Estimation of health effects of prenatal methylmercury exposure using structural equation models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-10-14

AUTHORS

Esben Budtz-Jørgensen, Niels Keiding, Philippe Grandjean, Pal Weihe

ABSTRACT

BACKGROUND: Observational studies in epidemiology always involve concerns regarding validity, especially measurement error, confounding, missing data, and other problems that may affect the study outcomes. Widely used standard statistical techniques, such as multiple regression analysis, may to some extent adjust for these shortcomings. However, structural equations may incorporate most of these considerations, thereby providing overall adjusted estimations of associations. This approach was used in a large epidemiological data set from a prospective study of developmental methyl-mercury toxicity. RESULTS: Structural equation models were developed for assessment of the association between biomarkers of prenatal mercury exposure and neuropsychological test scores in 7 year old children. Eleven neurobehavioral outcomes were grouped into motor function and verbally mediated function. Adjustment for local dependence and item bias was necessary for a satisfactory fit of the model, but had little impact on the estimated mercury effects. The mercury effect on the two latent neurobehavioral functions was similar to the strongest effects seen for individual test scores of motor function and verbal skills. Adjustment for contaminant exposure to poly chlorinated biphenyls (PCBs) changed the estimates only marginally, but the mercury effect could be reduced to non-significance by assuming a large measurement error for the PCB biomarker. CONCLUSIONS: The structural equation analysis allows correction for measurement error in exposure variables, incorporation of multiple outcomes and incomplete cases. This approach therefore deserves to be applied more frequently in the analysis of complex epidemiological data sets. More... »

PAGES

2-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1476-069x-1-2

DOI

http://dx.doi.org/10.1186/1476-069x-1-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023400106

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12513702


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Denmark", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Developmental Disabilities", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fetal Blood", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fish Products", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Maternal Exposure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Maternal-Fetal Exchange", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mercury Poisoning, Nervous System", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methylmercury Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nervous System", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuropsychological Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pregnancy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Public Health, University of Southern Denmark, Winslowparken 17, DK-5000 Odense C, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.10825.3e", 
          "name": [
            "Department of Biostatistics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark", 
            "Institute of Public Health, University of Southern Denmark, Winslowparken 17, DK-5000 Odense C, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Budtz-J\u00f8rgensen", 
        "givenName": "Esben", 
        "id": "sg:person.013511371144.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013511371144.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Department of Biostatistics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keiding", 
        "givenName": "Niels", 
        "id": "sg:person.01253763043.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253763043.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Environmental Health and Neurology, Boston University Schools of Medicine and Public Health, Boston, MA 02118, USA", 
          "id": "http://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Institute of Public Health, University of Southern Denmark, Winslowparken 17, DK-5000 Odense C, Denmark", 
            "Departments of Environmental Health and Neurology, Boston University Schools of Medicine and Public Health, Boston, MA 02118, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grandjean", 
        "givenName": "Philippe", 
        "id": "sg:person.0675343502.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675343502.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faroese Hospital System, FR-100 Torshavn, Faroe Islands", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Public Health, University of Southern Denmark, Winslowparken 17, DK-5000 Odense C, Denmark", 
            "Faroese Hospital System, FR-100 Torshavn, Faroe Islands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weihe", 
        "givenName": "Pal", 
        "id": "sg:person.01212710070.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212710070.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4899-4477-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705918", 
          "https://doi.org/10.1007/978-1-4899-4477-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02296397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006947224", 
          "https://doi.org/10.1007/bf02296397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005655179", 
          "https://doi.org/10.1007/bf02294210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049140009", 
          "https://doi.org/10.1007/bf02294626"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-10-14", 
    "datePublishedReg": "2002-10-14", 
    "description": "BACKGROUND: Observational studies in epidemiology always involve concerns regarding validity, especially measurement error, confounding, missing data, and other problems that may affect the study outcomes. Widely used standard statistical techniques, such as multiple regression analysis, may to some extent adjust for these shortcomings. However, structural equations may incorporate most of these considerations, thereby providing overall adjusted estimations of associations. This approach was used in a large epidemiological data set from a prospective study of developmental methyl-mercury toxicity.\nRESULTS: Structural equation models were developed for assessment of the association between biomarkers of prenatal mercury exposure and neuropsychological test scores in 7 year old children. Eleven neurobehavioral outcomes were grouped into motor function and verbally mediated function. Adjustment for local dependence and item bias was necessary for a satisfactory fit of the model, but had little impact on the estimated mercury effects. The mercury effect on the two latent neurobehavioral functions was similar to the strongest effects seen for individual test scores of motor function and verbal skills. Adjustment for contaminant exposure to poly chlorinated biphenyls (PCBs) changed the estimates only marginally, but the mercury effect could be reduced to non-significance by assuming a large measurement error for the PCB biomarker.\nCONCLUSIONS: The structural equation analysis allows correction for measurement error in exposure variables, incorporation of multiple outcomes and incomplete cases. This approach therefore deserves to be applied more frequently in the analysis of complex epidemiological data sets.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1476-069x-1-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2690463", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2502903", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2503348", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1327425", 
        "issn": [
          "1476-069X"
        ], 
        "name": "Environmental Health", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "keywords": [
      "standard statistical techniques", 
      "measurement error", 
      "equation model", 
      "estimation of association", 
      "statistical techniques", 
      "PCB biomarker", 
      "epidemiological data sets", 
      "incomplete cases", 
      "large epidemiological data", 
      "large measurement errors", 
      "local dependence", 
      "structural equation model", 
      "multiple outcomes", 
      "data sets", 
      "estimation", 
      "error", 
      "equations", 
      "structural equation", 
      "model", 
      "equation analysis", 
      "exposure variables", 
      "test scores", 
      "function", 
      "neuropsychological test scores", 
      "individual test scores", 
      "structural equation analysis", 
      "problem", 
      "approach", 
      "verbal skills", 
      "variables", 
      "year old children", 
      "set", 
      "estimates", 
      "prenatal methylmercury exposure", 
      "prenatal mercury exposure", 
      "multiple regression analysis", 
      "item bias", 
      "older children", 
      "satisfactory fit", 
      "motor function", 
      "neurobehavioral outcomes", 
      "validity", 
      "neurobehavioral function", 
      "fit", 
      "analysis", 
      "adjusts", 
      "technique", 
      "shortcomings", 
      "regression analysis", 
      "consideration", 
      "data", 
      "strong effect", 
      "skills", 
      "mercury effects", 
      "cases", 
      "adjustment", 
      "scores", 
      "correction", 
      "children", 
      "outcomes", 
      "bias", 
      "association", 
      "methylmercury exposure", 
      "study outcomes", 
      "dependence", 
      "effect", 
      "study", 
      "exposure", 
      "little impact", 
      "assessment", 
      "concern", 
      "impact", 
      "health effects", 
      "prospective study", 
      "epidemiological data", 
      "mercury exposure", 
      "epidemiology", 
      "incorporation", 
      "observational study", 
      "contaminant exposure", 
      "biomarkers", 
      "biphenyls", 
      "toxicity", 
      "extent adjust", 
      "developmental methyl-mercury toxicity", 
      "methyl-mercury toxicity", 
      "latent neurobehavioral functions", 
      "complex epidemiological data sets"
    ], 
    "name": "Estimation of health effects of prenatal methylmercury exposure using structural equation models", 
    "pagination": "2-2", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023400106"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1476-069x-1-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12513702"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1476-069x-1-2", 
      "https://app.dimensions.ai/details/publication/pub.1023400106"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_362.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1476-069x-1-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1476-069x-1-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1476-069x-1-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1476-069x-1-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1476-069x-1-2'


 

This table displays all metadata directly associated to this object as RDF triples.

280 TRIPLES      22 PREDICATES      137 URIs      125 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1476-069x-1-2 schema:about N00f91719748f4299ac29bd6cf07def27
2 N14a4edaded3a4ceeb26cd0a4777e00a4
3 N16c36f585e5246889d987c7902f31170
4 N2b93b88c5a8749bf87f0d5eb4f48b7ee
5 N507146cdb262436589eab7b49a84d960
6 N564a8dcdb2be43fe9353ff956182f890
7 N6807593a95db4d7da5b5d700d77003aa
8 N73c8b25074954777a599f921e9290de3
9 N8e4b25bce821450c888df0d3c14b126c
10 N93904b0c686f483980672ab53170c143
11 N9a79c899cd6c47ab873321c4cb2835eb
12 Nce0cec9c04fa4c77838dc0845947bc38
13 Ndcb2bbef2be946f3b39c567f8a78f4c8
14 Nef18854c04754ce1bd13fce7d9d4318f
15 Nf64b9f530d1945868344155ff2226a7f
16 Nf9c4c9a5c36c46ed980bb7fa33abdf43
17 Nf9f85680f53747129ee9bde69639b4f0
18 Nfc1f6802929a4df081d3a8ef03a7e0f4
19 Nfdf7e76b1c874e30a73f8e57d107cfb7
20 anzsrc-for:11
21 anzsrc-for:1117
22 schema:author Nf625b345d37e434485d4250b37ff2c5c
23 schema:citation sg:pub.10.1007/978-1-4899-4477-1
24 sg:pub.10.1007/bf02294210
25 sg:pub.10.1007/bf02294626
26 sg:pub.10.1007/bf02296397
27 schema:datePublished 2002-10-14
28 schema:datePublishedReg 2002-10-14
29 schema:description BACKGROUND: Observational studies in epidemiology always involve concerns regarding validity, especially measurement error, confounding, missing data, and other problems that may affect the study outcomes. Widely used standard statistical techniques, such as multiple regression analysis, may to some extent adjust for these shortcomings. However, structural equations may incorporate most of these considerations, thereby providing overall adjusted estimations of associations. This approach was used in a large epidemiological data set from a prospective study of developmental methyl-mercury toxicity. RESULTS: Structural equation models were developed for assessment of the association between biomarkers of prenatal mercury exposure and neuropsychological test scores in 7 year old children. Eleven neurobehavioral outcomes were grouped into motor function and verbally mediated function. Adjustment for local dependence and item bias was necessary for a satisfactory fit of the model, but had little impact on the estimated mercury effects. The mercury effect on the two latent neurobehavioral functions was similar to the strongest effects seen for individual test scores of motor function and verbal skills. Adjustment for contaminant exposure to poly chlorinated biphenyls (PCBs) changed the estimates only marginally, but the mercury effect could be reduced to non-significance by assuming a large measurement error for the PCB biomarker. CONCLUSIONS: The structural equation analysis allows correction for measurement error in exposure variables, incorporation of multiple outcomes and incomplete cases. This approach therefore deserves to be applied more frequently in the analysis of complex epidemiological data sets.
30 schema:genre article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N8e740399547e4e2b9a15ce3a87d4aa1d
34 Ne2803646316c4d09913fb86c521746a6
35 sg:journal.1327425
36 schema:keywords PCB biomarker
37 adjustment
38 adjusts
39 analysis
40 approach
41 assessment
42 association
43 bias
44 biomarkers
45 biphenyls
46 cases
47 children
48 complex epidemiological data sets
49 concern
50 consideration
51 contaminant exposure
52 correction
53 data
54 data sets
55 dependence
56 developmental methyl-mercury toxicity
57 effect
58 epidemiological data
59 epidemiological data sets
60 epidemiology
61 equation analysis
62 equation model
63 equations
64 error
65 estimates
66 estimation
67 estimation of association
68 exposure
69 exposure variables
70 extent adjust
71 fit
72 function
73 health effects
74 impact
75 incomplete cases
76 incorporation
77 individual test scores
78 item bias
79 large epidemiological data
80 large measurement errors
81 latent neurobehavioral functions
82 little impact
83 local dependence
84 measurement error
85 mercury effects
86 mercury exposure
87 methyl-mercury toxicity
88 methylmercury exposure
89 model
90 motor function
91 multiple outcomes
92 multiple regression analysis
93 neurobehavioral function
94 neurobehavioral outcomes
95 neuropsychological test scores
96 observational study
97 older children
98 outcomes
99 prenatal mercury exposure
100 prenatal methylmercury exposure
101 problem
102 prospective study
103 regression analysis
104 satisfactory fit
105 scores
106 set
107 shortcomings
108 skills
109 standard statistical techniques
110 statistical techniques
111 strong effect
112 structural equation
113 structural equation analysis
114 structural equation model
115 study
116 study outcomes
117 technique
118 test scores
119 toxicity
120 validity
121 variables
122 verbal skills
123 year old children
124 schema:name Estimation of health effects of prenatal methylmercury exposure using structural equation models
125 schema:pagination 2-2
126 schema:productId N155147807c944e45bef639e0f976a60d
127 N2d6639544aa2437fa23823937dc03386
128 N73585fbe028d4a4e8af450d489f815f5
129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023400106
130 https://doi.org/10.1186/1476-069x-1-2
131 schema:sdDatePublished 2021-11-01T18:06
132 schema:sdLicense https://scigraph.springernature.com/explorer/license/
133 schema:sdPublisher N308bc964c6484374980b59d97eed9408
134 schema:url https://doi.org/10.1186/1476-069x-1-2
135 sgo:license sg:explorer/license/
136 sgo:sdDataset articles
137 rdf:type schema:ScholarlyArticle
138 N00f91719748f4299ac29bd6cf07def27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Nervous System
140 rdf:type schema:DefinedTerm
141 N14a4edaded3a4ceeb26cd0a4777e00a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Likelihood Functions
143 rdf:type schema:DefinedTerm
144 N155147807c944e45bef639e0f976a60d schema:name doi
145 schema:value 10.1186/1476-069x-1-2
146 rdf:type schema:PropertyValue
147 N16c36f585e5246889d987c7902f31170 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Fish Products
149 rdf:type schema:DefinedTerm
150 N2b93b88c5a8749bf87f0d5eb4f48b7ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Female
152 rdf:type schema:DefinedTerm
153 N2d6639544aa2437fa23823937dc03386 schema:name pubmed_id
154 schema:value 12513702
155 rdf:type schema:PropertyValue
156 N308bc964c6484374980b59d97eed9408 schema:name Springer Nature - SN SciGraph project
157 rdf:type schema:Organization
158 N3666a691119e448296f65aad3fa006e6 rdf:first sg:person.01253763043.36
159 rdf:rest Nb52d375148734bed8d8e9b4b00bf6854
160 N507146cdb262436589eab7b49a84d960 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Cohort Studies
162 rdf:type schema:DefinedTerm
163 N564a8dcdb2be43fe9353ff956182f890 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Child
165 rdf:type schema:DefinedTerm
166 N6807593a95db4d7da5b5d700d77003aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Biomarkers
168 rdf:type schema:DefinedTerm
169 N73585fbe028d4a4e8af450d489f815f5 schema:name dimensions_id
170 schema:value pub.1023400106
171 rdf:type schema:PropertyValue
172 N73c8b25074954777a599f921e9290de3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Methylmercury Compounds
174 rdf:type schema:DefinedTerm
175 N8e4b25bce821450c888df0d3c14b126c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Fetal Blood
177 rdf:type schema:DefinedTerm
178 N8e740399547e4e2b9a15ce3a87d4aa1d schema:issueNumber 1
179 rdf:type schema:PublicationIssue
180 N93904b0c686f483980672ab53170c143 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Developmental Disabilities
182 rdf:type schema:DefinedTerm
183 N9a79c899cd6c47ab873321c4cb2835eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Neuropsychological Tests
185 rdf:type schema:DefinedTerm
186 Nb52d375148734bed8d8e9b4b00bf6854 rdf:first sg:person.0675343502.95
187 rdf:rest Neff09d733fdc49a3b1854f5a571ab7e7
188 Nce0cec9c04fa4c77838dc0845947bc38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Maternal-Fetal Exchange
190 rdf:type schema:DefinedTerm
191 Ndcb2bbef2be946f3b39c567f8a78f4c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Denmark
193 rdf:type schema:DefinedTerm
194 Ne2803646316c4d09913fb86c521746a6 schema:volumeNumber 1
195 rdf:type schema:PublicationVolume
196 Nef18854c04754ce1bd13fce7d9d4318f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Pregnancy
198 rdf:type schema:DefinedTerm
199 Neff09d733fdc49a3b1854f5a571ab7e7 rdf:first sg:person.01212710070.09
200 rdf:rest rdf:nil
201 Nf625b345d37e434485d4250b37ff2c5c rdf:first sg:person.013511371144.53
202 rdf:rest N3666a691119e448296f65aad3fa006e6
203 Nf64b9f530d1945868344155ff2226a7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Risk Assessment
205 rdf:type schema:DefinedTerm
206 Nf9c4c9a5c36c46ed980bb7fa33abdf43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Humans
208 rdf:type schema:DefinedTerm
209 Nf9f85680f53747129ee9bde69639b4f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Multivariate Analysis
211 rdf:type schema:DefinedTerm
212 Nfc1f6802929a4df081d3a8ef03a7e0f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Maternal Exposure
214 rdf:type schema:DefinedTerm
215 Nfdf7e76b1c874e30a73f8e57d107cfb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Mercury Poisoning, Nervous System
217 rdf:type schema:DefinedTerm
218 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
219 schema:name Medical and Health Sciences
220 rdf:type schema:DefinedTerm
221 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
222 schema:name Public Health and Health Services
223 rdf:type schema:DefinedTerm
224 sg:grant.2502903 http://pending.schema.org/fundedItem sg:pub.10.1186/1476-069x-1-2
225 rdf:type schema:MonetaryGrant
226 sg:grant.2503348 http://pending.schema.org/fundedItem sg:pub.10.1186/1476-069x-1-2
227 rdf:type schema:MonetaryGrant
228 sg:grant.2690463 http://pending.schema.org/fundedItem sg:pub.10.1186/1476-069x-1-2
229 rdf:type schema:MonetaryGrant
230 sg:journal.1327425 schema:issn 1476-069X
231 schema:name Environmental Health
232 schema:publisher Springer Nature
233 rdf:type schema:Periodical
234 sg:person.01212710070.09 schema:affiliation grid-institutes:None
235 schema:familyName Weihe
236 schema:givenName Pal
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212710070.09
238 rdf:type schema:Person
239 sg:person.01253763043.36 schema:affiliation grid-institutes:grid.5254.6
240 schema:familyName Keiding
241 schema:givenName Niels
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253763043.36
243 rdf:type schema:Person
244 sg:person.013511371144.53 schema:affiliation grid-institutes:grid.10825.3e
245 schema:familyName Budtz-Jørgensen
246 schema:givenName Esben
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013511371144.53
248 rdf:type schema:Person
249 sg:person.0675343502.95 schema:affiliation grid-institutes:grid.189504.1
250 schema:familyName Grandjean
251 schema:givenName Philippe
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675343502.95
253 rdf:type schema:Person
254 sg:pub.10.1007/978-1-4899-4477-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705918
255 https://doi.org/10.1007/978-1-4899-4477-1
256 rdf:type schema:CreativeWork
257 sg:pub.10.1007/bf02294210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005655179
258 https://doi.org/10.1007/bf02294210
259 rdf:type schema:CreativeWork
260 sg:pub.10.1007/bf02294626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049140009
261 https://doi.org/10.1007/bf02294626
262 rdf:type schema:CreativeWork
263 sg:pub.10.1007/bf02296397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006947224
264 https://doi.org/10.1007/bf02296397
265 rdf:type schema:CreativeWork
266 grid-institutes:None schema:alternateName Faroese Hospital System, FR-100 Torshavn, Faroe Islands
267 schema:name Faroese Hospital System, FR-100 Torshavn, Faroe Islands
268 Institute of Public Health, University of Southern Denmark, Winslowparken 17, DK-5000 Odense C, Denmark
269 rdf:type schema:Organization
270 grid-institutes:grid.10825.3e schema:alternateName Institute of Public Health, University of Southern Denmark, Winslowparken 17, DK-5000 Odense C, Denmark
271 schema:name Department of Biostatistics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
272 Institute of Public Health, University of Southern Denmark, Winslowparken 17, DK-5000 Odense C, Denmark
273 rdf:type schema:Organization
274 grid-institutes:grid.189504.1 schema:alternateName Departments of Environmental Health and Neurology, Boston University Schools of Medicine and Public Health, Boston, MA 02118, USA
275 schema:name Departments of Environmental Health and Neurology, Boston University Schools of Medicine and Public Health, Boston, MA 02118, USA
276 Institute of Public Health, University of Southern Denmark, Winslowparken 17, DK-5000 Odense C, Denmark
277 rdf:type schema:Organization
278 grid-institutes:grid.5254.6 schema:alternateName Department of Biostatistics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
279 schema:name Department of Biostatistics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
280 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...