In silico proteome analysis to facilitate proteomics experiments using mass spectrometry View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-08-13

AUTHORS

Gerard Cagney, Shiva Amiri, Thanuja Premawaradena, Micheal Lindo, Andrew Emili

ABSTRACT

Proteomics experiments typically involve protein or peptide separation steps coupled to the identification of many hundreds to thousands of peptides by mass spectrometry. Development of methodology and instrumentation in this field is proceeding rapidly, and effective software is needed to link the different stages of proteomic analysis. We have developed an application, proteogest, written in Perl that generates descriptive and statistical analyses of the biophysical properties of multiple (e.g. thousands) protein sequences submitted by the user, for instance protein sequences inferred from the complete genome sequence of a model organism. The application also carries out in silico proteolytic digestion of the submitted proteomes, or subsets thereof, and the distribution of biophysical properties of the resulting peptides is presented. proteogest is customizable, the user being able to select many options, for instance the cleavage pattern of the digestion treatment or the presence of modifications to specific amino acid residues. We show how proteogest can be used to compare the proteomes and digested proteome products of model organisms, to examine the added complexity generated by modification of residues, and to facilitate the design of proteomics experiments for optimal representation of component proteins. More... »

PAGES

5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1477-5956-1-5

DOI

http://dx.doi.org/10.1186/1477-5956-1-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047472776

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12946274


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Clinical Pharmacology, Royal College of Surgeons, 123 Saint Stephen's Green, Dublin 2, Ireland", 
          "id": "http://www.grid.ac/institutes/grid.4912.e", 
          "name": [
            "Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada", 
            "Department of Clinical Pharmacology, Royal College of Surgeons, 123 Saint Stephen's Green, Dublin 2, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cagney", 
        "givenName": "Gerard", 
        "id": "sg:person.01014656545.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014656545.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amiri", 
        "givenName": "Shiva", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Premawaradena", 
        "givenName": "Thanuja", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindo", 
        "givenName": "Micheal", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular and Medical Genetics, University of Toronto, Toronto, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada", 
            "Department of Molecular and Medical Genetics, University of Toronto, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emili", 
        "givenName": "Andrew", 
        "id": "sg:person.0672573126.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672573126.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature01510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001153908", 
          "https://doi.org/10.1038/nature01510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0502-512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023426571", 
          "https://doi.org/10.1038/nbt0502-512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0302-301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002975314", 
          "https://doi.org/10.1038/nbt0302-301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012180132", 
          "https://doi.org/10.1038/nature01511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012772847", 
          "https://doi.org/10.1038/10890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/85686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050637706", 
          "https://doi.org/10.1038/85686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/1044-0305(94)80016-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018629105", 
          "https://doi.org/10.1016/1044-0305(94)80016-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0202-163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032016091", 
          "https://doi.org/10.1038/nbt0202-163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0303-255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045890250", 
          "https://doi.org/10.1038/nbt0303-255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/13690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029022565", 
          "https://doi.org/10.1038/13690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/42711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000430591", 
          "https://doi.org/10.1038/42711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052020554", 
          "https://doi.org/10.1038/nature01512"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-08-13", 
    "datePublishedReg": "2003-08-13", 
    "description": "Proteomics experiments typically involve protein or peptide separation steps coupled to the identification of many hundreds to thousands of peptides by mass spectrometry. Development of methodology and instrumentation in this field is proceeding rapidly, and effective software is needed to link the different stages of proteomic analysis. We have developed an application, proteogest, written in Perl that generates descriptive and statistical analyses of the biophysical properties of multiple (e.g. thousands) protein sequences submitted by the user, for instance protein sequences inferred from the complete genome sequence of a model organism. The application also carries out in silico proteolytic digestion of the submitted proteomes, or subsets thereof, and the distribution of biophysical properties of the resulting peptides is presented. proteogest is customizable, the user being able to select many options, for instance the cleavage pattern of the digestion treatment or the presence of modifications to specific amino acid residues. We show how proteogest can be used to compare the proteomes and digested proteome products of model organisms, to examine the added complexity generated by modification of residues, and to facilitate the design of proteomics experiments for optimal representation of component proteins.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1477-5956-1-5", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032054", 
        "issn": [
          "1477-5956"
        ], 
        "name": "Proteome Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "keywords": [
      "proteomics experiments", 
      "model organisms", 
      "protein sequences", 
      "silico proteome analysis", 
      "specific amino acid residues", 
      "complete genome sequence", 
      "amino acid residues", 
      "biophysical properties", 
      "mass spectrometry", 
      "modification of residues", 
      "genome sequence", 
      "proteomic analysis", 
      "proteome analysis", 
      "component proteins", 
      "acid residues", 
      "thousands of peptides", 
      "presence of modifications", 
      "cleavage patterns", 
      "proteome", 
      "proteolytic digestion", 
      "separation step", 
      "multiple protein sequences", 
      "organisms", 
      "protein", 
      "sequence", 
      "residues", 
      "spectrometry", 
      "development of methodologies", 
      "peptides", 
      "different stages", 
      "digestion treatment", 
      "properties", 
      "modification", 
      "digestion", 
      "identification", 
      "thousands", 
      "applications", 
      "analysis", 
      "hundreds", 
      "products", 
      "Perl", 
      "experiments", 
      "patterns", 
      "stage", 
      "subset", 
      "development", 
      "step", 
      "presence", 
      "instrumentation", 
      "distribution", 
      "complexity", 
      "statistical analysis", 
      "treatment", 
      "field", 
      "methodology", 
      "design", 
      "instances", 
      "effective software", 
      "options", 
      "software", 
      "representation", 
      "optimal representation", 
      "users"
    ], 
    "name": "In silico proteome analysis to facilitate proteomics experiments using mass spectrometry", 
    "pagination": "5", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047472776"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1477-5956-1-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12946274"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1477-5956-1-5", 
      "https://app.dimensions.ai/details/publication/pub.1047472776"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_369.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1477-5956-1-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1477-5956-1-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1477-5956-1-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1477-5956-1-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1477-5956-1-5'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      100 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1477-5956-1-5 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N63233109f83340a69b09e859183fc0ee
4 schema:citation sg:pub.10.1016/1044-0305(94)80016-2
5 sg:pub.10.1038/10890
6 sg:pub.10.1038/13690
7 sg:pub.10.1038/42711
8 sg:pub.10.1038/85686
9 sg:pub.10.1038/nature01510
10 sg:pub.10.1038/nature01511
11 sg:pub.10.1038/nature01512
12 sg:pub.10.1038/nbt0202-163
13 sg:pub.10.1038/nbt0302-301
14 sg:pub.10.1038/nbt0303-255
15 sg:pub.10.1038/nbt0502-512
16 schema:datePublished 2003-08-13
17 schema:datePublishedReg 2003-08-13
18 schema:description Proteomics experiments typically involve protein or peptide separation steps coupled to the identification of many hundreds to thousands of peptides by mass spectrometry. Development of methodology and instrumentation in this field is proceeding rapidly, and effective software is needed to link the different stages of proteomic analysis. We have developed an application, proteogest, written in Perl that generates descriptive and statistical analyses of the biophysical properties of multiple (e.g. thousands) protein sequences submitted by the user, for instance protein sequences inferred from the complete genome sequence of a model organism. The application also carries out in silico proteolytic digestion of the submitted proteomes, or subsets thereof, and the distribution of biophysical properties of the resulting peptides is presented. proteogest is customizable, the user being able to select many options, for instance the cleavage pattern of the digestion treatment or the presence of modifications to specific amino acid residues. We show how proteogest can be used to compare the proteomes and digested proteome products of model organisms, to examine the added complexity generated by modification of residues, and to facilitate the design of proteomics experiments for optimal representation of component proteins.
19 schema:genre article
20 schema:isAccessibleForFree true
21 schema:isPartOf Nc9fbfc4d7e54451c87c4cad507c4852c
22 Nd072d8b5daa348f8854351b7fc63d77e
23 sg:journal.1032054
24 schema:keywords Perl
25 acid residues
26 amino acid residues
27 analysis
28 applications
29 biophysical properties
30 cleavage patterns
31 complete genome sequence
32 complexity
33 component proteins
34 design
35 development
36 development of methodologies
37 different stages
38 digestion
39 digestion treatment
40 distribution
41 effective software
42 experiments
43 field
44 genome sequence
45 hundreds
46 identification
47 instances
48 instrumentation
49 mass spectrometry
50 methodology
51 model organisms
52 modification
53 modification of residues
54 multiple protein sequences
55 optimal representation
56 options
57 organisms
58 patterns
59 peptides
60 presence
61 presence of modifications
62 products
63 properties
64 protein
65 protein sequences
66 proteolytic digestion
67 proteome
68 proteome analysis
69 proteomic analysis
70 proteomics experiments
71 representation
72 residues
73 separation step
74 sequence
75 silico proteome analysis
76 software
77 specific amino acid residues
78 spectrometry
79 stage
80 statistical analysis
81 step
82 subset
83 thousands
84 thousands of peptides
85 treatment
86 users
87 schema:name In silico proteome analysis to facilitate proteomics experiments using mass spectrometry
88 schema:pagination 5
89 schema:productId N7285faed95a74b65b20771054c22c3c8
90 N8c79ea76751944c690537c74d7b869c2
91 Naadfed41786f44a9879adaf4628411df
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047472776
93 https://doi.org/10.1186/1477-5956-1-5
94 schema:sdDatePublished 2022-12-01T06:23
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher Nbda9ec19fc6544afbce5b78ef1bb3059
97 schema:url https://doi.org/10.1186/1477-5956-1-5
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N353adacfb7674502b2a3dc49a6b929ab schema:affiliation grid-institutes:grid.17063.33
102 schema:familyName Amiri
103 schema:givenName Shiva
104 rdf:type schema:Person
105 N63233109f83340a69b09e859183fc0ee rdf:first sg:person.01014656545.85
106 rdf:rest Nbc48416d7db34de3a9baf4377b6ecef4
107 N7285faed95a74b65b20771054c22c3c8 schema:name dimensions_id
108 schema:value pub.1047472776
109 rdf:type schema:PropertyValue
110 N82e8e088a84c4b68b94f849e62f05925 schema:affiliation grid-institutes:grid.17063.33
111 schema:familyName Premawaradena
112 schema:givenName Thanuja
113 rdf:type schema:Person
114 N83553aaa280446cca45ba0731921311b rdf:first N82e8e088a84c4b68b94f849e62f05925
115 rdf:rest Nffae7b82834b412185bebf4505e81a34
116 N8c79ea76751944c690537c74d7b869c2 schema:name pubmed_id
117 schema:value 12946274
118 rdf:type schema:PropertyValue
119 N8f098dca2a7c47e09ee2dfbb4cb20840 rdf:first sg:person.0672573126.10
120 rdf:rest rdf:nil
121 Naadfed41786f44a9879adaf4628411df schema:name doi
122 schema:value 10.1186/1477-5956-1-5
123 rdf:type schema:PropertyValue
124 Nbc48416d7db34de3a9baf4377b6ecef4 rdf:first N353adacfb7674502b2a3dc49a6b929ab
125 rdf:rest N83553aaa280446cca45ba0731921311b
126 Nbda9ec19fc6544afbce5b78ef1bb3059 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 Nc9fbfc4d7e54451c87c4cad507c4852c schema:issueNumber 1
129 rdf:type schema:PublicationIssue
130 Nd072d8b5daa348f8854351b7fc63d77e schema:volumeNumber 1
131 rdf:type schema:PublicationVolume
132 Nf7b0e76432a744728c82f831f4eb8cff schema:affiliation grid-institutes:grid.17063.33
133 schema:familyName Lindo
134 schema:givenName Micheal
135 rdf:type schema:Person
136 Nffae7b82834b412185bebf4505e81a34 rdf:first Nf7b0e76432a744728c82f831f4eb8cff
137 rdf:rest N8f098dca2a7c47e09ee2dfbb4cb20840
138 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
139 schema:name Biological Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
142 schema:name Biochemistry and Cell Biology
143 rdf:type schema:DefinedTerm
144 sg:journal.1032054 schema:issn 1477-5956
145 schema:name Proteome Science
146 schema:publisher Springer Nature
147 rdf:type schema:Periodical
148 sg:person.01014656545.85 schema:affiliation grid-institutes:grid.4912.e
149 schema:familyName Cagney
150 schema:givenName Gerard
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014656545.85
152 rdf:type schema:Person
153 sg:person.0672573126.10 schema:affiliation grid-institutes:grid.17063.33
154 schema:familyName Emili
155 schema:givenName Andrew
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672573126.10
157 rdf:type schema:Person
158 sg:pub.10.1016/1044-0305(94)80016-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018629105
159 https://doi.org/10.1016/1044-0305(94)80016-2
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/10890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012772847
162 https://doi.org/10.1038/10890
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/13690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029022565
165 https://doi.org/10.1038/13690
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/42711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000430591
168 https://doi.org/10.1038/42711
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/85686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050637706
171 https://doi.org/10.1038/85686
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nature01510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001153908
174 https://doi.org/10.1038/nature01510
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nature01511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012180132
177 https://doi.org/10.1038/nature01511
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nature01512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052020554
180 https://doi.org/10.1038/nature01512
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nbt0202-163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032016091
183 https://doi.org/10.1038/nbt0202-163
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nbt0302-301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002975314
186 https://doi.org/10.1038/nbt0302-301
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nbt0303-255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045890250
189 https://doi.org/10.1038/nbt0303-255
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nbt0502-512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023426571
192 https://doi.org/10.1038/nbt0502-512
193 rdf:type schema:CreativeWork
194 grid-institutes:grid.17063.33 schema:alternateName Department of Molecular and Medical Genetics, University of Toronto, Toronto, Canada
195 Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
196 schema:name Department of Molecular and Medical Genetics, University of Toronto, Toronto, Canada
197 Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
198 rdf:type schema:Organization
199 grid-institutes:grid.4912.e schema:alternateName Department of Clinical Pharmacology, Royal College of Surgeons, 123 Saint Stephen's Green, Dublin 2, Ireland
200 schema:name Department of Clinical Pharmacology, Royal College of Surgeons, 123 Saint Stephen's Green, Dublin 2, Ireland
201 Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...