Time-frequency component analysis of somatosensory evoked potentials in rats View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Zhi-Guo Zhang, Jun-Lin Yang, Shing-Chow Chan, Keith Dip-Kei Luk, Yong Hu

ABSTRACT

BACKGROUND: Somatosensory evoked potential (SEP) signal usually contains a set of detailed temporal components measured and identified in a time domain, giving meaningful information on physiological mechanisms of the nervous system. The purpose of this study is to measure and identify detailed time-frequency components in normal SEP using time-frequency analysis (TFA) methods and to obtain their distribution pattern in the time-frequency domain. METHODS: This paper proposes to apply a high-resolution time-frequency analysis algorithm, the matching pursuit (MP), to extract detailed time-frequency components of SEP signals. The MP algorithm decomposes a SEP signal into a number of elementary time-frequency components and provides a time-frequency parameter description of the components. A clustering by estimation of the probability density function in parameter space is followed to identify stable SEP time-frequency components. RESULTS: Experimental results on cortical SEP signals of 28 mature rats show that a series of stable SEP time-frequency components can be identified using the MP decomposition algorithm. Based on the statistical properties of the component parameters, an approximated distribution of these components in time-frequency domain is suggested to describe the complex SEP response. CONCLUSION: This study shows that there is a set of stable and minute time-frequency components in SEP signals, which are revealed by the MP decomposition and clustering. These stable SEP components have specific localizations in the time-frequency domain. More... »

PAGES

4

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1475-925x-8-4

DOI

http://dx.doi.org/10.1186/1475-925x-8-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019588643

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19203394


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evoked Potentials, Somatosensory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Somatosensory Cortex", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhi-Guo", 
        "id": "sg:person.0747117171.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747117171.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "First Affiliated Hospital of Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.412615.5", 
          "name": [
            "Department of Orthopaedics, The 1st Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jun-Lin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chan", 
        "givenName": "Shing-Chow", 
        "id": "sg:person.01304711515.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304711515.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luk", 
        "givenName": "Keith Dip-Kei", 
        "id": "sg:person.012314311217.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012314311217.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Yong", 
        "id": "sg:person.01215734242.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215734242.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0168-5597(97)00035-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001475778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.74.1.82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001774690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14767050500233290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004423840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(86)90056-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004928072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(86)90056-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004928072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(93)90033-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005159245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(93)90033-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005159245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-925x-2-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011382152", 
          "https://doi.org/10.1186/1475-925x-2-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(91)90111-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012110959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(91)90111-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012110959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02345294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025782102", 
          "https://doi.org/10.1007/bf02345294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02345294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025782102", 
          "https://doi.org/10.1007/bf02345294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(95)00006-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029985487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.71.6.732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032442682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(96)95035-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035948410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(96)95115-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037155946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(95)00244-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039428796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00007632-198605000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039736408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00007632-198605000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039736408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-4825(85)90013-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043114690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.heares.2005.03.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046918564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-4825(01)00026-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051049638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1969.10490657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058284023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1974.10480196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058301281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-198403000-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060160567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-198403000-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060160567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-198403000-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060160567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004691-199805000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060185782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004691-199805000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060185782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004691-199805000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060185782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.245625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061084285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.258082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061228470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2006.873700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2008.918439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061527481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.1690077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062269758"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "BACKGROUND: Somatosensory evoked potential (SEP) signal usually contains a set of detailed temporal components measured and identified in a time domain, giving meaningful information on physiological mechanisms of the nervous system. The purpose of this study is to measure and identify detailed time-frequency components in normal SEP using time-frequency analysis (TFA) methods and to obtain their distribution pattern in the time-frequency domain.\nMETHODS: This paper proposes to apply a high-resolution time-frequency analysis algorithm, the matching pursuit (MP), to extract detailed time-frequency components of SEP signals. The MP algorithm decomposes a SEP signal into a number of elementary time-frequency components and provides a time-frequency parameter description of the components. A clustering by estimation of the probability density function in parameter space is followed to identify stable SEP time-frequency components.\nRESULTS: Experimental results on cortical SEP signals of 28 mature rats show that a series of stable SEP time-frequency components can be identified using the MP decomposition algorithm. Based on the statistical properties of the component parameters, an approximated distribution of these components in time-frequency domain is suggested to describe the complex SEP response.\nCONCLUSION: This study shows that there is a set of stable and minute time-frequency components in SEP signals, which are revealed by the MP decomposition and clustering. These stable SEP components have specific localizations in the time-frequency domain.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1475-925x-8-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7436409", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031014", 
        "issn": [
          "1475-925X"
        ], 
        "name": "BioMedical Engineering OnLine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Time-frequency component analysis of somatosensory evoked potentials in rats", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d551d2d420283a58ffa13d970643b2cedb8dd11a69b1eb447b7b64cc9fe1c54"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19203394"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147518"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1475-925x-8-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019588643"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1475-925x-8-4", 
      "https://app.dimensions.ai/details/publication/pub.1019588643"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1475-925X-8-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-8-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-8-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-8-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-8-4'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      66 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1475-925x-8-4 schema:about N1ab6f53d04e64b1690426eabfa5c5df3
2 N2238c085c36f4c129ec948da7b10da4a
3 N2bb360fe346c4c29abf3a94b00f21ec2
4 N35e475bd89444a79973120ea7e15adfe
5 N5859b6320a304a3a89ce8caf9f10ff8e
6 N58e60f528add493ea96643e82f4a7176
7 N59266baccf984594b3554f85365d0af3
8 N6aa6bcc51e1f4319b74b81a549f27ba1
9 Nd0f67f71c079461899d9035cb06a9fa9
10 Ndf09f7ea83dc455da87394ac337a15b2
11 Ned264a25ccf34db590792b3650fecc4e
12 anzsrc-for:01
13 anzsrc-for:0104
14 schema:author Ne16625ada12645e7b5bf0664fc0b8fb3
15 schema:citation sg:pub.10.1007/bf02345294
16 sg:pub.10.1186/1475-925x-2-1
17 https://doi.org/10.1016/0010-4825(85)90013-7
18 https://doi.org/10.1016/0013-4694(91)90111-g
19 https://doi.org/10.1016/0168-5597(86)90056-0
20 https://doi.org/10.1016/0168-5597(93)90033-l
21 https://doi.org/10.1016/0168-5597(95)00006-e
22 https://doi.org/10.1016/0168-5597(95)00244-8
23 https://doi.org/10.1016/0168-5597(96)95035-2
24 https://doi.org/10.1016/0168-5597(96)95115-1
25 https://doi.org/10.1016/j.heares.2005.03.024
26 https://doi.org/10.1016/s0010-4825(01)00026-9
27 https://doi.org/10.1016/s0168-5597(97)00035-x
28 https://doi.org/10.1080/00401706.1969.10490657
29 https://doi.org/10.1080/01621459.1974.10480196
30 https://doi.org/10.1080/14767050500233290
31 https://doi.org/10.1097/00003086-198403000-00008
32 https://doi.org/10.1097/00004691-199805000-00002
33 https://doi.org/10.1097/00007632-198605000-00012
34 https://doi.org/10.1109/10.245625
35 https://doi.org/10.1109/78.258082
36 https://doi.org/10.1109/tbme.2006.873700
37 https://doi.org/10.1109/tbme.2008.918439
38 https://doi.org/10.1121/1.1690077
39 https://doi.org/10.1136/jnnp.71.6.732
40 https://doi.org/10.1136/jnnp.74.1.82
41 schema:datePublished 2009-12
42 schema:datePublishedReg 2009-12-01
43 schema:description BACKGROUND: Somatosensory evoked potential (SEP) signal usually contains a set of detailed temporal components measured and identified in a time domain, giving meaningful information on physiological mechanisms of the nervous system. The purpose of this study is to measure and identify detailed time-frequency components in normal SEP using time-frequency analysis (TFA) methods and to obtain their distribution pattern in the time-frequency domain. METHODS: This paper proposes to apply a high-resolution time-frequency analysis algorithm, the matching pursuit (MP), to extract detailed time-frequency components of SEP signals. The MP algorithm decomposes a SEP signal into a number of elementary time-frequency components and provides a time-frequency parameter description of the components. A clustering by estimation of the probability density function in parameter space is followed to identify stable SEP time-frequency components. RESULTS: Experimental results on cortical SEP signals of 28 mature rats show that a series of stable SEP time-frequency components can be identified using the MP decomposition algorithm. Based on the statistical properties of the component parameters, an approximated distribution of these components in time-frequency domain is suggested to describe the complex SEP response. CONCLUSION: This study shows that there is a set of stable and minute time-frequency components in SEP signals, which are revealed by the MP decomposition and clustering. These stable SEP components have specific localizations in the time-frequency domain.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N0b743b6d07f0427e9866e7a846a5aff3
48 N6bb447c5a7e9467a9ad76985388cd3d0
49 sg:journal.1031014
50 schema:name Time-frequency component analysis of somatosensory evoked potentials in rats
51 schema:pagination 4
52 schema:productId N179fdfcb48fb459881b467cae3252a15
53 N1b66cf0b75154de1b418b22fb21e1a63
54 N3bd31358c0204a399fc3297ee9f5a5a1
55 N6c2c985abcb54abca39e3ae734c7d82d
56 Nc4f3d70f1e9641d18a0f5fdac8d6fd4a
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019588643
58 https://doi.org/10.1186/1475-925x-8-4
59 schema:sdDatePublished 2019-04-10T13:16
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nd2cb7bfbb9664e00bf1437f3c514be63
62 schema:url http://link.springer.com/10.1186%2F1475-925X-8-4
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0ac4ebe0dbb1490ca16a76fe8d299fcf rdf:first sg:person.012314311217.18
67 rdf:rest N5189b0e3176946c79785695621c8abc5
68 N0b743b6d07f0427e9866e7a846a5aff3 schema:issueNumber 1
69 rdf:type schema:PublicationIssue
70 N179fdfcb48fb459881b467cae3252a15 schema:name nlm_unique_id
71 schema:value 101147518
72 rdf:type schema:PropertyValue
73 N1ab6f53d04e64b1690426eabfa5c5df3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Reproducibility of Results
75 rdf:type schema:DefinedTerm
76 N1b66cf0b75154de1b418b22fb21e1a63 schema:name readcube_id
77 schema:value 5d551d2d420283a58ffa13d970643b2cedb8dd11a69b1eb447b7b64cc9fe1c54
78 rdf:type schema:PropertyValue
79 N2238c085c36f4c129ec948da7b10da4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Algorithms
81 rdf:type schema:DefinedTerm
82 N2bb360fe346c4c29abf3a94b00f21ec2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Signal Processing, Computer-Assisted
84 rdf:type schema:DefinedTerm
85 N35e475bd89444a79973120ea7e15adfe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Brain Mapping
87 rdf:type schema:DefinedTerm
88 N3bd31358c0204a399fc3297ee9f5a5a1 schema:name dimensions_id
89 schema:value pub.1019588643
90 rdf:type schema:PropertyValue
91 N5189b0e3176946c79785695621c8abc5 rdf:first sg:person.01215734242.01
92 rdf:rest rdf:nil
93 N5859b6320a304a3a89ce8caf9f10ff8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Pattern Recognition, Automated
95 rdf:type schema:DefinedTerm
96 N58e60f528add493ea96643e82f4a7176 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Animals
98 rdf:type schema:DefinedTerm
99 N59266baccf984594b3554f85365d0af3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Electroencephalography
101 rdf:type schema:DefinedTerm
102 N64c98d405a3c4eb68ad91161ccb8af80 schema:affiliation https://www.grid.ac/institutes/grid.412615.5
103 schema:familyName Yang
104 schema:givenName Jun-Lin
105 rdf:type schema:Person
106 N6aa6bcc51e1f4319b74b81a549f27ba1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Sensitivity and Specificity
108 rdf:type schema:DefinedTerm
109 N6bb447c5a7e9467a9ad76985388cd3d0 schema:volumeNumber 8
110 rdf:type schema:PublicationVolume
111 N6c2c985abcb54abca39e3ae734c7d82d schema:name pubmed_id
112 schema:value 19203394
113 rdf:type schema:PropertyValue
114 N6f771b256d0644d39dcf8dd35a293b39 rdf:first sg:person.01304711515.05
115 rdf:rest N0ac4ebe0dbb1490ca16a76fe8d299fcf
116 N9ffd9124dd8e4c7aa230cc754c6ecbab rdf:first N64c98d405a3c4eb68ad91161ccb8af80
117 rdf:rest N6f771b256d0644d39dcf8dd35a293b39
118 Nc4f3d70f1e9641d18a0f5fdac8d6fd4a schema:name doi
119 schema:value 10.1186/1475-925x-8-4
120 rdf:type schema:PropertyValue
121 Nd0f67f71c079461899d9035cb06a9fa9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Rats
123 rdf:type schema:DefinedTerm
124 Nd2cb7bfbb9664e00bf1437f3c514be63 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Ndf09f7ea83dc455da87394ac337a15b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Evoked Potentials, Somatosensory
128 rdf:type schema:DefinedTerm
129 Ne16625ada12645e7b5bf0664fc0b8fb3 rdf:first sg:person.0747117171.27
130 rdf:rest N9ffd9124dd8e4c7aa230cc754c6ecbab
131 Ned264a25ccf34db590792b3650fecc4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Somatosensory Cortex
133 rdf:type schema:DefinedTerm
134 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
135 schema:name Mathematical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
138 schema:name Statistics
139 rdf:type schema:DefinedTerm
140 sg:grant.7436409 http://pending.schema.org/fundedItem sg:pub.10.1186/1475-925x-8-4
141 rdf:type schema:MonetaryGrant
142 sg:journal.1031014 schema:issn 1475-925X
143 schema:name BioMedical Engineering OnLine
144 rdf:type schema:Periodical
145 sg:person.01215734242.01 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
146 schema:familyName Hu
147 schema:givenName Yong
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215734242.01
149 rdf:type schema:Person
150 sg:person.012314311217.18 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
151 schema:familyName Luk
152 schema:givenName Keith Dip-Kei
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012314311217.18
154 rdf:type schema:Person
155 sg:person.01304711515.05 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
156 schema:familyName Chan
157 schema:givenName Shing-Chow
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304711515.05
159 rdf:type schema:Person
160 sg:person.0747117171.27 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
161 schema:familyName Zhang
162 schema:givenName Zhi-Guo
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747117171.27
164 rdf:type schema:Person
165 sg:pub.10.1007/bf02345294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025782102
166 https://doi.org/10.1007/bf02345294
167 rdf:type schema:CreativeWork
168 sg:pub.10.1186/1475-925x-2-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011382152
169 https://doi.org/10.1186/1475-925x-2-1
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/0010-4825(85)90013-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043114690
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/0013-4694(91)90111-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1012110959
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/0168-5597(86)90056-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004928072
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/0168-5597(93)90033-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1005159245
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/0168-5597(95)00006-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1029985487
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0168-5597(95)00244-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039428796
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/0168-5597(96)95035-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035948410
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/0168-5597(96)95115-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037155946
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.heares.2005.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046918564
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0010-4825(01)00026-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051049638
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0168-5597(97)00035-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001475778
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1080/00401706.1969.10490657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284023
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1080/01621459.1974.10480196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301281
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1080/14767050500233290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004423840
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1097/00003086-198403000-00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060160567
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1097/00004691-199805000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060185782
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1097/00007632-198605000-00012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039736408
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/10.245625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084285
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/78.258082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228470
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/tbme.2006.873700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526673
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/tbme.2008.918439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061527481
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1121/1.1690077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062269758
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1136/jnnp.71.6.732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032442682
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1136/jnnp.74.1.82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001774690
218 rdf:type schema:CreativeWork
219 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
220 schema:name Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, PR China
221 Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, PR China
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.412615.5 schema:alternateName First Affiliated Hospital of Sun Yat-sen University
224 schema:name Department of Orthopaedics, The 1st Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...