Relationship between carotid intima-media thickness and coronary angiographic findings: a prospective study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Ugur Coskun, Ahmet Yildiz, Ozlem B Esen, Murat Baskurt, Mehmet A Cakar, Kadriye O Kilickesmez, Lutfu A Orhan, Seyma Yildiz

ABSTRACT

BACKGROUND: Since cardiovascular diseases are associated with high mortality and generally undiagnosed before the onset of clinical findings, there is a need for a reliable tool for early diagnosis. Carotid intima-media thickness (CIMT) is a non-invasive marker of coronary artery disease (CAD) and is widely used in practice as an inexpensive, reliable, and reproducible method. In the current study, we aimed to investigate prospectively the relationship of CIMT with the presence and extent of significant coronary artery narrowing in patients evaluated by coronary angiography for stable angina pectoris. METHODS: One hundred consecutive patients with stable angina pectoris and documented ischemia on a stress test were included in the study. The patients were divided into two groups according to the result of the coronary angiography: group 1 (39 patients) without a noncritical coronary lesion, and group 2 (61 patients) having at least one lesion more than 50% within the main branches of the coronary arteries. All of the patients underwent carotid Doppler ultrasound examination for measurement of the CIMT by a radiologist blinded to the angiographic data. RESULTS: The mean CIMT was 0.78 +/- 0.21 mm in Group 1, while it was 1.48 +/- 0.28 mm in Group 2 (p = 0.001). The mean CIMT in patients with single vessel disease, multi-vessel disease, and left main coronary artery disease were significantly higher compared to Group 1 (1.2 +/- 0.34 mm, p = 0.02; 1.6 +/- 0.32 mm, p = 0.001; and 1.8 +/- 0.31 mm, p = 0.0001, respectively). Logistic regression analysis identified CIMT (OR 4.3, p < 0.001) and hypertension (OR 2.4, p = 0.04) as the most important factors for predicting CAD. CONCLUSIONS: The findings of this study show that increase in CIMT is associated with the presence and extent of CAD. In conclusion, we demonstrated the usefulness of carotid intima-media thickness in predicting coronary artery disease but large-scale studies are required to define its role in clinical practice. More... »

PAGES

59

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1476-7120-7-59

DOI

http://dx.doi.org/10.1186/1476-7120-7-59

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023558475

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20043836


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Angina Pectoris", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tunica Intima", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tunica Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography, Doppler", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istanbul University", 
          "id": "https://www.grid.ac/institutes/grid.9601.e", 
          "name": [
            "Istanbul University, Institute of Cardiology, Haseki, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coskun", 
        "givenName": "Ugur", 
        "id": "sg:person.01107140333.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107140333.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istanbul University", 
          "id": "https://www.grid.ac/institutes/grid.9601.e", 
          "name": [
            "Istanbul University, Institute of Cardiology, Haseki, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yildiz", 
        "givenName": "Ahmet", 
        "id": "sg:person.0751645236.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751645236.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istanbul University", 
          "id": "https://www.grid.ac/institutes/grid.9601.e", 
          "name": [
            "Istanbul University, Institute of Cardiology, Haseki, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Esen", 
        "givenName": "Ozlem B", 
        "id": "sg:person.01117034767.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117034767.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istanbul University", 
          "id": "https://www.grid.ac/institutes/grid.9601.e", 
          "name": [
            "Istanbul University, Institute of Cardiology, Haseki, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baskurt", 
        "givenName": "Murat", 
        "id": "sg:person.01067652101.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067652101.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sakarya E\u011fitim ve Ara\u015ft\u0131rma Hastanesi", 
          "id": "https://www.grid.ac/institutes/grid.459902.3", 
          "name": [
            "Sakarya Training and Research Hospital Department of Cardiology, Sakarya, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cakar", 
        "givenName": "Mehmet A", 
        "id": "sg:person.01177023775.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177023775.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istanbul University", 
          "id": "https://www.grid.ac/institutes/grid.9601.e", 
          "name": [
            "Istanbul University, Institute of Cardiology, Haseki, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kilickesmez", 
        "givenName": "Kadriye O", 
        "id": "sg:person.01252174413.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252174413.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u0130stanbul E\u011fitim ve Ara\u015ft\u0131rma Hastanesi", 
          "id": "https://www.grid.ac/institutes/grid.414850.c", 
          "name": [
            "Department of Cardiology, Siyami-Ersek Training and Research Hospital, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orhan", 
        "givenName": "Lutfu A", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ba\u011fc\u0131lar E\u011fitim ve Ara\u015ft\u0131rma Hastanesi", 
          "id": "https://www.grid.ac/institutes/grid.489914.9", 
          "name": [
            "Department of Radiology, Bagcilar Training and Research Hospital, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yildiz", 
        "givenName": "Seyma", 
        "id": "sg:person.01305004106.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305004106.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/01.cir.101.1.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010253121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-006-9197-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011049422", 
          "https://doi.org/10.1007/s10554-006-9197-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-006-9197-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011049422", 
          "https://doi.org/10.1007/s10554-006-9197-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(03)00927-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015955682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(03)00927-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015955682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000120708.59903.1b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020031529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.101.1.e16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024808589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9149(02)02957-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026747663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9149(02)02957-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026747663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199901073400103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033669673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a009302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038082244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2005.04.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038092395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.74.6.1399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045620972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(96)07493-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047883998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.28.3.665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063342311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a116963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082703032"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "BACKGROUND: Since cardiovascular diseases are associated with high mortality and generally undiagnosed before the onset of clinical findings, there is a need for a reliable tool for early diagnosis. Carotid intima-media thickness (CIMT) is a non-invasive marker of coronary artery disease (CAD) and is widely used in practice as an inexpensive, reliable, and reproducible method. In the current study, we aimed to investigate prospectively the relationship of CIMT with the presence and extent of significant coronary artery narrowing in patients evaluated by coronary angiography for stable angina pectoris.\nMETHODS: One hundred consecutive patients with stable angina pectoris and documented ischemia on a stress test were included in the study. The patients were divided into two groups according to the result of the coronary angiography: group 1 (39 patients) without a noncritical coronary lesion, and group 2 (61 patients) having at least one lesion more than 50% within the main branches of the coronary arteries. All of the patients underwent carotid Doppler ultrasound examination for measurement of the CIMT by a radiologist blinded to the angiographic data.\nRESULTS: The mean CIMT was 0.78 +/- 0.21 mm in Group 1, while it was 1.48 +/- 0.28 mm in Group 2 (p = 0.001). The mean CIMT in patients with single vessel disease, multi-vessel disease, and left main coronary artery disease were significantly higher compared to Group 1 (1.2 +/- 0.34 mm, p = 0.02; 1.6 +/- 0.32 mm, p = 0.001; and 1.8 +/- 0.31 mm, p = 0.0001, respectively). Logistic regression analysis identified CIMT (OR 4.3, p < 0.001) and hypertension (OR 2.4, p = 0.04) as the most important factors for predicting CAD.\nCONCLUSIONS: The findings of this study show that increase in CIMT is associated with the presence and extent of CAD. In conclusion, we demonstrated the usefulness of carotid intima-media thickness in predicting coronary artery disease but large-scale studies are required to define its role in clinical practice.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1476-7120-7-59", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031661", 
        "issn": [
          "1476-7120"
        ], 
        "name": "Cardiovascular Ultrasound", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Relationship between carotid intima-media thickness and coronary angiographic findings: a prospective study", 
    "pagination": "59", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "703d59a71f634c7eca2d0b8391c86df929cea0159f1b4fa34cc79778615c1c7a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20043836"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101159952"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1476-7120-7-59"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023558475"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1476-7120-7-59", 
      "https://app.dimensions.ai/details/publication/pub.1023558475"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1476-7120-7-59"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1476-7120-7-59'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1476-7120-7-59'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1476-7120-7-59'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1476-7120-7-59'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      59 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1476-7120-7-59 schema:about N0ad5aa882f764d02abf35e7ebc26f9a1
2 N0ca605c654c04803ab2b738f58d07800
3 N5afef4b791cb490c8558606a794984c8
4 N5dfcfb8ae3b0413fb95445679d94b274
5 N6fe1610c4d6f4089aec4cef59fd609c3
6 N85d0dd04b1af42f59420988f04301e3f
7 N8a619a39db594b91b1da4397cd650e02
8 N9ae6501c780248b49beda93a0ecc242b
9 N9f80bd0a7ea84279aa4daefa12be6636
10 Na65da52763464e61bdc4fcb9ec60aee0
11 Naf6f67a2ccff49bcbccb33528919da22
12 Nc1f7115bac1b45158eb43aebcfe02840
13 Nc2f576973c1a452dbff1c04b63567044
14 Nd76084e2d80b429fa08a851154da6764
15 Nd7866710ec244344815eb8563fb17bc6
16 Ne8e6c2a2ebb84f1c8593a68a045d4937
17 Nf71b4ae5db63411fa250b701985c48da
18 anzsrc-for:11
19 anzsrc-for:1102
20 schema:author N1564734633754f29a59a04ef8914f616
21 schema:citation sg:pub.10.1007/s10554-006-9197-1
22 https://doi.org/10.1016/j.amjcard.2005.04.035
23 https://doi.org/10.1016/s0002-9149(02)02957-0
24 https://doi.org/10.1016/s0140-6736(96)07493-4
25 https://doi.org/10.1016/s0735-1097(03)00927-6
26 https://doi.org/10.1056/nejm199901073400103
27 https://doi.org/10.1093/oxfordjournals.aje.a009302
28 https://doi.org/10.1093/oxfordjournals.aje.a116963
29 https://doi.org/10.1161/01.cir.0000120708.59903.1b
30 https://doi.org/10.1161/01.cir.101.1.111
31 https://doi.org/10.1161/01.cir.101.1.e16
32 https://doi.org/10.1161/01.cir.74.6.1399
33 https://doi.org/10.1161/01.str.28.3.665
34 schema:datePublished 2009-12
35 schema:datePublishedReg 2009-12-01
36 schema:description BACKGROUND: Since cardiovascular diseases are associated with high mortality and generally undiagnosed before the onset of clinical findings, there is a need for a reliable tool for early diagnosis. Carotid intima-media thickness (CIMT) is a non-invasive marker of coronary artery disease (CAD) and is widely used in practice as an inexpensive, reliable, and reproducible method. In the current study, we aimed to investigate prospectively the relationship of CIMT with the presence and extent of significant coronary artery narrowing in patients evaluated by coronary angiography for stable angina pectoris. METHODS: One hundred consecutive patients with stable angina pectoris and documented ischemia on a stress test were included in the study. The patients were divided into two groups according to the result of the coronary angiography: group 1 (39 patients) without a noncritical coronary lesion, and group 2 (61 patients) having at least one lesion more than 50% within the main branches of the coronary arteries. All of the patients underwent carotid Doppler ultrasound examination for measurement of the CIMT by a radiologist blinded to the angiographic data. RESULTS: The mean CIMT was 0.78 +/- 0.21 mm in Group 1, while it was 1.48 +/- 0.28 mm in Group 2 (p = 0.001). The mean CIMT in patients with single vessel disease, multi-vessel disease, and left main coronary artery disease were significantly higher compared to Group 1 (1.2 +/- 0.34 mm, p = 0.02; 1.6 +/- 0.32 mm, p = 0.001; and 1.8 +/- 0.31 mm, p = 0.0001, respectively). Logistic regression analysis identified CIMT (OR 4.3, p < 0.001) and hypertension (OR 2.4, p = 0.04) as the most important factors for predicting CAD. CONCLUSIONS: The findings of this study show that increase in CIMT is associated with the presence and extent of CAD. In conclusion, we demonstrated the usefulness of carotid intima-media thickness in predicting coronary artery disease but large-scale studies are required to define its role in clinical practice.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf Nab331c51376c4760927bc2e5e5470a83
41 Nccc38f4d48d749de99a2933453b64eae
42 sg:journal.1031661
43 schema:name Relationship between carotid intima-media thickness and coronary angiographic findings: a prospective study
44 schema:pagination 59
45 schema:productId N5059d52a901046959a180276111ab1fb
46 N5089d476a628446aaff20a99dbe36d59
47 N56c8ef15df294452a0849131dee01ea9
48 Nb7b006cc7fd9463aa09195ea0f6ba0c9
49 Nc0620232db8741bd8b430605b3ec4ca3
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023558475
51 https://doi.org/10.1186/1476-7120-7-59
52 schema:sdDatePublished 2019-04-11T02:00
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nf986b3eb31ca4abda3922c9b658b42fa
55 schema:url http://link.springer.com/10.1186%2F1476-7120-7-59
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0ad5aa882f764d02abf35e7ebc26f9a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Reproducibility of Results
61 rdf:type schema:DefinedTerm
62 N0ca605c654c04803ab2b738f58d07800 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Prospective Studies
64 rdf:type schema:DefinedTerm
65 N13cea528933c4fee976ddd2c8ba988fa rdf:first sg:person.01252174413.86
66 rdf:rest Ne6f07f7158d54dc7bfa8a137b00e3a61
67 N1564734633754f29a59a04ef8914f616 rdf:first sg:person.01107140333.32
68 rdf:rest N4f4fea02c06e415e911c7f571675a07e
69 N4f4fea02c06e415e911c7f571675a07e rdf:first sg:person.0751645236.81
70 rdf:rest Nee9543ff5dec48c3a1b0db4a5c3e3108
71 N5059d52a901046959a180276111ab1fb schema:name dimensions_id
72 schema:value pub.1023558475
73 rdf:type schema:PropertyValue
74 N5089d476a628446aaff20a99dbe36d59 schema:name nlm_unique_id
75 schema:value 101159952
76 rdf:type schema:PropertyValue
77 N56c8ef15df294452a0849131dee01ea9 schema:name pubmed_id
78 schema:value 20043836
79 rdf:type schema:PropertyValue
80 N5afef4b791cb490c8558606a794984c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Tunica Intima
82 rdf:type schema:DefinedTerm
83 N5dfcfb8ae3b0413fb95445679d94b274 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Carotid Artery Diseases
85 rdf:type schema:DefinedTerm
86 N6305da9044f94192af002401ffce3c2e rdf:first sg:person.01177023775.30
87 rdf:rest N13cea528933c4fee976ddd2c8ba988fa
88 N6fe1610c4d6f4089aec4cef59fd609c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Middle Aged
90 rdf:type schema:DefinedTerm
91 N85d0dd04b1af42f59420988f04301e3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Female
93 rdf:type schema:DefinedTerm
94 N8a619a39db594b91b1da4397cd650e02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Angina Pectoris
96 rdf:type schema:DefinedTerm
97 N9ae6501c780248b49beda93a0ecc242b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Coronary Angiography
99 rdf:type schema:DefinedTerm
100 N9f80bd0a7ea84279aa4daefa12be6636 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Male
102 rdf:type schema:DefinedTerm
103 Na65da52763464e61bdc4fcb9ec60aee0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Coronary Artery Disease
105 rdf:type schema:DefinedTerm
106 Nab331c51376c4760927bc2e5e5470a83 schema:issueNumber 1
107 rdf:type schema:PublicationIssue
108 Naf6f67a2ccff49bcbccb33528919da22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Ultrasonography, Doppler
110 rdf:type schema:DefinedTerm
111 Nb7b006cc7fd9463aa09195ea0f6ba0c9 schema:name doi
112 schema:value 10.1186/1476-7120-7-59
113 rdf:type schema:PropertyValue
114 Nc0620232db8741bd8b430605b3ec4ca3 schema:name readcube_id
115 schema:value 703d59a71f634c7eca2d0b8391c86df929cea0159f1b4fa34cc79778615c1c7a
116 rdf:type schema:PropertyValue
117 Nc1f7115bac1b45158eb43aebcfe02840 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Aged
119 rdf:type schema:DefinedTerm
120 Nc2f576973c1a452dbff1c04b63567044 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Humans
122 rdf:type schema:DefinedTerm
123 Nccc38f4d48d749de99a2933453b64eae schema:volumeNumber 7
124 rdf:type schema:PublicationVolume
125 Nd76084e2d80b429fa08a851154da6764 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Tunica Media
127 rdf:type schema:DefinedTerm
128 Nd7866710ec244344815eb8563fb17bc6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Predictive Value of Tests
130 rdf:type schema:DefinedTerm
131 Ne6f07f7158d54dc7bfa8a137b00e3a61 rdf:first Nedc6798f1c074e4d9f9eb16a6e86b21d
132 rdf:rest Ne9a9e22b5a1a405a8adba45def799cd3
133 Ne8e6c2a2ebb84f1c8593a68a045d4937 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Cross-Sectional Studies
135 rdf:type schema:DefinedTerm
136 Ne9a9e22b5a1a405a8adba45def799cd3 rdf:first sg:person.01305004106.33
137 rdf:rest rdf:nil
138 Nedc6798f1c074e4d9f9eb16a6e86b21d schema:affiliation https://www.grid.ac/institutes/grid.414850.c
139 schema:familyName Orhan
140 schema:givenName Lutfu A
141 rdf:type schema:Person
142 Nee9543ff5dec48c3a1b0db4a5c3e3108 rdf:first sg:person.01117034767.14
143 rdf:rest Nf3088cdfc9a34b36b8ee53b4b0fa9c67
144 Nf3088cdfc9a34b36b8ee53b4b0fa9c67 rdf:first sg:person.01067652101.92
145 rdf:rest N6305da9044f94192af002401ffce3c2e
146 Nf71b4ae5db63411fa250b701985c48da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Regression Analysis
148 rdf:type schema:DefinedTerm
149 Nf986b3eb31ca4abda3922c9b658b42fa schema:name Springer Nature - SN SciGraph project
150 rdf:type schema:Organization
151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
152 schema:name Medical and Health Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
155 schema:name Cardiorespiratory Medicine and Haematology
156 rdf:type schema:DefinedTerm
157 sg:journal.1031661 schema:issn 1476-7120
158 schema:name Cardiovascular Ultrasound
159 rdf:type schema:Periodical
160 sg:person.01067652101.92 schema:affiliation https://www.grid.ac/institutes/grid.9601.e
161 schema:familyName Baskurt
162 schema:givenName Murat
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067652101.92
164 rdf:type schema:Person
165 sg:person.01107140333.32 schema:affiliation https://www.grid.ac/institutes/grid.9601.e
166 schema:familyName Coskun
167 schema:givenName Ugur
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107140333.32
169 rdf:type schema:Person
170 sg:person.01117034767.14 schema:affiliation https://www.grid.ac/institutes/grid.9601.e
171 schema:familyName Esen
172 schema:givenName Ozlem B
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117034767.14
174 rdf:type schema:Person
175 sg:person.01177023775.30 schema:affiliation https://www.grid.ac/institutes/grid.459902.3
176 schema:familyName Cakar
177 schema:givenName Mehmet A
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177023775.30
179 rdf:type schema:Person
180 sg:person.01252174413.86 schema:affiliation https://www.grid.ac/institutes/grid.9601.e
181 schema:familyName Kilickesmez
182 schema:givenName Kadriye O
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252174413.86
184 rdf:type schema:Person
185 sg:person.01305004106.33 schema:affiliation https://www.grid.ac/institutes/grid.489914.9
186 schema:familyName Yildiz
187 schema:givenName Seyma
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305004106.33
189 rdf:type schema:Person
190 sg:person.0751645236.81 schema:affiliation https://www.grid.ac/institutes/grid.9601.e
191 schema:familyName Yildiz
192 schema:givenName Ahmet
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751645236.81
194 rdf:type schema:Person
195 sg:pub.10.1007/s10554-006-9197-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011049422
196 https://doi.org/10.1007/s10554-006-9197-1
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.amjcard.2005.04.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038092395
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s0002-9149(02)02957-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026747663
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s0140-6736(96)07493-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047883998
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s0735-1097(03)00927-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015955682
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1056/nejm199901073400103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033669673
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/oxfordjournals.aje.a009302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038082244
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/oxfordjournals.aje.a116963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082703032
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1161/01.cir.0000120708.59903.1b schema:sameAs https://app.dimensions.ai/details/publication/pub.1020031529
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1161/01.cir.101.1.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010253121
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1161/01.cir.101.1.e16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024808589
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1161/01.cir.74.6.1399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045620972
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1161/01.str.28.3.665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063342311
221 rdf:type schema:CreativeWork
222 https://www.grid.ac/institutes/grid.414850.c schema:alternateName İstanbul Eğitim ve Araştırma Hastanesi
223 schema:name Department of Cardiology, Siyami-Ersek Training and Research Hospital, Istanbul, Turkey
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.459902.3 schema:alternateName Sakarya Eğitim ve Araştırma Hastanesi
226 schema:name Sakarya Training and Research Hospital Department of Cardiology, Sakarya, Turkey
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.489914.9 schema:alternateName Bağcılar Eğitim ve Araştırma Hastanesi
229 schema:name Department of Radiology, Bagcilar Training and Research Hospital, Istanbul, Turkey
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.9601.e schema:alternateName Istanbul University
232 schema:name Istanbul University, Institute of Cardiology, Haseki, Istanbul, Turkey
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...