Longitudinal variability of time-location/activity patterns of population at different ages: a longitudinal study in California View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Xiangmei Wu, Deborah H Bennett, Kiyoung Lee, Diana L Cassady, Beate Ritz, Irva Hertz-Picciotto

ABSTRACT

BACKGROUND: Longitudinal time-activity data are important for exposure modeling, since the extent to which short-term time-activity data represent long-term activity patterns is not well understood. This study was designed to evaluate longitudinal variations in human time-activity patterns. METHOD: We report on 24-hour recall diaries and questionnaires collected via the internet from 151 parents of young children (mostly under age 55), and from 55 older adults of ages 55 and older, for both a weekday and a weekend day every three months over an 18-month period. Parents also provided data for their children. The self-administrated diary and questionnaire distinguished ~30 frequently visited microenvironments and ~20 activities which we selected to represent opportunities for exposure to toxic environmental compounds. Due to the non-normal distribution of time-location/activity data, we employed generalized linear mixed-distribution mixed-effect models to examine intra- and inter-individual variations. Here we describe variation in the likelihood of and time spent engaging in an activity or being in a microenvironment by age group, day-type (weekday/weekend), season (warm/cool), sex, employment status, and over the follow-up period. RESULTS: As expected, day-type and season influence time spent in many location and activity categories. Longitudinal changes were also observed, e.g., young children slept less with increasing follow-up, transit time increased, and time spent on working and shopping decreased during the study, possibly related to human physiological changes with age and changes in macro-economic factors such as gas prices and the economic recession. CONCLUSIONS: This study provides valuable new information about time-activity assessed longitudinally in three major age groups and greatly expands our knowledge about intra- and inter-individual variations in time-location/activity patterns. Longitudinal variations beyond weekly and seasonal patterns should be taken into account in simulating long-term time-activity patterns in exposure modeling. More... »

PAGES

80

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1476-069x-10-80

DOI

http://dx.doi.org/10.1186/1476-069x-10-80

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007850083

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21933379


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "California", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Collection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Human Activities", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Longitudinal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seasons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Socioeconomic Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Department of Public Health Sciences, University of California, Davis, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Xiangmei", 
        "id": "sg:person.0655301335.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655301335.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Department of Public Health Sciences, University of California, Davis, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bennett", 
        "givenName": "Deborah H", 
        "id": "sg:person.01015747036.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015747036.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Graduate School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Kiyoung", 
        "id": "sg:person.010026156441.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026156441.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Department of Public Health Sciences, University of California, Davis, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cassady", 
        "givenName": "Diana L", 
        "id": "sg:person.0715364624.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715364624.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Public Health Sciences, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ritz", 
        "givenName": "Beate", 
        "id": "sg:person.0635077641.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635077641.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Department of Public Health Sciences, University of California, Davis, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hertz-Picciotto", 
        "givenName": "Irva", 
        "id": "sg:person.0775617774.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775617774.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj.jea.7500319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000128518", 
          "https://doi.org/10.1038/sj.jea.7500319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jea.7500319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000128518", 
          "https://doi.org/10.1038/sj.jea.7500319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:mhsr.0000044749.39484.1b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004934122", 
          "https://doi.org/10.1023/b:mhsr.0000044749.39484.1b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jes.7500504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008032026", 
          "https://doi.org/10.1038/sj.jes.7500504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jes.7500504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008032026", 
          "https://doi.org/10.1038/sj.jes.7500504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-069x-9-54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011751642", 
          "https://doi.org/10.1186/1476-069x-9-54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jes.2011.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011793427", 
          "https://doi.org/10.1038/jes.2011.23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005768-200009001-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023499002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005768-200009001-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023499002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11116-009-9190-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023568872", 
          "https://doi.org/10.1007/s11116-009-9190-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jea.7500281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028121864", 
          "https://doi.org/10.1038/sj.jea.7500281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jea.7500281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028121864", 
          "https://doi.org/10.1038/sj.jea.7500281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(85)90217-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030129747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(85)90217-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030129747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jes.7500496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080982", 
          "https://doi.org/10.1038/sj.jes.7500496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jes.7500496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080982", 
          "https://doi.org/10.1038/sj.jes.7500496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jes.2008.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035697301", 
          "https://doi.org/10.1038/jes.2008.47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jea.7500293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038579344", 
          "https://doi.org/10.1038/sj.jea.7500293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jea.7500293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038579344", 
          "https://doi.org/10.1038/sj.jea.7500293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11116-009-9200-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041956925", 
          "https://doi.org/10.1007/s11116-009-9200-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11116-009-9200-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041956925", 
          "https://doi.org/10.1007/s11116-009-9200-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1741-3737.2010.00769.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046026633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1741-3737.2010.00769.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046026633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0160-4120(92)90005-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052007911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0160-4120(92)90005-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052007911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jea.7500165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052457306", 
          "https://doi.org/10.1038/sj.jea.7500165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jea.7500165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052457306", 
          "https://doi.org/10.1038/sj.jea.7500165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jea.7500046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053576401", 
          "https://doi.org/10.1038/sj.jea.7500046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jea.7500046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053576401", 
          "https://doi.org/10.1038/sj.jea.7500046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0962280202sm291ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064155169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0962280202sm291ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064155169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13085/eijtur.6.2.314-327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064984830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/2054-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071044524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/2054-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071044524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a113987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080057181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082962990", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Longitudinal time-activity data are important for exposure modeling, since the extent to which short-term time-activity data represent long-term activity patterns is not well understood. This study was designed to evaluate longitudinal variations in human time-activity patterns.\nMETHOD: We report on 24-hour recall diaries and questionnaires collected via the internet from 151 parents of young children (mostly under age 55), and from 55 older adults of ages 55 and older, for both a weekday and a weekend day every three months over an 18-month period. Parents also provided data for their children. The self-administrated diary and questionnaire distinguished ~30 frequently visited microenvironments and ~20 activities which we selected to represent opportunities for exposure to toxic environmental compounds. Due to the non-normal distribution of time-location/activity data, we employed generalized linear mixed-distribution mixed-effect models to examine intra- and inter-individual variations. Here we describe variation in the likelihood of and time spent engaging in an activity or being in a microenvironment by age group, day-type (weekday/weekend), season (warm/cool), sex, employment status, and over the follow-up period.\nRESULTS: As expected, day-type and season influence time spent in many location and activity categories. Longitudinal changes were also observed, e.g., young children slept less with increasing follow-up, transit time increased, and time spent on working and shopping decreased during the study, possibly related to human physiological changes with age and changes in macro-economic factors such as gas prices and the economic recession.\nCONCLUSIONS: This study provides valuable new information about time-activity assessed longitudinally in three major age groups and greatly expands our knowledge about intra- and inter-individual variations in time-location/activity patterns. Longitudinal variations beyond weekly and seasonal patterns should be taken into account in simulating long-term time-activity patterns in exposure modeling.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1476-069x-10-80", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327425", 
        "issn": [
          "1476-069X"
        ], 
        "name": "Environmental Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Longitudinal variability of time-location/activity patterns of population at different ages: a longitudinal study in California", 
    "pagination": "80", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2564eb2038390c2c2382c880547cfa65fcc6ff07ff5678ed234f58b2c71c78d6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21933379"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147645"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1476-069x-10-80"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007850083"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1476-069x-10-80", 
      "https://app.dimensions.ai/details/publication/pub.1007850083"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1476-069X-10-80"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1476-069x-10-80'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1476-069x-10-80'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1476-069x-10-80'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1476-069x-10-80'


 

This table displays all metadata directly associated to this object as RDF triples.

275 TRIPLES      21 PREDICATES      73 URIs      43 LITERALS      31 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1476-069x-10-80 schema:about N11bc28b0bffb4887b7e64c0e4ddc4628
2 N61de891105d2448eb465d5e5aaa148b6
3 N71a8c6f25cdb4988be6105a068a61f1d
4 N7574c51e94e04005a7518cc89b4220b9
5 N7ce45d8fd04b45ef9b66050263c2d7c6
6 N82c19f42d7334835ae16341f6f78acd2
7 N85d4f495ff024209bf12f805c9d7a2d3
8 N8d741f70558e4433b4439720ae81fa57
9 N8dd94ae086d04883b1490f257543ec12
10 N9c743c37c2de48aaa8b6c2705a748d8c
11 Na50844223812473892bef27ab58bc235
12 Nb2640cd249bb4d1c9bb997a5f11b10f5
13 Nb8f44698e97d446a900fbb3728f61f6c
14 Ncd82c929cd944fb1a6efe5c75dae7a2f
15 Ncde481fed15c4cecbe3584145368b232
16 Nceee1d0eca7646bcb974d4571bb857b3
17 Ne10fb462d8054a5e9e4d8908c7966d34
18 Ne70d956e3487463d975c83328d6e615c
19 Nedabfb37ebbf4415b387b987bae6fb26
20 Nf064be205f8c41548df130d06fbf350e
21 Nf0ed8c365646450a8f35f08a77c99163
22 Nfc90b085a34f4c41ae311a1f800d9adf
23 anzsrc-for:11
24 anzsrc-for:1117
25 schema:author N1319a00da0664f5092f803554f9610e7
26 schema:citation sg:pub.10.1007/s11116-009-9190-3
27 sg:pub.10.1007/s11116-009-9200-5
28 sg:pub.10.1023/b:mhsr.0000044749.39484.1b
29 sg:pub.10.1038/jes.2008.47
30 sg:pub.10.1038/jes.2011.23
31 sg:pub.10.1038/sj.jea.7500046
32 sg:pub.10.1038/sj.jea.7500165
33 sg:pub.10.1038/sj.jea.7500281
34 sg:pub.10.1038/sj.jea.7500293
35 sg:pub.10.1038/sj.jea.7500319
36 sg:pub.10.1038/sj.jes.7500496
37 sg:pub.10.1038/sj.jes.7500504
38 sg:pub.10.1186/1476-069x-9-54
39 https://app.dimensions.ai/details/publication/pub.1082962990
40 https://doi.org/10.1016/0004-6981(85)90217-3
41 https://doi.org/10.1016/0160-4120(92)90005-o
42 https://doi.org/10.1093/oxfordjournals.aje.a113987
43 https://doi.org/10.1097/00005768-200009001-00009
44 https://doi.org/10.1111/j.1741-3737.2010.00769.x
45 https://doi.org/10.1191/0962280202sm291ra
46 https://doi.org/10.13085/eijtur.6.2.314-327
47 https://doi.org/10.3141/2054-08
48 schema:datePublished 2011-12
49 schema:datePublishedReg 2011-12-01
50 schema:description BACKGROUND: Longitudinal time-activity data are important for exposure modeling, since the extent to which short-term time-activity data represent long-term activity patterns is not well understood. This study was designed to evaluate longitudinal variations in human time-activity patterns. METHOD: We report on 24-hour recall diaries and questionnaires collected via the internet from 151 parents of young children (mostly under age 55), and from 55 older adults of ages 55 and older, for both a weekday and a weekend day every three months over an 18-month period. Parents also provided data for their children. The self-administrated diary and questionnaire distinguished ~30 frequently visited microenvironments and ~20 activities which we selected to represent opportunities for exposure to toxic environmental compounds. Due to the non-normal distribution of time-location/activity data, we employed generalized linear mixed-distribution mixed-effect models to examine intra- and inter-individual variations. Here we describe variation in the likelihood of and time spent engaging in an activity or being in a microenvironment by age group, day-type (weekday/weekend), season (warm/cool), sex, employment status, and over the follow-up period. RESULTS: As expected, day-type and season influence time spent in many location and activity categories. Longitudinal changes were also observed, e.g., young children slept less with increasing follow-up, transit time increased, and time spent on working and shopping decreased during the study, possibly related to human physiological changes with age and changes in macro-economic factors such as gas prices and the economic recession. CONCLUSIONS: This study provides valuable new information about time-activity assessed longitudinally in three major age groups and greatly expands our knowledge about intra- and inter-individual variations in time-location/activity patterns. Longitudinal variations beyond weekly and seasonal patterns should be taken into account in simulating long-term time-activity patterns in exposure modeling.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N537d84823a4c4a4db2bc7efe39bb9bcd
55 N7f1fce790bb44fabbe51e5484a6693d9
56 sg:journal.1327425
57 schema:name Longitudinal variability of time-location/activity patterns of population at different ages: a longitudinal study in California
58 schema:pagination 80
59 schema:productId N61762e8707c74962877c964ea27cc26f
60 N790a8cdd35fa4ee798d7120a424df735
61 Nae43029147894c6fa2431b343765d4f9
62 Nc66287372e1c480199f2ac351560c0f6
63 Nf61f6ee24c37458aad2863a1acb2728d
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007850083
65 https://doi.org/10.1186/1476-069x-10-80
66 schema:sdDatePublished 2019-04-11T01:59
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N54a192516c844d948aaa0735780f9ae2
69 schema:url http://link.springer.com/10.1186%2F1476-069X-10-80
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N11bc28b0bffb4887b7e64c0e4ddc4628 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Surveys and Questionnaires
75 rdf:type schema:DefinedTerm
76 N1319a00da0664f5092f803554f9610e7 rdf:first sg:person.0655301335.95
77 rdf:rest N6fc36f0ebb5446bfa7fbd83bb2ff9980
78 N2063fb314b01438bbc171c85c35fe275 rdf:first sg:person.0635077641.72
79 rdf:rest Nd6fe4060d1424a57941c51a8b1b33e71
80 N537d84823a4c4a4db2bc7efe39bb9bcd schema:volumeNumber 10
81 rdf:type schema:PublicationVolume
82 N54a192516c844d948aaa0735780f9ae2 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N61762e8707c74962877c964ea27cc26f schema:name readcube_id
85 schema:value 2564eb2038390c2c2382c880547cfa65fcc6ff07ff5678ed234f58b2c71c78d6
86 rdf:type schema:PropertyValue
87 N61de891105d2448eb465d5e5aaa148b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Middle Aged
89 rdf:type schema:DefinedTerm
90 N6fc36f0ebb5446bfa7fbd83bb2ff9980 rdf:first sg:person.01015747036.70
91 rdf:rest N87617e261b2f4c8d99ad42481ef8d822
92 N71a8c6f25cdb4988be6105a068a61f1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Adult
94 rdf:type schema:DefinedTerm
95 N7574c51e94e04005a7518cc89b4220b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name California
97 rdf:type schema:DefinedTerm
98 N790a8cdd35fa4ee798d7120a424df735 schema:name dimensions_id
99 schema:value pub.1007850083
100 rdf:type schema:PropertyValue
101 N7ce45d8fd04b45ef9b66050263c2d7c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Child
103 rdf:type schema:DefinedTerm
104 N7f1fce790bb44fabbe51e5484a6693d9 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N82c19f42d7334835ae16341f6f78acd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Female
108 rdf:type schema:DefinedTerm
109 N85d4f495ff024209bf12f805c9d7a2d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Longitudinal Studies
111 rdf:type schema:DefinedTerm
112 N87617e261b2f4c8d99ad42481ef8d822 rdf:first sg:person.010026156441.01
113 rdf:rest Nd8d51d88922047ddbf02a56a2fdcc5ef
114 N8d741f70558e4433b4439720ae81fa57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Seasons
116 rdf:type schema:DefinedTerm
117 N8dd94ae086d04883b1490f257543ec12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Aged
119 rdf:type schema:DefinedTerm
120 N9c743c37c2de48aaa8b6c2705a748d8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Humans
122 rdf:type schema:DefinedTerm
123 Na50844223812473892bef27ab58bc235 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Male
125 rdf:type schema:DefinedTerm
126 Nae43029147894c6fa2431b343765d4f9 schema:name pubmed_id
127 schema:value 21933379
128 rdf:type schema:PropertyValue
129 Nb2640cd249bb4d1c9bb997a5f11b10f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Socioeconomic Factors
131 rdf:type schema:DefinedTerm
132 Nb8f44698e97d446a900fbb3728f61f6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Adolescent
134 rdf:type schema:DefinedTerm
135 Nc66287372e1c480199f2ac351560c0f6 schema:name doi
136 schema:value 10.1186/1476-069x-10-80
137 rdf:type schema:PropertyValue
138 Ncd82c929cd944fb1a6efe5c75dae7a2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Young Adult
140 rdf:type schema:DefinedTerm
141 Ncde481fed15c4cecbe3584145368b232 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Infant
143 rdf:type schema:DefinedTerm
144 Nceee1d0eca7646bcb974d4571bb857b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Linear Models
146 rdf:type schema:DefinedTerm
147 Nd6fe4060d1424a57941c51a8b1b33e71 rdf:first sg:person.0775617774.23
148 rdf:rest rdf:nil
149 Nd8d51d88922047ddbf02a56a2fdcc5ef rdf:first sg:person.0715364624.63
150 rdf:rest N2063fb314b01438bbc171c85c35fe275
151 Ne10fb462d8054a5e9e4d8908c7966d34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Time Factors
153 rdf:type schema:DefinedTerm
154 Ne70d956e3487463d975c83328d6e615c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Cohort Studies
156 rdf:type schema:DefinedTerm
157 Nedabfb37ebbf4415b387b987bae6fb26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Aged, 80 and over
159 rdf:type schema:DefinedTerm
160 Nf064be205f8c41548df130d06fbf350e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Child, Preschool
162 rdf:type schema:DefinedTerm
163 Nf0ed8c365646450a8f35f08a77c99163 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Human Activities
165 rdf:type schema:DefinedTerm
166 Nf61f6ee24c37458aad2863a1acb2728d schema:name nlm_unique_id
167 schema:value 101147645
168 rdf:type schema:PropertyValue
169 Nfc90b085a34f4c41ae311a1f800d9adf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Data Collection
171 rdf:type schema:DefinedTerm
172 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
173 schema:name Medical and Health Sciences
174 rdf:type schema:DefinedTerm
175 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
176 schema:name Public Health and Health Services
177 rdf:type schema:DefinedTerm
178 sg:journal.1327425 schema:issn 1476-069X
179 schema:name Environmental Health
180 rdf:type schema:Periodical
181 sg:person.010026156441.01 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
182 schema:familyName Lee
183 schema:givenName Kiyoung
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026156441.01
185 rdf:type schema:Person
186 sg:person.01015747036.70 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
187 schema:familyName Bennett
188 schema:givenName Deborah H
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015747036.70
190 rdf:type schema:Person
191 sg:person.0635077641.72 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
192 schema:familyName Ritz
193 schema:givenName Beate
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635077641.72
195 rdf:type schema:Person
196 sg:person.0655301335.95 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
197 schema:familyName Wu
198 schema:givenName Xiangmei
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655301335.95
200 rdf:type schema:Person
201 sg:person.0715364624.63 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
202 schema:familyName Cassady
203 schema:givenName Diana L
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715364624.63
205 rdf:type schema:Person
206 sg:person.0775617774.23 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
207 schema:familyName Hertz-Picciotto
208 schema:givenName Irva
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775617774.23
210 rdf:type schema:Person
211 sg:pub.10.1007/s11116-009-9190-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023568872
212 https://doi.org/10.1007/s11116-009-9190-3
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s11116-009-9200-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041956925
215 https://doi.org/10.1007/s11116-009-9200-5
216 rdf:type schema:CreativeWork
217 sg:pub.10.1023/b:mhsr.0000044749.39484.1b schema:sameAs https://app.dimensions.ai/details/publication/pub.1004934122
218 https://doi.org/10.1023/b:mhsr.0000044749.39484.1b
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/jes.2008.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035697301
221 https://doi.org/10.1038/jes.2008.47
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/jes.2011.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011793427
224 https://doi.org/10.1038/jes.2011.23
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/sj.jea.7500046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053576401
227 https://doi.org/10.1038/sj.jea.7500046
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/sj.jea.7500165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052457306
230 https://doi.org/10.1038/sj.jea.7500165
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/sj.jea.7500281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028121864
233 https://doi.org/10.1038/sj.jea.7500281
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/sj.jea.7500293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038579344
236 https://doi.org/10.1038/sj.jea.7500293
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/sj.jea.7500319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000128518
239 https://doi.org/10.1038/sj.jea.7500319
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/sj.jes.7500496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080982
242 https://doi.org/10.1038/sj.jes.7500496
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/sj.jes.7500504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008032026
245 https://doi.org/10.1038/sj.jes.7500504
246 rdf:type schema:CreativeWork
247 sg:pub.10.1186/1476-069x-9-54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011751642
248 https://doi.org/10.1186/1476-069x-9-54
249 rdf:type schema:CreativeWork
250 https://app.dimensions.ai/details/publication/pub.1082962990 schema:CreativeWork
251 https://doi.org/10.1016/0004-6981(85)90217-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030129747
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/0160-4120(92)90005-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1052007911
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1093/oxfordjournals.aje.a113987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080057181
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1097/00005768-200009001-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023499002
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1111/j.1741-3737.2010.00769.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046026633
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1191/0962280202sm291ra schema:sameAs https://app.dimensions.ai/details/publication/pub.1064155169
262 rdf:type schema:CreativeWork
263 https://doi.org/10.13085/eijtur.6.2.314-327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064984830
264 rdf:type schema:CreativeWork
265 https://doi.org/10.3141/2054-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071044524
266 rdf:type schema:CreativeWork
267 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
268 schema:name Department of Public Health Sciences, University of California, Los Angeles, CA, USA
269 rdf:type schema:Organization
270 https://www.grid.ac/institutes/grid.27860.3b schema:alternateName University of California, Davis
271 schema:name Department of Public Health Sciences, University of California, Davis, CA, USA
272 rdf:type schema:Organization
273 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
274 schema:name Graduate School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
275 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...