteome Science
137 rdf:type schema:Periodical
138 sg:person.01030245714.67 schema:affiliation https://www.grid.ac/institutes/grid.479574.c
139 schema:familyName Siddiqui
140 schema:givenName Summar
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030245714.67
142 rdf:type schema:Person
143 sg:person.01031636317.00 schema:affiliation Nde16b026e4c744058f83e6d45a8bddf8
144 schema:familyName Nifong
145 schema:givenName Thomas P
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031636317.00
147 rdf:type schema:Person
148 sg:person.01070373002.63 schema:affiliation https://www.grid.ac/institutes/grid.410356.5
149 schema:familyName Berman
150 schema:givenName David M
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070373002.63
152 rdf:type schema:Person
153 sg:person.01120367051.62 schema:affiliation Ndb5a1f0d972a40f0a218834a99a01fbe
154 schema:familyName Shipitsin
155 schema:givenName Michail
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120367051.62
157 rdf:type schema:Person
158 sg:person.01164030611.87 schema:affiliation N97c384fda8fb4b03b99e41e77b18bb6b
159 schema:familyName Giladi
160 schema:givenName Eldar
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164030611.87
162 rdf:type schema:Person
163 sg:person.01217403334.37 schema:affiliation Nff078d607b4548c3a9a38cffb73f5e03
164 schema:familyName Hussain
165 schema:givenName Sadiq
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217403334.37
167 rdf:type schema:Person
168 sg:person.01265516534.06 schema:affiliation N93e0aab662744457846b87e298fd0bd6
169 schema:familyName Huang
170 schema:givenName Yi E
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265516534.06
172 rdf:type schema:Person
173 sg:person.01333631734.75 schema:affiliation N9d55389ff5ee4fa3b2a4c179ed312594
174 schema:familyName Chang
175 schema:givenName Hua
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333631734.75
177 rdf:type schema:Person
178 sg:person.0655242457.63 schema:affiliation N2e7b8952804d48478e8ba65df4e83a82
179 schema:familyName Choudhury
180 schema:givenName Sibgat
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655242457.63
182 rdf:type schema:Person
183 sg:person.0754207153.13 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
184 schema:familyName Rimm
185 schema:givenName David L
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13
187 rdf:type schema:Person
188 sg:person.0766726334.68 schema:affiliation N9693fb28117b4f4e9084fe1aaaa5e010
189 schema:familyName Small
190 schema:givenName Clayton
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766726334.68
192 rdf:type schema:Person
193 sg:person.07730176555.55 schema:affiliation Ne53fbed60fe344b2b3ced2d5263e4b9d
194 schema:familyName Blume-Jensen
195 schema:givenName Peter
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07730176555.55
197 rdf:type schema:Person
198 sg:pub.10.1038/35077225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037528958
199 https://doi.org/10.1038/35077225
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/bjc.2013.248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035740280
202 https://doi.org/10.1038/bjc.2013.248
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/modpathol.2012.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030805874
205 https://doi.org/10.1038/modpathol.2012.123
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nature09677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023480717
208 https://doi.org/10.1038/nature09677
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/nm791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030132345
211 https://doi.org/10.1038/nm791
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nmeth.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035817137
214 https://doi.org/10.1038/nmeth.2089
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/nrclinonc.2012.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012182053
217 https://doi.org/10.1038/nrclinonc.2012.123
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/nrm3330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040868228
220 https://doi.org/10.1038/nrm3330
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/onc.2008.245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038283584
223 https://doi.org/10.1038/onc.2008.245
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/sj.bjc.6603924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007699438
226 https://doi.org/10.1038/sj.bjc.6603924
227 rdf:type schema:CreativeWork
228 https://app.dimensions.ai/details/publication/pub.1074521016 schema:CreativeWork
229 https://app.dimensions.ai/details/publication/pub.1078420556 schema:CreativeWork
230 https://doi.org/10.1002/0471142727.mb1419s84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018431846
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.ccr.2010.05.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028349062
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.cellsig.2011.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010084979
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.humpath.2011.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019701041
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.nbt.2012.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018116551
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/s0092-8674(00)81688-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006800132
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/s1470-2045(10)70295-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039886139
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1056/nejmoa1006448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029333869
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1074/jbc.m210837200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033460340
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1083/jcb.201004104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015106753
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1097/01.pas.0000173646.99337.b1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003431780
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1109/isbi.2008.4540992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094603958
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1111/j.1365-2559.2011.04083.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028235547
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1111/joim.12097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011163138
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1126/scitranslmed.3001065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062686672
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1158/1078-0432.ccr-08-0124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053714977
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1200/jco.2007.15.3155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019780623
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1369/jhc.6a6987.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035180977
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1586/14737159.6.6.803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051851721
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1586/erm.12.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021281838
269 rdf:type schema:CreativeWork
270 https://doi.org/10.3109/10520295.2011.591832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045343923
271 rdf:type schema:CreativeWork
272 https://www.grid.ac/institutes/grid.410356.5 schema:alternateName Queen's University
273 schema:name Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
274 rdf:type schema:Organization
275 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
276 schema:name Department of Pathology, Yale University Medical School, New Haven, CT, USA
277 rdf:type schema:Organization
278 https://www.grid.ac/institutes/grid.479574.c schema:alternateName Moderna Therapeutics (United States)
279 schema:name Metamark Genetics Inc, Cambridge, MA, USA
280 Moderna, Cambridge, MA, USA
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...