Meta-analysis of glioblastoma multiforme versus anaplastic astrocytoma identifies robust gene markers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Jonathan M Dreyfuss, Mark D Johnson, Peter J Park

ABSTRACT

BACKGROUND: Anaplastic astrocytoma (AA) and its more aggressive counterpart, glioblastoma multiforme (GBM), are the most common intrinsic brain tumors in adults and are almost universally fatal. A deeper understanding of the molecular relationship of these tumor types is necessary to derive insights into the diagnosis, prognosis, and treatment of gliomas. Although genomewide profiling of expression levels with microarrays can be used to identify differentially expressed genes between these tumor types, comparative studies so far have resulted in gene lists that show little overlap. RESULTS: To achieve a more accurate and stable list of the differentially expressed genes and pathways between primary GBM and AA, we performed a meta-analysis using publicly available genome-scale mRNA data sets. There were four data sets with sufficiently large sample sizes of both GBMs and AAs, all of which coincidentally used human U133 platforms from Affymetrix, allowing for easier and more precise integration of data. After scoring genes and pathways within each data set, we combined the statistics across studies using the nonparametric rank sum method to identify the features that differentiate GBMs and AAs. We found >900 statistically significant probe sets after correction for multiple testing from the >22,000 tested. We also used the rank sum approach to select >20 significant Biocarta pathways after correction for multiple testing out of >175 pathways examined. The most significant pathway was the hypoxia-inducible factor (HIF) pathway. Our analysis suggests that many of the most statistically significant genes work together in a HIF1A/VEGF-regulated network to increase angiogenesis and invasion in GBM when compared to AA. CONCLUSION: We have performed a meta-analysis of genome-scale mRNA expression data for 289 human malignant gliomas and have identified a list of >900 probe sets and >20 pathways that are significantly different between GBM and AA. These feature lists could be utilized to aid in diagnosis, prognosis, and grade reduction of high-grade gliomas and to identify genes that were not previously suspected of playing an important role in glioma biology. More generally, this approach suggests that combined analysis of existing data sets can reveal new insights and that the large amount of publicly available cancer data sets should be further utilized in a similar manner. More... »

PAGES

71

References to SciGraph publications

  • 2003-04. Statistical tests for differential expression in cDNA microarray experiments in GENOME BIOLOGY
  • 2006-07. Inhibition of hypoxia inducible factor-1α (HIF-1α) decreases vascular endothelial growth factor (VEGF) secretion and tumor growth in malignant gliomas in JOURNAL OF NEURO-ONCOLOGY
  • 2006-01. Microarray data analysis: from disarray to consolidation and consensus in NATURE REVIEWS GENETICS
  • 1999-12. Loss of chromosome 10 is an independent prognostic factor in high-grade gliomas in BRITISH JOURNAL OF CANCER
  • 2005-02. Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset in GENOME BIOLOGY
  • 2003-01. Expression of extracellular matrix components in a highly infiltrative in vivo glioma model in ACTA NEUROPATHOLOGICA
  • 2008-12. Meta-analysis of breast cancer microarray studies in conjunction with conserved cis-elements suggest patterns for coordinate regulation in BMC BIOINFORMATICS
  • 2006-12. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data in BMC BIOINFORMATICS
  • 2004-12. Combining gene expression data from different generations of oligonucleotide arrays in BMC BIOINFORMATICS
  • 2009-12. Regularized gene selection in cancer microarray meta-analysis in BMC BIOINFORMATICS
  • 2005. limma: Linear Models for Microarray Data in BIOINFORMATICS AND COMPUTATIONAL BIOLOGY SOLUTIONS USING R AND BIOCONDUCTOR
  • 2008-01. Candidate genes for the progression of malignant gliomas identified by microarray analysis in NEUROSURGICAL REVIEW
  • 2004-09. Bioconductor: open software development for computational biology and bioinformatics in GENOME BIOLOGY
  • 2005-05. Multiple-laboratory comparison of microarray platforms in NATURE METHODS
  • 2003-04. Identification of molecular subtypes of glioblastoma by gene expression profiling in ONCOGENE
  • 2008-10-23. Comprehensive genomic characterization defines human glioblastoma genes and core pathways in NATURE
  • 2004-05. Microarray reality checks in the context of a complex disease in NATURE BIOTECHNOLOGY
  • 2003-07. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1476-4598-8-71

    DOI

    http://dx.doi.org/10.1186/1476-4598-8-71

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020241981

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19732454


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Astrocytoma", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers, Tumor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Neoplastic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Regulatory Networks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glioblastoma", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hypoxia-Inducible Factor 1, alpha Subunit", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vascular Endothelial Growth Factor A", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Brigham and Women's Hospital", 
              "id": "https://www.grid.ac/institutes/grid.62560.37", 
              "name": [
                "Partners HealthCare Center for Personalized Genetic Medicine, Brigham and Women's Hospital, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dreyfuss", 
            "givenName": "Jonathan M", 
            "id": "sg:person.0774313467.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774313467.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Brigham and Women's Hospital", 
              "id": "https://www.grid.ac/institutes/grid.62560.37", 
              "name": [
                "Department of Neurosurgery, Brigham and Women's Hospital, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Johnson", 
            "givenName": "Mark D", 
            "id": "sg:person.01302260367.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302260367.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boston Children's Hospital", 
              "id": "https://www.grid.ac/institutes/grid.2515.3", 
              "name": [
                "Partners HealthCare Center for Personalized Genetic Medicine, Brigham and Women's Hospital, 02115, Boston, MA, USA", 
                "Center for Biomedical Informatics, Harvard Medical School, 02115, Boston, MA, USA", 
                "Children's Hospital Informatics Program, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Park", 
            "givenName": "Peter J", 
            "id": "sg:person.01024612701.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1158/0008-5472.can-05-0077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000730958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002043855", 
              "https://doi.org/10.1038/nbt965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002043855", 
              "https://doi.org/10.1038/nbt965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00006676-200301000-00010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002283097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00006676-200301000-00010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002283097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbrc.2008.06.070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002589002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0090-3019(03)00322-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002621482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0090-3019(03)00322-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002621482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-07-2173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003108368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btg405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003878496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1078-0432.ccr-06-2309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004441322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cfg.460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004504025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.98.1.31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005356386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-04-0452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007295205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ccr.2006.03.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009775480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m909046199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011526440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1078-0432.ccr-0155-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013317116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014377811", 
              "https://doi.org/10.1038/ng1180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014377811", 
              "https://doi.org/10.1038/ng1180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ygeno.2008.01.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016194799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compbiolchem.2007.09.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016618744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017349746", 
              "https://doi.org/10.1038/nrg1749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017349746", 
              "https://doi.org/10.1038/nrg1749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018457673", 
              "https://doi.org/10.1186/gb-2004-5-10-r80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gng015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018638362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btg1010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019210741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020158437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.271.51.32529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020873661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bimj.200410230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022162548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11060-005-9103-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022177405", 
              "https://doi.org/10.1007/s11060-005-9103-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023415855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024464977", 
              "https://doi.org/10.1186/1471-2105-7-359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-387-29362-0_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025432622", 
              "https://doi.org/10.1007/0-387-29362-0_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-04-2921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027812355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2005-6-2-r16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028489174", 
              "https://doi.org/10.1186/gb-2005-6-2-r16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0002-9440(10)64446-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028817048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029513062", 
              "https://doi.org/10.1186/1471-2105-9-63"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1096/fj.00-0051com", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030873164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0703145104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031939064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ccr.2006.02.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032390552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506577102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036743422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkl887", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036751784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2353/ajpath.2007.070011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037059154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506580102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037705714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506580102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037705714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038894722", 
              "https://doi.org/10.1186/1471-2105-10-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039053552", 
              "https://doi.org/10.1038/nmeth756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039053552", 
              "https://doi.org/10.1038/nmeth756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039570773", 
              "https://doi.org/10.1038/nature07385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10143-007-0107-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039657252", 
              "https://doi.org/10.1007/s10143-007-0107-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10143-007-0107-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039657252", 
              "https://doi.org/10.1007/s10143-007-0107-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.avsg.2007.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040737271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0002-9440(10)62555-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042819250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-5-159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043234725", 
              "https://doi.org/10.1186/1471-2105-5-159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1530509100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044620917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1206344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045257811", 
              "https://doi.org/10.1038/sj.onc.1206344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1206344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045257811", 
              "https://doi.org/10.1038/sj.onc.1206344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1535-7163.mct-07-0177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045785985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.febslet.2004.07.055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046471558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.16.9.4604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047191790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2003-4-4-210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050216049", 
              "https://doi.org/10.1186/gb-2003-4-4-210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6693403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051333370", 
              "https://doi.org/10.1038/sj.bjc.6693403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6693403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051333370", 
              "https://doi.org/10.1038/sj.bjc.6693403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1078-0432.ccr-04-1765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052819073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219720005001442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063004634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1210/mend.14.6.0473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064332001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2202/1544-6115.1027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069289261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2681650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070056033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074253943", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074512817", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075097670", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075185040", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00401-002-0610-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1075201055", 
              "https://doi.org/10.1007/s00401-002-0610-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075246395", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075262336", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-12", 
        "datePublishedReg": "2009-12-01", 
        "description": "BACKGROUND: Anaplastic astrocytoma (AA) and its more aggressive counterpart, glioblastoma multiforme (GBM), are the most common intrinsic brain tumors in adults and are almost universally fatal. A deeper understanding of the molecular relationship of these tumor types is necessary to derive insights into the diagnosis, prognosis, and treatment of gliomas. Although genomewide profiling of expression levels with microarrays can be used to identify differentially expressed genes between these tumor types, comparative studies so far have resulted in gene lists that show little overlap.\nRESULTS: To achieve a more accurate and stable list of the differentially expressed genes and pathways between primary GBM and AA, we performed a meta-analysis using publicly available genome-scale mRNA data sets. There were four data sets with sufficiently large sample sizes of both GBMs and AAs, all of which coincidentally used human U133 platforms from Affymetrix, allowing for easier and more precise integration of data. After scoring genes and pathways within each data set, we combined the statistics across studies using the nonparametric rank sum method to identify the features that differentiate GBMs and AAs. We found >900 statistically significant probe sets after correction for multiple testing from the >22,000 tested. We also used the rank sum approach to select >20 significant Biocarta pathways after correction for multiple testing out of >175 pathways examined. The most significant pathway was the hypoxia-inducible factor (HIF) pathway. Our analysis suggests that many of the most statistically significant genes work together in a HIF1A/VEGF-regulated network to increase angiogenesis and invasion in GBM when compared to AA.\nCONCLUSION: We have performed a meta-analysis of genome-scale mRNA expression data for 289 human malignant gliomas and have identified a list of >900 probe sets and >20 pathways that are significantly different between GBM and AA. These feature lists could be utilized to aid in diagnosis, prognosis, and grade reduction of high-grade gliomas and to identify genes that were not previously suspected of playing an important role in glioma biology. More generally, this approach suggests that combined analysis of existing data sets can reveal new insights and that the large amount of publicly available cancer data sets should be further utilized in a similar manner.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1476-4598-8-71", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2699416", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2355253", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2519756", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1031030", 
            "issn": [
              "1476-4598"
            ], 
            "name": "Molecular Cancer", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Meta-analysis of glioblastoma multiforme versus anaplastic astrocytoma identifies robust gene markers", 
        "pagination": "71", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "60728ff865989dfa9c092d42727ea451376533c7f40997a6ad6607bed3913b99"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19732454"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101147698"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1476-4598-8-71"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020241981"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1476-4598-8-71", 
          "https://app.dimensions.ai/details/publication/pub.1020241981"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000512.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1476-4598-8-71"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1476-4598-8-71'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1476-4598-8-71'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1476-4598-8-71'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1476-4598-8-71'


     

    This table displays all metadata directly associated to this object as RDF triples.

    341 TRIPLES      21 PREDICATES      104 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1476-4598-8-71 schema:about N058fa15977dd4dc59e601b2521041b62
    2 N2b7dcc1365104ead86995a31c0fedff3
    3 N39c4bedc9fb24b09b0847e2293cb9b84
    4 N5156260cf2f24b299760b01f7a10f96f
    5 N6ba5bceaab714fa79972cd123fd5c528
    6 N7271a6c1a902405a8b27bf9c4c071a27
    7 N9603b4d349d54d079db944538a4051ec
    8 N9b6d752654cc445c8d0bbee01fb385d8
    9 Ne402ff30ea064005968577823d3aa81f
    10 Nf92577435382456496af60aadfe335df
    11 anzsrc-for:11
    12 anzsrc-for:1112
    13 schema:author Nc6ca037f45d04d09b7c63455396f3089
    14 schema:citation sg:pub.10.1007/0-387-29362-0_23
    15 sg:pub.10.1007/s00401-002-0610-0
    16 sg:pub.10.1007/s10143-007-0107-3
    17 sg:pub.10.1007/s11060-005-9103-z
    18 sg:pub.10.1038/nature07385
    19 sg:pub.10.1038/nbt965
    20 sg:pub.10.1038/ng1180
    21 sg:pub.10.1038/nmeth756
    22 sg:pub.10.1038/nrg1749
    23 sg:pub.10.1038/sj.bjc.6693403
    24 sg:pub.10.1038/sj.onc.1206344
    25 sg:pub.10.1186/1471-2105-10-1
    26 sg:pub.10.1186/1471-2105-5-159
    27 sg:pub.10.1186/1471-2105-7-359
    28 sg:pub.10.1186/1471-2105-9-63
    29 sg:pub.10.1186/gb-2003-4-4-210
    30 sg:pub.10.1186/gb-2004-5-10-r80
    31 sg:pub.10.1186/gb-2005-6-2-r16
    32 https://app.dimensions.ai/details/publication/pub.1074253943
    33 https://app.dimensions.ai/details/publication/pub.1074512817
    34 https://app.dimensions.ai/details/publication/pub.1075097670
    35 https://app.dimensions.ai/details/publication/pub.1075185040
    36 https://app.dimensions.ai/details/publication/pub.1075246395
    37 https://app.dimensions.ai/details/publication/pub.1075262336
    38 https://doi.org/10.1002/bimj.200410230
    39 https://doi.org/10.1002/cfg.460
    40 https://doi.org/10.1016/j.avsg.2007.11.002
    41 https://doi.org/10.1016/j.bbrc.2008.06.070
    42 https://doi.org/10.1016/j.ccr.2006.02.019
    43 https://doi.org/10.1016/j.ccr.2006.03.003
    44 https://doi.org/10.1016/j.compbiolchem.2007.09.003
    45 https://doi.org/10.1016/j.febslet.2004.07.055
    46 https://doi.org/10.1016/j.ygeno.2008.01.002
    47 https://doi.org/10.1016/s0002-9440(10)62555-2
    48 https://doi.org/10.1016/s0002-9440(10)64446-x
    49 https://doi.org/10.1016/s0090-3019(03)00322-7
    50 https://doi.org/10.1073/pnas.0506577102
    51 https://doi.org/10.1073/pnas.0506580102
    52 https://doi.org/10.1073/pnas.0703145104
    53 https://doi.org/10.1073/pnas.1530509100
    54 https://doi.org/10.1073/pnas.98.1.31
    55 https://doi.org/10.1074/jbc.271.51.32529
    56 https://doi.org/10.1074/jbc.m909046199
    57 https://doi.org/10.1093/bioinformatics/btg1010
    58 https://doi.org/10.1093/bioinformatics/btg405
    59 https://doi.org/10.1093/bioinformatics/bth381
    60 https://doi.org/10.1093/bioinformatics/btm620
    61 https://doi.org/10.1093/nar/gkl887
    62 https://doi.org/10.1093/nar/gng015
    63 https://doi.org/10.1096/fj.00-0051com
    64 https://doi.org/10.1097/00006676-200301000-00010
    65 https://doi.org/10.1128/mcb.16.9.4604
    66 https://doi.org/10.1142/s0219720005001442
    67 https://doi.org/10.1158/0008-5472.can-04-0452
    68 https://doi.org/10.1158/0008-5472.can-04-2921
    69 https://doi.org/10.1158/0008-5472.can-05-0077
    70 https://doi.org/10.1158/0008-5472.can-07-2173
    71 https://doi.org/10.1158/1078-0432.ccr-0155-3
    72 https://doi.org/10.1158/1078-0432.ccr-04-1765
    73 https://doi.org/10.1158/1078-0432.ccr-06-2309
    74 https://doi.org/10.1158/1535-7163.mct-07-0177
    75 https://doi.org/10.1210/mend.14.6.0473
    76 https://doi.org/10.2202/1544-6115.1027
    77 https://doi.org/10.2307/2681650
    78 https://doi.org/10.2353/ajpath.2007.070011
    79 schema:datePublished 2009-12
    80 schema:datePublishedReg 2009-12-01
    81 schema:description BACKGROUND: Anaplastic astrocytoma (AA) and its more aggressive counterpart, glioblastoma multiforme (GBM), are the most common intrinsic brain tumors in adults and are almost universally fatal. A deeper understanding of the molecular relationship of these tumor types is necessary to derive insights into the diagnosis, prognosis, and treatment of gliomas. Although genomewide profiling of expression levels with microarrays can be used to identify differentially expressed genes between these tumor types, comparative studies so far have resulted in gene lists that show little overlap. RESULTS: To achieve a more accurate and stable list of the differentially expressed genes and pathways between primary GBM and AA, we performed a meta-analysis using publicly available genome-scale mRNA data sets. There were four data sets with sufficiently large sample sizes of both GBMs and AAs, all of which coincidentally used human U133 platforms from Affymetrix, allowing for easier and more precise integration of data. After scoring genes and pathways within each data set, we combined the statistics across studies using the nonparametric rank sum method to identify the features that differentiate GBMs and AAs. We found >900 statistically significant probe sets after correction for multiple testing from the >22,000 tested. We also used the rank sum approach to select >20 significant Biocarta pathways after correction for multiple testing out of >175 pathways examined. The most significant pathway was the hypoxia-inducible factor (HIF) pathway. Our analysis suggests that many of the most statistically significant genes work together in a HIF1A/VEGF-regulated network to increase angiogenesis and invasion in GBM when compared to AA. CONCLUSION: We have performed a meta-analysis of genome-scale mRNA expression data for 289 human malignant gliomas and have identified a list of >900 probe sets and >20 pathways that are significantly different between GBM and AA. These feature lists could be utilized to aid in diagnosis, prognosis, and grade reduction of high-grade gliomas and to identify genes that were not previously suspected of playing an important role in glioma biology. More generally, this approach suggests that combined analysis of existing data sets can reveal new insights and that the large amount of publicly available cancer data sets should be further utilized in a similar manner.
    82 schema:genre research_article
    83 schema:inLanguage en
    84 schema:isAccessibleForFree true
    85 schema:isPartOf N16f31ca56fc74404ba0950d8027ddfb9
    86 Nc6762f888580428b8907d294a7139eec
    87 sg:journal.1031030
    88 schema:name Meta-analysis of glioblastoma multiforme versus anaplastic astrocytoma identifies robust gene markers
    89 schema:pagination 71
    90 schema:productId N02fb3464ef314c0c8902259b4a959c0f
    91 N2f8946a9c4ef471fb70adef56dbfca5b
    92 N3dadf49fe3364fce90b9390f169c4892
    93 N93379ca960914723876f179b2f5503a7
    94 Ncaba4ca19ec343c19b345408083f3c89
    95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020241981
    96 https://doi.org/10.1186/1476-4598-8-71
    97 schema:sdDatePublished 2019-04-10T16:42
    98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    99 schema:sdPublisher N3418cb5d8dc647a4a6a75258e8e731a4
    100 schema:url http://link.springer.com/10.1186%2F1476-4598-8-71
    101 sgo:license sg:explorer/license/
    102 sgo:sdDataset articles
    103 rdf:type schema:ScholarlyArticle
    104 N02fb3464ef314c0c8902259b4a959c0f schema:name pubmed_id
    105 schema:value 19732454
    106 rdf:type schema:PropertyValue
    107 N058fa15977dd4dc59e601b2521041b62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Gene Expression Regulation, Neoplastic
    109 rdf:type schema:DefinedTerm
    110 N16f31ca56fc74404ba0950d8027ddfb9 schema:volumeNumber 8
    111 rdf:type schema:PublicationVolume
    112 N1c6845bbe340408b8b449efed93a3d71 rdf:first sg:person.01302260367.84
    113 rdf:rest N63de88082c8c427bb8688e8e8242ee94
    114 N2b7dcc1365104ead86995a31c0fedff3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Hypoxia-Inducible Factor 1, alpha Subunit
    116 rdf:type schema:DefinedTerm
    117 N2f8946a9c4ef471fb70adef56dbfca5b schema:name doi
    118 schema:value 10.1186/1476-4598-8-71
    119 rdf:type schema:PropertyValue
    120 N3418cb5d8dc647a4a6a75258e8e731a4 schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 N39c4bedc9fb24b09b0847e2293cb9b84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Gene Expression Profiling
    124 rdf:type schema:DefinedTerm
    125 N3dadf49fe3364fce90b9390f169c4892 schema:name readcube_id
    126 schema:value 60728ff865989dfa9c092d42727ea451376533c7f40997a6ad6607bed3913b99
    127 rdf:type schema:PropertyValue
    128 N5156260cf2f24b299760b01f7a10f96f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Vascular Endothelial Growth Factor A
    130 rdf:type schema:DefinedTerm
    131 N63de88082c8c427bb8688e8e8242ee94 rdf:first sg:person.01024612701.33
    132 rdf:rest rdf:nil
    133 N6ba5bceaab714fa79972cd123fd5c528 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Gene Regulatory Networks
    135 rdf:type schema:DefinedTerm
    136 N7271a6c1a902405a8b27bf9c4c071a27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Humans
    138 rdf:type schema:DefinedTerm
    139 N93379ca960914723876f179b2f5503a7 schema:name dimensions_id
    140 schema:value pub.1020241981
    141 rdf:type schema:PropertyValue
    142 N9603b4d349d54d079db944538a4051ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Biomarkers, Tumor
    144 rdf:type schema:DefinedTerm
    145 N9b6d752654cc445c8d0bbee01fb385d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Astrocytoma
    147 rdf:type schema:DefinedTerm
    148 Nc6762f888580428b8907d294a7139eec schema:issueNumber 1
    149 rdf:type schema:PublicationIssue
    150 Nc6ca037f45d04d09b7c63455396f3089 rdf:first sg:person.0774313467.54
    151 rdf:rest N1c6845bbe340408b8b449efed93a3d71
    152 Ncaba4ca19ec343c19b345408083f3c89 schema:name nlm_unique_id
    153 schema:value 101147698
    154 rdf:type schema:PropertyValue
    155 Ne402ff30ea064005968577823d3aa81f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Brain Neoplasms
    157 rdf:type schema:DefinedTerm
    158 Nf92577435382456496af60aadfe335df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Glioblastoma
    160 rdf:type schema:DefinedTerm
    161 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    162 schema:name Medical and Health Sciences
    163 rdf:type schema:DefinedTerm
    164 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    165 schema:name Oncology and Carcinogenesis
    166 rdf:type schema:DefinedTerm
    167 sg:grant.2355253 http://pending.schema.org/fundedItem sg:pub.10.1186/1476-4598-8-71
    168 rdf:type schema:MonetaryGrant
    169 sg:grant.2519756 http://pending.schema.org/fundedItem sg:pub.10.1186/1476-4598-8-71
    170 rdf:type schema:MonetaryGrant
    171 sg:grant.2699416 http://pending.schema.org/fundedItem sg:pub.10.1186/1476-4598-8-71
    172 rdf:type schema:MonetaryGrant
    173 sg:journal.1031030 schema:issn 1476-4598
    174 schema:name Molecular Cancer
    175 rdf:type schema:Periodical
    176 sg:person.01024612701.33 schema:affiliation https://www.grid.ac/institutes/grid.2515.3
    177 schema:familyName Park
    178 schema:givenName Peter J
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33
    180 rdf:type schema:Person
    181 sg:person.01302260367.84 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
    182 schema:familyName Johnson
    183 schema:givenName Mark D
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302260367.84
    185 rdf:type schema:Person
    186 sg:person.0774313467.54 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
    187 schema:familyName Dreyfuss
    188 schema:givenName Jonathan M
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774313467.54
    190 rdf:type schema:Person
    191 sg:pub.10.1007/0-387-29362-0_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025432622
    192 https://doi.org/10.1007/0-387-29362-0_23
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s00401-002-0610-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075201055
    195 https://doi.org/10.1007/s00401-002-0610-0
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s10143-007-0107-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039657252
    198 https://doi.org/10.1007/s10143-007-0107-3
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s11060-005-9103-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022177405
    201 https://doi.org/10.1007/s11060-005-9103-z
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature07385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039570773
    204 https://doi.org/10.1038/nature07385
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nbt965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002043855
    207 https://doi.org/10.1038/nbt965
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/ng1180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014377811
    210 https://doi.org/10.1038/ng1180
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nmeth756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039053552
    213 https://doi.org/10.1038/nmeth756
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nrg1749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017349746
    216 https://doi.org/10.1038/nrg1749
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/sj.bjc.6693403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051333370
    219 https://doi.org/10.1038/sj.bjc.6693403
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/sj.onc.1206344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045257811
    222 https://doi.org/10.1038/sj.onc.1206344
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1186/1471-2105-10-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038894722
    225 https://doi.org/10.1186/1471-2105-10-1
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1186/1471-2105-5-159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043234725
    228 https://doi.org/10.1186/1471-2105-5-159
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1186/1471-2105-7-359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024464977
    231 https://doi.org/10.1186/1471-2105-7-359
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1186/1471-2105-9-63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029513062
    234 https://doi.org/10.1186/1471-2105-9-63
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1186/gb-2003-4-4-210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050216049
    237 https://doi.org/10.1186/gb-2003-4-4-210
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
    240 https://doi.org/10.1186/gb-2004-5-10-r80
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1186/gb-2005-6-2-r16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028489174
    243 https://doi.org/10.1186/gb-2005-6-2-r16
    244 rdf:type schema:CreativeWork
    245 https://app.dimensions.ai/details/publication/pub.1074253943 schema:CreativeWork
    246 https://app.dimensions.ai/details/publication/pub.1074512817 schema:CreativeWork
    247 https://app.dimensions.ai/details/publication/pub.1075097670 schema:CreativeWork
    248 https://app.dimensions.ai/details/publication/pub.1075185040 schema:CreativeWork
    249 https://app.dimensions.ai/details/publication/pub.1075246395 schema:CreativeWork
    250 https://app.dimensions.ai/details/publication/pub.1075262336 schema:CreativeWork
    251 https://doi.org/10.1002/bimj.200410230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022162548
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1002/cfg.460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004504025
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1016/j.avsg.2007.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040737271
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1016/j.bbrc.2008.06.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002589002
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1016/j.ccr.2006.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032390552
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1016/j.ccr.2006.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009775480
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1016/j.compbiolchem.2007.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016618744
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1016/j.febslet.2004.07.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046471558
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1016/j.ygeno.2008.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016194799
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1016/s0002-9440(10)62555-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042819250
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1016/s0002-9440(10)64446-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028817048
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1016/s0090-3019(03)00322-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002621482
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1073/pnas.0506577102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036743422
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1073/pnas.0506580102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037705714
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1073/pnas.0703145104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031939064
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1073/pnas.1530509100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044620917
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1073/pnas.98.1.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005356386
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1074/jbc.271.51.32529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020873661
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1074/jbc.m909046199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011526440
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1093/bioinformatics/btg1010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019210741
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1093/bioinformatics/btg405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003878496
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1093/bioinformatics/bth381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023415855
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1093/bioinformatics/btm620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020158437
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1093/nar/gkl887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036751784
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1093/nar/gng015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018638362
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1096/fj.00-0051com schema:sameAs https://app.dimensions.ai/details/publication/pub.1030873164
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1097/00006676-200301000-00010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002283097
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1128/mcb.16.9.4604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047191790
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1142/s0219720005001442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063004634
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1158/0008-5472.can-04-0452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007295205
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1158/0008-5472.can-04-2921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027812355
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1158/0008-5472.can-05-0077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000730958
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1158/0008-5472.can-07-2173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003108368
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1158/1078-0432.ccr-0155-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013317116
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1158/1078-0432.ccr-04-1765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052819073
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1158/1078-0432.ccr-06-2309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004441322
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1158/1535-7163.mct-07-0177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045785985
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1210/mend.14.6.0473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064332001
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.2202/1544-6115.1027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069289261
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.2307/2681650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070056033
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.2353/ajpath.2007.070011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037059154
    332 rdf:type schema:CreativeWork
    333 https://www.grid.ac/institutes/grid.2515.3 schema:alternateName Boston Children's Hospital
    334 schema:name Center for Biomedical Informatics, Harvard Medical School, 02115, Boston, MA, USA
    335 Children's Hospital Informatics Program, 02115, Boston, MA, USA
    336 Partners HealthCare Center for Personalized Genetic Medicine, Brigham and Women's Hospital, 02115, Boston, MA, USA
    337 rdf:type schema:Organization
    338 https://www.grid.ac/institutes/grid.62560.37 schema:alternateName Brigham and Women's Hospital
    339 schema:name Department of Neurosurgery, Brigham and Women's Hospital, 02115, Boston, MA, USA
    340 Partners HealthCare Center for Personalized Genetic Medicine, Brigham and Women's Hospital, 02115, Boston, MA, USA
    341 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...