Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Saptarshi Chatterjee, Arghya Bandyopadhyay, Keka Sarkar

ABSTRACT

BACKGROUND: Nanoparticle-metal oxide and gold represents a new class of important materials that are increasingly being developed for use in research and health related activities. The biological system being extremely critical requires the fundamental understanding on the influence of inorganic nanoparticles on cellular growth and functions. Our study was aimed to find out the effect of iron oxide (Fe3O4), gold (Au) nanoparticles on cellular growth of Escherichia coli (E. coli) and also try to channelize the obtained result by functionalizing the Au nanoparticle for further biological applications. RESULT: Fe3O4 and Au nanoparticles were prepared and characterized using Transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). Preliminary growth analysis data suggest that the nanoparticles of iron oxide have an inhibitory effect on E. coli in a concentration dependant manner, whereas the gold nanoparticle directly showed no such activity. However the phase contrast microscopic study clearly demonstrated that the effect of both Fe3O4 and Au nanoparticle extended up to the level of cell division which was evident as the abrupt increase in bacterial cell length. The incorporation of gold nanoparticle by bacterial cell was also observed during microscopic analysis based on which glutathione functionalized gold nanoparticle was prepared and used as a vector for plasmid DNA transport within bacterial cell. CONCLUSION: Altogether the study suggests that there is metal nanoparticle-bacteria interaction at the cellular level that can be utilized for beneficial biological application but significantly it also posses potential to produce ecotoxicity, challenging the ecofriendly nature of nanoparticles. More... »

PAGES

34

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1477-3155-9-34

DOI

http://dx.doi.org/10.1186/1477-3155-9-34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032231933

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21859494


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anti-Bacterial Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Division", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ferric Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glutathione", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gold", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metal Nanoparticles", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Kalyani", 
          "id": "https://www.grid.ac/institutes/grid.411993.7", 
          "name": [
            "Department of Microbiology, University of Kalyani, Nadia, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chatterjee", 
        "givenName": "Saptarshi", 
        "id": "sg:person.01117623140.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117623140.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kalyani", 
          "id": "https://www.grid.ac/institutes/grid.411993.7", 
          "name": [
            "Department of Microbiology, University of Kalyani, Nadia, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bandyopadhyay", 
        "givenName": "Arghya", 
        "id": "sg:person.01273304222.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273304222.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kalyani", 
          "id": "https://www.grid.ac/institutes/grid.411993.7", 
          "name": [
            "Department of Microbiology, University of Kalyani, Nadia, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sarkar", 
        "givenName": "Keka", 
        "id": "sg:person.01341417422.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341417422.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.mib.2007.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005497654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-8579(99)00121-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006055659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5385.2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006510768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2007.08.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007638056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/17435390.2010.536615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013171599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/expphysiol.1997.sp004024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016423401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.4.12a.2036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016664786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/kfm279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019568321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/02652049609026013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025370596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/36/13/203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026063564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2004.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032406790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910240108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034244177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0502196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037450529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0502196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037450529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039601245", 
          "https://doi.org/10.1038/nbt994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039601245", 
          "https://doi.org/10.1038/nbt994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/1-59259-901-x:101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047485304", 
          "https://doi.org/10.1385/1-59259-901-x:101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp993691y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056132415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp993691y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056132415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0503451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056148487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0503451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056148487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079815439", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Nanoparticle-metal oxide and gold represents a new class of important materials that are increasingly being developed for use in research and health related activities. The biological system being extremely critical requires the fundamental understanding on the influence of inorganic nanoparticles on cellular growth and functions. Our study was aimed to find out the effect of iron oxide (Fe3O4), gold (Au) nanoparticles on cellular growth of Escherichia coli (E. coli) and also try to channelize the obtained result by functionalizing the Au nanoparticle for further biological applications.\nRESULT: Fe3O4 and Au nanoparticles were prepared and characterized using Transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). Preliminary growth analysis data suggest that the nanoparticles of iron oxide have an inhibitory effect on E. coli in a concentration dependant manner, whereas the gold nanoparticle directly showed no such activity. However the phase contrast microscopic study clearly demonstrated that the effect of both Fe3O4 and Au nanoparticle extended up to the level of cell division which was evident as the abrupt increase in bacterial cell length. The incorporation of gold nanoparticle by bacterial cell was also observed during microscopic analysis based on which glutathione functionalized gold nanoparticle was prepared and used as a vector for plasmid DNA transport within bacterial cell.\nCONCLUSION: Altogether the study suggests that there is metal nanoparticle-bacteria interaction at the cellular level that can be utilized for beneficial biological application but significantly it also posses potential to produce ecotoxicity, challenging the ecofriendly nature of nanoparticles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1477-3155-9-34", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031280", 
        "issn": [
          "1477-3155"
        ], 
        "name": "Journal of Nanobiotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application", 
    "pagination": "34", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "998c1ace4ae9dbe4bb705461d92444ff2d191fd50739ff001d47b24a58ee34b4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21859494"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101152208"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1477-3155-9-34"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032231933"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1477-3155-9-34", 
      "https://app.dimensions.ai/details/publication/pub.1032231933"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1477-3155-9-34"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1477-3155-9-34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1477-3155-9-34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1477-3155-9-34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1477-3155-9-34'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      54 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1477-3155-9-34 schema:about N0a93c3e7118947b49fda35ff4c3e83da
2 N4773a095aa0f467fb363a7acf1d82310
3 N6f716e2567b2426eb12aa3834844ec86
4 N901cfa4f60594ec8b036f279f9540190
5 Ndbe6488ac267451fbe7a67f58996ecc4
6 Ne710fbdc1c1a4357b8c5afb4b966acf1
7 Ned2e01eb002c43c5bd68ec5fd06464f4
8 anzsrc-for:10
9 anzsrc-for:1007
10 schema:author Nc0e8705f704447ed9be043581e82f756
11 schema:citation sg:pub.10.1038/nbt994
12 sg:pub.10.1385/1-59259-901-x:101
13 https://app.dimensions.ai/details/publication/pub.1079815439
14 https://doi.org/10.1002/mrm.1910240108
15 https://doi.org/10.1016/j.biomaterials.2004.10.012
16 https://doi.org/10.1016/j.biomaterials.2007.08.050
17 https://doi.org/10.1016/j.mib.2007.09.004
18 https://doi.org/10.1016/s0924-8579(99)00121-1
19 https://doi.org/10.1021/jp0502196
20 https://doi.org/10.1021/jp993691y
21 https://doi.org/10.1021/la0503451
22 https://doi.org/10.1088/0022-3727/36/13/203
23 https://doi.org/10.1093/toxsci/kfm279
24 https://doi.org/10.1101/gad.4.12a.2036
25 https://doi.org/10.1113/expphysiol.1997.sp004024
26 https://doi.org/10.1126/science.281.5385.2016
27 https://doi.org/10.3109/02652049609026013
28 https://doi.org/10.3109/17435390.2010.536615
29 schema:datePublished 2011-12
30 schema:datePublishedReg 2011-12-01
31 schema:description BACKGROUND: Nanoparticle-metal oxide and gold represents a new class of important materials that are increasingly being developed for use in research and health related activities. The biological system being extremely critical requires the fundamental understanding on the influence of inorganic nanoparticles on cellular growth and functions. Our study was aimed to find out the effect of iron oxide (Fe3O4), gold (Au) nanoparticles on cellular growth of Escherichia coli (E. coli) and also try to channelize the obtained result by functionalizing the Au nanoparticle for further biological applications. RESULT: Fe3O4 and Au nanoparticles were prepared and characterized using Transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). Preliminary growth analysis data suggest that the nanoparticles of iron oxide have an inhibitory effect on E. coli in a concentration dependant manner, whereas the gold nanoparticle directly showed no such activity. However the phase contrast microscopic study clearly demonstrated that the effect of both Fe3O4 and Au nanoparticle extended up to the level of cell division which was evident as the abrupt increase in bacterial cell length. The incorporation of gold nanoparticle by bacterial cell was also observed during microscopic analysis based on which glutathione functionalized gold nanoparticle was prepared and used as a vector for plasmid DNA transport within bacterial cell. CONCLUSION: Altogether the study suggests that there is metal nanoparticle-bacteria interaction at the cellular level that can be utilized for beneficial biological application but significantly it also posses potential to produce ecotoxicity, challenging the ecofriendly nature of nanoparticles.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N5bac7070e2d548ccaff45b3b974c8bdc
36 Nb7493fdef7c4440cb3c23c26dd3cf37a
37 sg:journal.1031280
38 schema:name Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application
39 schema:pagination 34
40 schema:productId N357ea932fd40495989cbdab2297dc343
41 N4048f9318b2e412d942c420ca852e359
42 N4c3d9fa4697242a8b5297caf22e90aa1
43 N769bec14fed242149573bf1c2f0cf882
44 N9ea258211a5741248ab53e34d86b3654
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032231933
46 https://doi.org/10.1186/1477-3155-9-34
47 schema:sdDatePublished 2019-04-11T01:14
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N95343c2b423d4019866584d598c9fa22
50 schema:url http://link.springer.com/10.1186%2F1477-3155-9-34
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N0a93c3e7118947b49fda35ff4c3e83da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
55 schema:name Glutathione
56 rdf:type schema:DefinedTerm
57 N0bd83c6f6c69435e992d22132f1e4eed rdf:first sg:person.01341417422.63
58 rdf:rest rdf:nil
59 N357ea932fd40495989cbdab2297dc343 schema:name nlm_unique_id
60 schema:value 101152208
61 rdf:type schema:PropertyValue
62 N4048f9318b2e412d942c420ca852e359 schema:name pubmed_id
63 schema:value 21859494
64 rdf:type schema:PropertyValue
65 N4773a095aa0f467fb363a7acf1d82310 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Gold
67 rdf:type schema:DefinedTerm
68 N4c3d9fa4697242a8b5297caf22e90aa1 schema:name dimensions_id
69 schema:value pub.1032231933
70 rdf:type schema:PropertyValue
71 N5bac7070e2d548ccaff45b3b974c8bdc schema:volumeNumber 9
72 rdf:type schema:PublicationVolume
73 N6f716e2567b2426eb12aa3834844ec86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Escherichia coli
75 rdf:type schema:DefinedTerm
76 N769bec14fed242149573bf1c2f0cf882 schema:name readcube_id
77 schema:value 998c1ace4ae9dbe4bb705461d92444ff2d191fd50739ff001d47b24a58ee34b4
78 rdf:type schema:PropertyValue
79 N901cfa4f60594ec8b036f279f9540190 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Cell Division
81 rdf:type schema:DefinedTerm
82 N95343c2b423d4019866584d598c9fa22 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N9ea258211a5741248ab53e34d86b3654 schema:name doi
85 schema:value 10.1186/1477-3155-9-34
86 rdf:type schema:PropertyValue
87 Nb7493fdef7c4440cb3c23c26dd3cf37a schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 Nbd96507b4e794177bee498211b90bb1a rdf:first sg:person.01273304222.90
90 rdf:rest N0bd83c6f6c69435e992d22132f1e4eed
91 Nc0e8705f704447ed9be043581e82f756 rdf:first sg:person.01117623140.25
92 rdf:rest Nbd96507b4e794177bee498211b90bb1a
93 Ndbe6488ac267451fbe7a67f58996ecc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Ferric Compounds
95 rdf:type schema:DefinedTerm
96 Ne710fbdc1c1a4357b8c5afb4b966acf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Metal Nanoparticles
98 rdf:type schema:DefinedTerm
99 Ned2e01eb002c43c5bd68ec5fd06464f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Anti-Bacterial Agents
101 rdf:type schema:DefinedTerm
102 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
103 schema:name Technology
104 rdf:type schema:DefinedTerm
105 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
106 schema:name Nanotechnology
107 rdf:type schema:DefinedTerm
108 sg:journal.1031280 schema:issn 1477-3155
109 schema:name Journal of Nanobiotechnology
110 rdf:type schema:Periodical
111 sg:person.01117623140.25 schema:affiliation https://www.grid.ac/institutes/grid.411993.7
112 schema:familyName Chatterjee
113 schema:givenName Saptarshi
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117623140.25
115 rdf:type schema:Person
116 sg:person.01273304222.90 schema:affiliation https://www.grid.ac/institutes/grid.411993.7
117 schema:familyName Bandyopadhyay
118 schema:givenName Arghya
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273304222.90
120 rdf:type schema:Person
121 sg:person.01341417422.63 schema:affiliation https://www.grid.ac/institutes/grid.411993.7
122 schema:familyName Sarkar
123 schema:givenName Keka
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341417422.63
125 rdf:type schema:Person
126 sg:pub.10.1038/nbt994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039601245
127 https://doi.org/10.1038/nbt994
128 rdf:type schema:CreativeWork
129 sg:pub.10.1385/1-59259-901-x:101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047485304
130 https://doi.org/10.1385/1-59259-901-x:101
131 rdf:type schema:CreativeWork
132 https://app.dimensions.ai/details/publication/pub.1079815439 schema:CreativeWork
133 https://doi.org/10.1002/mrm.1910240108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034244177
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.biomaterials.2004.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032406790
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.biomaterials.2007.08.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007638056
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.mib.2007.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005497654
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0924-8579(99)00121-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006055659
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1021/jp0502196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037450529
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1021/jp993691y schema:sameAs https://app.dimensions.ai/details/publication/pub.1056132415
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1021/la0503451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056148487
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1088/0022-3727/36/13/203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026063564
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/toxsci/kfm279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019568321
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1101/gad.4.12a.2036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016664786
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1113/expphysiol.1997.sp004024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016423401
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1126/science.281.5385.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006510768
158 rdf:type schema:CreativeWork
159 https://doi.org/10.3109/02652049609026013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025370596
160 rdf:type schema:CreativeWork
161 https://doi.org/10.3109/17435390.2010.536615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013171599
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.411993.7 schema:alternateName University of Kalyani
164 schema:name Department of Microbiology, University of Kalyani, Nadia, West Bengal, India
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...