An efficient procedure for protein extraction from formalin-fixed, paraffin-embedded tissues for reverse phase protein arrays View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Huifang Guo, Wenbin Liu, Zhenlin Ju, Pheroze Tamboli, Eric Jonasch, Gordon B Mills, Yiling Lu, Bryan T Hennessy, Dimitra Tsavachidou

ABSTRACT

INTRODUCTION: Protein extraction from formalin-fixed paraffin-embedded (FFPE) tissues is challenging due to extensive molecular crosslinking that occurs upon formalin fixation. Reverse-phase protein array (RPPA) is a high-throughput technology, which can detect changes in protein levels and protein functionality in numerous tissue and cell sources. It has been used to evaluate protein expression mainly in frozen preparations or FFPE-based studies of limited scope. Reproducibility and reliability of the technique in FFPE samples has not yet been demonstrated extensively. We developed and optimized an efficient and reproducible procedure for extraction of proteins from FFPE cells and xenografts, and then applied the method to FFPE patient tissues and evaluated its performance on RPPA. RESULTS: Fresh frozen and FFPE preparations from cell lines, xenografts and breast cancer and renal tissues were included in the study. Serial FFPE cell or xenograft sections were deparaffinized and extracted by six different protein extraction protocols. The yield and level of protein degradation were evaluated by SDS-PAGE and Western Blots. The most efficient protocol was used to prepare protein lysates from breast cancer and renal tissues, which were subsequently subjected to RPPA. Reproducibility was evaluated and Spearman correlation was calculated between matching fresh frozen and FFPE samples.The most effective approach from six protein extraction protocols tested enabled efficient extraction of immunoreactive protein from cell line, breast cancer and renal tissue sample sets. 85% of the total of 169 markers tested on RPPA demonstrated significant correlation between FFPE and frozen preparations (p < 0.05) in at least one cell or tissue type, with only 23 markers common in all three sample sets. In addition, FFPE preparations yielded biologically meaningful observations related to pathway signaling status in cell lines, and classification of renal tissues. CONCLUSIONS: With optimized protein extraction methods, FFPE tissues can be a valuable source in generating reproducible and biologically relevant proteomic profiles using RPPA, with specific marker performance varying according to tissue type. More... »

PAGES

56

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1477-5956-10-56

DOI

http://dx.doi.org/10.1186/1477-5956-10-56

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018501365

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23006314


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Huifang", 
        "id": "sg:person.016513025147.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513025147.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Wenbin", 
        "id": "sg:person.010553131057.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553131057.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ju", 
        "givenName": "Zhenlin", 
        "id": "sg:person.01111144435.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111144435.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamboli", 
        "givenName": "Pheroze", 
        "id": "sg:person.01274763446.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274763446.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jonasch", 
        "givenName": "Eric", 
        "id": "sg:person.01172764022.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172764022.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mills", 
        "givenName": "Gordon B", 
        "id": "sg:person.012742742357.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742742357.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Yiling", 
        "id": "sg:person.015602724464.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015602724464.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Medical Oncology, Beaumont Hospital, Royal College of Surgeons of Ireland, Dublin, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hennessy", 
        "givenName": "Bryan T", 
        "id": "sg:person.01153534336.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153534336.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsavachidou", 
        "givenName": "Dimitra", 
        "id": "sg:person.01026415546.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026415546.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj.onc.1209755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000262143", 
          "https://doi.org/10.1038/sj.onc.1209755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1209755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000262143", 
          "https://doi.org/10.1038/sj.onc.1209755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-07-6854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002831536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3700596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006654228", 
          "https://doi.org/10.1038/labinvest.3700596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006930818", 
          "https://doi.org/10.1038/ng1032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006930818", 
          "https://doi.org/10.1038/ng1032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1369/jhc.5b6851.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008135064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1369/jhc.5b6851.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008135064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.suppl_1.s323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008750939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.200690121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009445689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.t500003-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009558113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3700343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013208998", 
          "https://doi.org/10.1038/labinvest.3700343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3700343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013208998", 
          "https://doi.org/10.1038/labinvest.3700343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3700343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013208998", 
          "https://doi.org/10.1038/labinvest.3700343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.2010.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017202126", 
          "https://doi.org/10.1038/labinvest.2010.47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3700708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017233423", 
          "https://doi.org/10.1038/labinvest.3700708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr050208p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018519151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1535-7163.mct-09-0743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019150137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022246986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-09-2502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022830288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/39.6.1709656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023661314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/39.6.1709656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023661314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prca.200800005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024109721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m500102-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025764813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2008.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028646800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1369/jhc.7a7177.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029988788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1369/jhc.7a7177.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029988788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1113205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031166230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcp.22718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033009525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-0760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036144328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00022744-200106000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037232060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00022744-200106000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037232060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.2107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037801964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00129039-200106000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039463017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00129039-200106000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039463017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.200800971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040163262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.200800971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040163262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1535-7163.mct-06-0334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045065073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pai.0b013e3182054f9f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048188067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pai.0b013e3182054f9f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048188067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0016353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049925330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3700167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049960005", 
          "https://doi.org/10.1038/labinvest.3700167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3700167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049960005", 
          "https://doi.org/10.1038/labinvest.3700167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3700167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049960005", 
          "https://doi.org/10.1038/labinvest.3700167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.2791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051736871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.2791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051736871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12014-010-9055-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052889308", 
          "https://doi.org/10.1007/s12014-010-9055-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/43.2.7822775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064094676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/43.2.7822775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064094676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077487247", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "\nINTRODUCTION: Protein extraction from formalin-fixed paraffin-embedded (FFPE) tissues is challenging due to extensive molecular crosslinking that occurs upon formalin fixation. Reverse-phase protein array (RPPA) is a high-throughput technology, which can detect changes in protein levels and protein functionality in numerous tissue and cell sources. It has been used to evaluate protein expression mainly in frozen preparations or FFPE-based studies of limited scope. Reproducibility and reliability of the technique in FFPE samples has not yet been demonstrated extensively. We developed and optimized an efficient and reproducible procedure for extraction of proteins from FFPE cells and xenografts, and then applied the method to FFPE patient tissues and evaluated its performance on RPPA.\nRESULTS: Fresh frozen and FFPE preparations from cell lines, xenografts and breast cancer and renal tissues were included in the study. Serial FFPE cell or xenograft sections were deparaffinized and extracted by six different protein extraction protocols. The yield and level of protein degradation were evaluated by SDS-PAGE and Western Blots. The most efficient protocol was used to prepare protein lysates from breast cancer and renal tissues, which were subsequently subjected to RPPA. Reproducibility was evaluated and Spearman correlation was calculated between matching fresh frozen and FFPE samples.The most effective approach from six protein extraction protocols tested enabled efficient extraction of immunoreactive protein from cell line, breast cancer and renal tissue sample sets. 85% of the total of 169 markers tested on RPPA demonstrated significant correlation between FFPE and frozen preparations (p < 0.05) in at least one cell or tissue type, with only 23 markers common in all three sample sets. In addition, FFPE preparations yielded biologically meaningful observations related to pathway signaling status in cell lines, and classification of renal tissues.\nCONCLUSIONS: With optimized protein extraction methods, FFPE tissues can be a valuable source in generating reproducible and biologically relevant proteomic profiles using RPPA, with specific marker performance varying according to tissue type.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1477-5956-10-56", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2440196", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2438826", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7669614", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1032054", 
        "issn": [
          "1477-5956"
        ], 
        "name": "Proteome Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "An efficient procedure for protein extraction from formalin-fixed, paraffin-embedded tissues for reverse phase protein arrays", 
    "pagination": "56", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "582727785220ac1bd0f85b84b027939037221c9115f19efd162c6500465c1427"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23006314"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101170539"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1477-5956-10-56"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018501365"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1477-5956-10-56", 
      "https://app.dimensions.ai/details/publication/pub.1018501365"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1477-5956-10-56"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1477-5956-10-56'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1477-5956-10-56'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1477-5956-10-56'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1477-5956-10-56'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1477-5956-10-56 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N8b3b2fad4ada453991314288389e3182
4 schema:citation sg:pub.10.1007/s12014-010-9055-y
5 sg:pub.10.1038/labinvest.2010.47
6 sg:pub.10.1038/labinvest.3700167
7 sg:pub.10.1038/labinvest.3700343
8 sg:pub.10.1038/labinvest.3700596
9 sg:pub.10.1038/labinvest.3700708
10 sg:pub.10.1038/ng1032
11 sg:pub.10.1038/sj.onc.1209755
12 https://app.dimensions.ai/details/publication/pub.1077487247
13 https://doi.org/10.1002/jcp.22718
14 https://doi.org/10.1002/path.2107
15 https://doi.org/10.1002/path.2791
16 https://doi.org/10.1002/pmic.200690121
17 https://doi.org/10.1002/pmic.200800971
18 https://doi.org/10.1002/prca.200800005
19 https://doi.org/10.1016/j.biotechadv.2008.04.002
20 https://doi.org/10.1021/pr050208p
21 https://doi.org/10.1056/nejmoa1113205
22 https://doi.org/10.1074/mcp.m500102-mcp200
23 https://doi.org/10.1074/mcp.t500003-mcp200
24 https://doi.org/10.1093/bioinformatics/17.suppl_1.s323
25 https://doi.org/10.1093/bioinformatics/btm283
26 https://doi.org/10.1097/00022744-200106000-00002
27 https://doi.org/10.1097/00129039-200106000-00002
28 https://doi.org/10.1097/pai.0b013e3182054f9f
29 https://doi.org/10.1158/0008-5472.can-07-6854
30 https://doi.org/10.1158/1078-0432.ccr-07-0760
31 https://doi.org/10.1158/1078-0432.ccr-09-2502
32 https://doi.org/10.1158/1535-7163.mct-06-0334
33 https://doi.org/10.1158/1535-7163.mct-09-0743
34 https://doi.org/10.1177/39.6.1709656
35 https://doi.org/10.1177/43.2.7822775
36 https://doi.org/10.1369/jhc.5b6851.2006
37 https://doi.org/10.1369/jhc.7a7177.2007
38 https://doi.org/10.1371/journal.pone.0016353
39 schema:datePublished 2012-12
40 schema:datePublishedReg 2012-12-01
41 schema:description INTRODUCTION: Protein extraction from formalin-fixed paraffin-embedded (FFPE) tissues is challenging due to extensive molecular crosslinking that occurs upon formalin fixation. Reverse-phase protein array (RPPA) is a high-throughput technology, which can detect changes in protein levels and protein functionality in numerous tissue and cell sources. It has been used to evaluate protein expression mainly in frozen preparations or FFPE-based studies of limited scope. Reproducibility and reliability of the technique in FFPE samples has not yet been demonstrated extensively. We developed and optimized an efficient and reproducible procedure for extraction of proteins from FFPE cells and xenografts, and then applied the method to FFPE patient tissues and evaluated its performance on RPPA. RESULTS: Fresh frozen and FFPE preparations from cell lines, xenografts and breast cancer and renal tissues were included in the study. Serial FFPE cell or xenograft sections were deparaffinized and extracted by six different protein extraction protocols. The yield and level of protein degradation were evaluated by SDS-PAGE and Western Blots. The most efficient protocol was used to prepare protein lysates from breast cancer and renal tissues, which were subsequently subjected to RPPA. Reproducibility was evaluated and Spearman correlation was calculated between matching fresh frozen and FFPE samples.The most effective approach from six protein extraction protocols tested enabled efficient extraction of immunoreactive protein from cell line, breast cancer and renal tissue sample sets. 85% of the total of 169 markers tested on RPPA demonstrated significant correlation between FFPE and frozen preparations (p < 0.05) in at least one cell or tissue type, with only 23 markers common in all three sample sets. In addition, FFPE preparations yielded biologically meaningful observations related to pathway signaling status in cell lines, and classification of renal tissues. CONCLUSIONS: With optimized protein extraction methods, FFPE tissues can be a valuable source in generating reproducible and biologically relevant proteomic profiles using RPPA, with specific marker performance varying according to tissue type.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N2c956b58087d4d9db9026b82b02cd823
46 Nc704aba938d945388fb271d5430c947d
47 sg:journal.1032054
48 schema:name An efficient procedure for protein extraction from formalin-fixed, paraffin-embedded tissues for reverse phase protein arrays
49 schema:pagination 56
50 schema:productId N1657c5a7842b4302af6ad50798a2f5d1
51 N458d8d2099514d1993804f427977a2ee
52 N81635497ed384d82af3604305446c719
53 Ndc2cb54a062c406e99aa778c0de55ef7
54 Ne8c3e85aa2604ccca563d922841bbfa0
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018501365
56 https://doi.org/10.1186/1477-5956-10-56
57 schema:sdDatePublished 2019-04-10T14:09
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N20302f969ece40988f5f0afeb39f93d1
60 schema:url http://link.springer.com/10.1186%2F1477-5956-10-56
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N05895d5446194103a958773669f4addd rdf:first sg:person.01172764022.37
65 rdf:rest N2c5f2667b5b749cda8528fbb8b8f918b
66 N1657c5a7842b4302af6ad50798a2f5d1 schema:name dimensions_id
67 schema:value pub.1018501365
68 rdf:type schema:PropertyValue
69 N1885bbb1a2024b57aeaa11a18c25d7a8 rdf:first sg:person.015602724464.42
70 rdf:rest N504dd30cd61a457883978cfd7b71ac21
71 N20302f969ece40988f5f0afeb39f93d1 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N2c5f2667b5b749cda8528fbb8b8f918b rdf:first sg:person.012742742357.13
74 rdf:rest N1885bbb1a2024b57aeaa11a18c25d7a8
75 N2c956b58087d4d9db9026b82b02cd823 schema:volumeNumber 10
76 rdf:type schema:PublicationVolume
77 N458d8d2099514d1993804f427977a2ee schema:name readcube_id
78 schema:value 582727785220ac1bd0f85b84b027939037221c9115f19efd162c6500465c1427
79 rdf:type schema:PropertyValue
80 N4bb9858fef2a47b2acad535d5f188db6 rdf:first sg:person.010553131057.85
81 rdf:rest Na4f209ee159a41369b29e1d15b84ed29
82 N4c74c1088a714c568811ced007b4a8f6 schema:name Department of Medical Oncology, Beaumont Hospital, Royal College of Surgeons of Ireland, Dublin, Ireland
83 rdf:type schema:Organization
84 N504dd30cd61a457883978cfd7b71ac21 rdf:first sg:person.01153534336.84
85 rdf:rest Nff01e5a465184c439643eedab2326d73
86 N64d16e4374b043ad88f060d3f7e6978b rdf:first sg:person.01274763446.75
87 rdf:rest N05895d5446194103a958773669f4addd
88 N81635497ed384d82af3604305446c719 schema:name pubmed_id
89 schema:value 23006314
90 rdf:type schema:PropertyValue
91 N8b3b2fad4ada453991314288389e3182 rdf:first sg:person.016513025147.29
92 rdf:rest N4bb9858fef2a47b2acad535d5f188db6
93 Na4f209ee159a41369b29e1d15b84ed29 rdf:first sg:person.01111144435.26
94 rdf:rest N64d16e4374b043ad88f060d3f7e6978b
95 Nc704aba938d945388fb271d5430c947d schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 Ndc2cb54a062c406e99aa778c0de55ef7 schema:name nlm_unique_id
98 schema:value 101170539
99 rdf:type schema:PropertyValue
100 Ne8c3e85aa2604ccca563d922841bbfa0 schema:name doi
101 schema:value 10.1186/1477-5956-10-56
102 rdf:type schema:PropertyValue
103 Nff01e5a465184c439643eedab2326d73 rdf:first sg:person.01026415546.16
104 rdf:rest rdf:nil
105 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
106 schema:name Biological Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
109 schema:name Biochemistry and Cell Biology
110 rdf:type schema:DefinedTerm
111 sg:grant.2438826 http://pending.schema.org/fundedItem sg:pub.10.1186/1477-5956-10-56
112 rdf:type schema:MonetaryGrant
113 sg:grant.2440196 http://pending.schema.org/fundedItem sg:pub.10.1186/1477-5956-10-56
114 rdf:type schema:MonetaryGrant
115 sg:grant.7669614 http://pending.schema.org/fundedItem sg:pub.10.1186/1477-5956-10-56
116 rdf:type schema:MonetaryGrant
117 sg:journal.1032054 schema:issn 1477-5956
118 schema:name Proteome Science
119 rdf:type schema:Periodical
120 sg:person.01026415546.16 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
121 schema:familyName Tsavachidou
122 schema:givenName Dimitra
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026415546.16
124 rdf:type schema:Person
125 sg:person.010553131057.85 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
126 schema:familyName Liu
127 schema:givenName Wenbin
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553131057.85
129 rdf:type schema:Person
130 sg:person.01111144435.26 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
131 schema:familyName Ju
132 schema:givenName Zhenlin
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111144435.26
134 rdf:type schema:Person
135 sg:person.01153534336.84 schema:affiliation N4c74c1088a714c568811ced007b4a8f6
136 schema:familyName Hennessy
137 schema:givenName Bryan T
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153534336.84
139 rdf:type schema:Person
140 sg:person.01172764022.37 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
141 schema:familyName Jonasch
142 schema:givenName Eric
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172764022.37
144 rdf:type schema:Person
145 sg:person.012742742357.13 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
146 schema:familyName Mills
147 schema:givenName Gordon B
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742742357.13
149 rdf:type schema:Person
150 sg:person.01274763446.75 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
151 schema:familyName Tamboli
152 schema:givenName Pheroze
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274763446.75
154 rdf:type schema:Person
155 sg:person.015602724464.42 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
156 schema:familyName Lu
157 schema:givenName Yiling
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015602724464.42
159 rdf:type schema:Person
160 sg:person.016513025147.29 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
161 schema:familyName Guo
162 schema:givenName Huifang
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513025147.29
164 rdf:type schema:Person
165 sg:pub.10.1007/s12014-010-9055-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052889308
166 https://doi.org/10.1007/s12014-010-9055-y
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/labinvest.2010.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017202126
169 https://doi.org/10.1038/labinvest.2010.47
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/labinvest.3700167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049960005
172 https://doi.org/10.1038/labinvest.3700167
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/labinvest.3700343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013208998
175 https://doi.org/10.1038/labinvest.3700343
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/labinvest.3700596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006654228
178 https://doi.org/10.1038/labinvest.3700596
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/labinvest.3700708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017233423
181 https://doi.org/10.1038/labinvest.3700708
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/ng1032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006930818
184 https://doi.org/10.1038/ng1032
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/sj.onc.1209755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000262143
187 https://doi.org/10.1038/sj.onc.1209755
188 rdf:type schema:CreativeWork
189 https://app.dimensions.ai/details/publication/pub.1077487247 schema:CreativeWork
190 https://doi.org/10.1002/jcp.22718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033009525
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1002/path.2107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037801964
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1002/path.2791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051736871
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1002/pmic.200690121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009445689
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1002/pmic.200800971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040163262
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1002/prca.200800005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024109721
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.biotechadv.2008.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028646800
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1021/pr050208p schema:sameAs https://app.dimensions.ai/details/publication/pub.1018519151
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1056/nejmoa1113205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031166230
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1074/mcp.m500102-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025764813
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1074/mcp.t500003-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009558113
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/bioinformatics/17.suppl_1.s323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008750939
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/bioinformatics/btm283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022246986
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1097/00022744-200106000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037232060
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1097/00129039-200106000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039463017
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1097/pai.0b013e3182054f9f schema:sameAs https://app.dimensions.ai/details/publication/pub.1048188067
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1158/0008-5472.can-07-6854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002831536
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1158/1078-0432.ccr-07-0760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036144328
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1158/1078-0432.ccr-09-2502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022830288
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1158/1535-7163.mct-06-0334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045065073
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1158/1535-7163.mct-09-0743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019150137
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1177/39.6.1709656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023661314
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1177/43.2.7822775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064094676
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1369/jhc.5b6851.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008135064
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1369/jhc.7a7177.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029988788
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1371/journal.pone.0016353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049925330
241 rdf:type schema:CreativeWork
242 https://www.grid.ac/institutes/grid.240145.6 schema:alternateName The University of Texas MD Anderson Cancer Center
243 schema:name Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
244 Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
245 Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
246 Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...