Tool to visualize and evaluate operator proficiency in laser hair-removal treatments View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Seungwoo Noh, Woo Seok Koh, Hyoung-woo Lim, Chiyul Yoon, Youdan Kim, Jin Ho Chung, Hee Chan Kim, Sungwan Kim

ABSTRACT

BACKGROUND: The uniform delivery of laser energy is particularly important for safe and effective laser hair removal (LHR) treatment. Although it is necessary to quantitatively assess the spatial distribution of the delivered laser, laser spots are difficult to trace owing to a lack of visual cues. This study proposes a novel preclinic tool to evaluate operator proficiency in LHR treatment and applies this tool to train novice operators and compare two different treatment techniques (sliding versus spot-by-spot). METHODS: A simulation bed is constructed to visualize the irradiated laser spots. Six novice operators are recruited to perform four sessions of simulation while changing the treatment techniques and the presence of feedback (sliding without feedback, sliding with feedback, spot-by-spot without feedback, and spot-by-spot with feedback). Laser distribution maps (LDMs) are reconstructed through a series of images processed from the recorded video for each simulation session. Then, an experienced dermatologist classifies the collected LDMs into three different performance groups, which are quantitatively analyzed in terms of four performance indices. RESULTS: The performance groups are characterized by using a combination of four proposed indices. The best-performing group exhibited the lowest amount of randomness in laser delivery and accurate estimation of mean spot distances. The training was only effective in the sliding treatment technique. After the training, omission errors decreased by 6.32% and better estimation of the mean spot distance of the actual size of the laser-emitting window was achieved. Gels required operators to be trained when the spot-by-spot technique was used, and imposed difficulties in maintaining regular laser delivery when the sliding technique was used. CONCLUSIONS: Because the proposed system is simple and highly affordable, it is expected to benefit many operators in clinics to train and maintain skilled performance in LHR treatment, which will eventually lead to accomplishing a uniform laser delivery for safe and effective LHR treatment. More... »

PAGES

40

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1475-925x-13-40

DOI

http://dx.doi.org/10.1186/1475-925x-13-40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015506154

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24708724


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Competence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hair Removal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Laser Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality Control", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Interdisciplinary Program for Bioengineering, Seoul National University, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noh", 
        "givenName": "Seungwoo", 
        "id": "sg:person.01244373076.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244373076.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "JMO Dermatology, 135-887, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koh", 
        "givenName": "Woo Seok", 
        "id": "sg:person.01013327401.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013327401.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Interdisciplinary Program for Bioengineering, Seoul National University, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Hyoung-woo", 
        "id": "sg:person.01354371701.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354371701.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Interdisciplinary Program for Bioengineering, Seoul National University, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Chiyul", 
        "id": "sg:person.01176257676.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176257676.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Seoul National University College of Engineering, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Youdan", 
        "id": "sg:person.01061442601.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061442601.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Dermatology, Seoul National University Hospital, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "Jin Ho", 
        "id": "sg:person.01341025553.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341025553.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Biomedical Engineering, Seoul National University College of Medicine, 110-799, Seoul, Korea", 
            "Institute of Medical and Biological Engineering, Seoul National University, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hee Chan", 
        "id": "sg:person.01100214455.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100214455.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Biomedical Engineering, Seoul National University College of Medicine, 110-799, Seoul, Korea", 
            "Institute of Medical and Biological Engineering, Seoul National University, 151-742, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sungwan", 
        "id": "sg:person.01112430375.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112430375.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1529-8019.2010.01382.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001697162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1524-4725.2002.01087.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002275677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra054785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005377263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14764170903137113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007453936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000315499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007523537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lsm.20485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008321807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lsm.22162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010953733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/03091902.2011.564343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012384324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archderm.141.9.1100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014745624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1473-2165.2008.00363.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018841577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1503/cmaj.100475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023408815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1503/cmaj.100475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023408815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0190-9622(03)02106-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029133091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0190-9622(03)02106-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029133091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1524-4725.2011.01971.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030826241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1524-4725.2011.01971.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030826241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-3083.2011.04406.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035333226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1524-4725.1999.08130.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037962077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1524-4725.1999.08130.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037962077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10103-006-0377-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038331488", 
          "https://doi.org/10.1007/s10103-006-0377-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10103-006-0377-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038331488", 
          "https://doi.org/10.1007/s10103-006-0377-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1524-4725.2009.01433.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040958214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1524-4725.2009.01433.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040958214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lsm.1136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041172233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/dsu.12116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044377987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/dsu.12116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044377987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10103-010-0809-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044875212", 
          "https://doi.org/10.1007/s10103-010-0809-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10103-010-0809-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044875212", 
          "https://doi.org/10.1007/s10103-010-0809-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-925x-12-51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045694253", 
          "https://doi.org/10.1186/1475-925x-12-51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2007-991187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057517998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/pho.2010.2895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059306552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.6836297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062640937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078471725", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078561305", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: The uniform delivery of laser energy is particularly important for safe and effective laser hair removal (LHR) treatment. Although it is necessary to quantitatively assess the spatial distribution of the delivered laser, laser spots are difficult to trace owing to a lack of visual cues. This study proposes a novel preclinic tool to evaluate operator proficiency in LHR treatment and applies this tool to train novice operators and compare two different treatment techniques (sliding versus spot-by-spot).\nMETHODS: A simulation bed is constructed to visualize the irradiated laser spots. Six novice operators are recruited to perform four sessions of simulation while changing the treatment techniques and the presence of feedback (sliding without feedback, sliding with feedback, spot-by-spot without feedback, and spot-by-spot with feedback). Laser distribution maps (LDMs) are reconstructed through a series of images processed from the recorded video for each simulation session. Then, an experienced dermatologist classifies the collected LDMs into three different performance groups, which are quantitatively analyzed in terms of four performance indices.\nRESULTS: The performance groups are characterized by using a combination of four proposed indices. The best-performing group exhibited the lowest amount of randomness in laser delivery and accurate estimation of mean spot distances. The training was only effective in the sliding treatment technique. After the training, omission errors decreased by 6.32% and better estimation of the mean spot distance of the actual size of the laser-emitting window was achieved. Gels required operators to be trained when the spot-by-spot technique was used, and imposed difficulties in maintaining regular laser delivery when the sliding technique was used.\nCONCLUSIONS: Because the proposed system is simple and highly affordable, it is expected to benefit many operators in clinics to train and maintain skilled performance in LHR treatment, which will eventually lead to accomplishing a uniform laser delivery for safe and effective LHR treatment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1475-925x-13-40", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031014", 
        "issn": [
          "1475-925X"
        ], 
        "name": "BioMedical Engineering OnLine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Tool to visualize and evaluate operator proficiency in laser hair-removal treatments", 
    "pagination": "40", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "49e0ff6089f396de00ad490b7b02d627f8e5622e8d297a284e361094c623ec20"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24708724"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147518"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1475-925x-13-40"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015506154"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1475-925x-13-40", 
      "https://app.dimensions.ai/details/publication/pub.1015506154"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000487.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1475-925X-13-40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-13-40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-13-40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-13-40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-13-40'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      21 PREDICATES      62 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1475-925x-13-40 schema:about N29e52b03b4474284ab0c0cbcb9213874
2 N5903de9188ed4c01bd9584328e824a34
3 Na4ca6adbbc2b44a98f6c711607df7595
4 Na6a42976ad714974b35cb9c5164a2d66
5 Nbedeb833926748b1ab77552778dd9ce8
6 Nc2199e7646244de4a01d81335f99ad9b
7 Necdc086e7dac4a3d9234a3b203f0fd34
8 anzsrc-for:17
9 anzsrc-for:1701
10 schema:author N8c9fa0d0f6d64ff58a59075155831ff5
11 schema:citation sg:pub.10.1007/s10103-006-0377-y
12 sg:pub.10.1007/s10103-010-0809-6
13 sg:pub.10.1186/1475-925x-12-51
14 https://app.dimensions.ai/details/publication/pub.1078471725
15 https://app.dimensions.ai/details/publication/pub.1078561305
16 https://doi.org/10.1001/archderm.141.9.1100
17 https://doi.org/10.1002/lsm.1136
18 https://doi.org/10.1002/lsm.20485
19 https://doi.org/10.1002/lsm.22162
20 https://doi.org/10.1016/s0190-9622(03)02106-6
21 https://doi.org/10.1046/j.1524-4725.1999.08130.x
22 https://doi.org/10.1046/j.1524-4725.2002.01087.x
23 https://doi.org/10.1055/s-2007-991187
24 https://doi.org/10.1056/nejmra054785
25 https://doi.org/10.1080/14764170903137113
26 https://doi.org/10.1089/pho.2010.2895
27 https://doi.org/10.1111/dsu.12116
28 https://doi.org/10.1111/j.1468-3083.2011.04406.x
29 https://doi.org/10.1111/j.1473-2165.2008.00363.x
30 https://doi.org/10.1111/j.1524-4725.2009.01433.x
31 https://doi.org/10.1111/j.1524-4725.2011.01971.x
32 https://doi.org/10.1111/j.1529-8019.2010.01382.x
33 https://doi.org/10.1126/science.6836297
34 https://doi.org/10.1159/000315499
35 https://doi.org/10.1503/cmaj.100475
36 https://doi.org/10.3109/03091902.2011.564343
37 schema:datePublished 2014-12
38 schema:datePublishedReg 2014-12-01
39 schema:description BACKGROUND: The uniform delivery of laser energy is particularly important for safe and effective laser hair removal (LHR) treatment. Although it is necessary to quantitatively assess the spatial distribution of the delivered laser, laser spots are difficult to trace owing to a lack of visual cues. This study proposes a novel preclinic tool to evaluate operator proficiency in LHR treatment and applies this tool to train novice operators and compare two different treatment techniques (sliding versus spot-by-spot). METHODS: A simulation bed is constructed to visualize the irradiated laser spots. Six novice operators are recruited to perform four sessions of simulation while changing the treatment techniques and the presence of feedback (sliding without feedback, sliding with feedback, spot-by-spot without feedback, and spot-by-spot with feedback). Laser distribution maps (LDMs) are reconstructed through a series of images processed from the recorded video for each simulation session. Then, an experienced dermatologist classifies the collected LDMs into three different performance groups, which are quantitatively analyzed in terms of four performance indices. RESULTS: The performance groups are characterized by using a combination of four proposed indices. The best-performing group exhibited the lowest amount of randomness in laser delivery and accurate estimation of mean spot distances. The training was only effective in the sliding treatment technique. After the training, omission errors decreased by 6.32% and better estimation of the mean spot distance of the actual size of the laser-emitting window was achieved. Gels required operators to be trained when the spot-by-spot technique was used, and imposed difficulties in maintaining regular laser delivery when the sliding technique was used. CONCLUSIONS: Because the proposed system is simple and highly affordable, it is expected to benefit many operators in clinics to train and maintain skilled performance in LHR treatment, which will eventually lead to accomplishing a uniform laser delivery for safe and effective LHR treatment.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N45d0eb6cbf3040099c7fb6d91fd05876
44 Nc322a85e101a4442a86dade3cc8f54aa
45 sg:journal.1031014
46 schema:name Tool to visualize and evaluate operator proficiency in laser hair-removal treatments
47 schema:pagination 40
48 schema:productId N4383096d4b8d46f7992d753c2df9a7dd
49 Na8f0e0f9b1d3462d8356c6d76654f9b9
50 Nbcaf3501d28f4a459c8fe8307cd14b38
51 Nc6faa9b715fb4d56b92c034f874331d1
52 Nee318ce5197b4278a0e13b9efffd5540
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015506154
54 https://doi.org/10.1186/1475-925x-13-40
55 schema:sdDatePublished 2019-04-10T13:07
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N4ab37467cbac48f3bc140479ec5274f2
58 schema:url http://link.springer.com/10.1186/1475-925X-13-40
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N29e52b03b4474284ab0c0cbcb9213874 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Laser Therapy
64 rdf:type schema:DefinedTerm
65 N2ee25e7b1e674696b93f481b6ffefac6 schema:name JMO Dermatology, 135-887, Seoul, Korea
66 rdf:type schema:Organization
67 N4383096d4b8d46f7992d753c2df9a7dd schema:name readcube_id
68 schema:value 49e0ff6089f396de00ad490b7b02d627f8e5622e8d297a284e361094c623ec20
69 rdf:type schema:PropertyValue
70 N45d0eb6cbf3040099c7fb6d91fd05876 schema:volumeNumber 13
71 rdf:type schema:PublicationVolume
72 N465b38211c134e6ca315454fe9bf2c82 rdf:first sg:person.01061442601.36
73 rdf:rest N82e878127de3435c84fcc2033a06bdc8
74 N4ab37467cbac48f3bc140479ec5274f2 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N5903de9188ed4c01bd9584328e824a34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Reproducibility of Results
78 rdf:type schema:DefinedTerm
79 N82e878127de3435c84fcc2033a06bdc8 rdf:first sg:person.01341025553.57
80 rdf:rest Neef9c59d13664bd487ca63cceae11963
81 N8c9fa0d0f6d64ff58a59075155831ff5 rdf:first sg:person.01244373076.78
82 rdf:rest Ne1ae4ce6d5184c85bf0cb7c0463aa391
83 N934d1280bfd24fe9990616620d2a811f rdf:first sg:person.01176257676.57
84 rdf:rest N465b38211c134e6ca315454fe9bf2c82
85 Na4ca6adbbc2b44a98f6c711607df7595 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Hair Removal
87 rdf:type schema:DefinedTerm
88 Na6a42976ad714974b35cb9c5164a2d66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Clinical Competence
90 rdf:type schema:DefinedTerm
91 Na8f0e0f9b1d3462d8356c6d76654f9b9 schema:name doi
92 schema:value 10.1186/1475-925x-13-40
93 rdf:type schema:PropertyValue
94 Nade83cc474274e138bb7aa595716620e rdf:first sg:person.01112430375.19
95 rdf:rest rdf:nil
96 Nbcaf3501d28f4a459c8fe8307cd14b38 schema:name nlm_unique_id
97 schema:value 101147518
98 rdf:type schema:PropertyValue
99 Nbedeb833926748b1ab77552778dd9ce8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Quality Control
101 rdf:type schema:DefinedTerm
102 Nc2199e7646244de4a01d81335f99ad9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Image Processing, Computer-Assisted
104 rdf:type schema:DefinedTerm
105 Nc322a85e101a4442a86dade3cc8f54aa schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 Nc6faa9b715fb4d56b92c034f874331d1 schema:name pubmed_id
108 schema:value 24708724
109 rdf:type schema:PropertyValue
110 Ne1ae4ce6d5184c85bf0cb7c0463aa391 rdf:first sg:person.01013327401.39
111 rdf:rest Ne7527a419a994b379b1a207894966b57
112 Ne7527a419a994b379b1a207894966b57 rdf:first sg:person.01354371701.87
113 rdf:rest N934d1280bfd24fe9990616620d2a811f
114 Necdc086e7dac4a3d9234a3b203f0fd34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Treatment Outcome
116 rdf:type schema:DefinedTerm
117 Nee318ce5197b4278a0e13b9efffd5540 schema:name dimensions_id
118 schema:value pub.1015506154
119 rdf:type schema:PropertyValue
120 Neef9c59d13664bd487ca63cceae11963 rdf:first sg:person.01100214455.87
121 rdf:rest Nade83cc474274e138bb7aa595716620e
122 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
123 schema:name Psychology and Cognitive Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
126 schema:name Psychology
127 rdf:type schema:DefinedTerm
128 sg:journal.1031014 schema:issn 1475-925X
129 schema:name BioMedical Engineering OnLine
130 rdf:type schema:Periodical
131 sg:person.01013327401.39 schema:affiliation N2ee25e7b1e674696b93f481b6ffefac6
132 schema:familyName Koh
133 schema:givenName Woo Seok
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013327401.39
135 rdf:type schema:Person
136 sg:person.01061442601.36 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
137 schema:familyName Kim
138 schema:givenName Youdan
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061442601.36
140 rdf:type schema:Person
141 sg:person.01100214455.87 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
142 schema:familyName Kim
143 schema:givenName Hee Chan
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100214455.87
145 rdf:type schema:Person
146 sg:person.01112430375.19 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
147 schema:familyName Kim
148 schema:givenName Sungwan
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112430375.19
150 rdf:type schema:Person
151 sg:person.01176257676.57 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
152 schema:familyName Yoon
153 schema:givenName Chiyul
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176257676.57
155 rdf:type schema:Person
156 sg:person.01244373076.78 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
157 schema:familyName Noh
158 schema:givenName Seungwoo
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244373076.78
160 rdf:type schema:Person
161 sg:person.01341025553.57 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
162 schema:familyName Chung
163 schema:givenName Jin Ho
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341025553.57
165 rdf:type schema:Person
166 sg:person.01354371701.87 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
167 schema:familyName Lim
168 schema:givenName Hyoung-woo
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354371701.87
170 rdf:type schema:Person
171 sg:pub.10.1007/s10103-006-0377-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038331488
172 https://doi.org/10.1007/s10103-006-0377-y
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s10103-010-0809-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044875212
175 https://doi.org/10.1007/s10103-010-0809-6
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/1475-925x-12-51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045694253
178 https://doi.org/10.1186/1475-925x-12-51
179 rdf:type schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1078471725 schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1078561305 schema:CreativeWork
182 https://doi.org/10.1001/archderm.141.9.1100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014745624
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/lsm.1136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041172233
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/lsm.20485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008321807
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/lsm.22162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010953733
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0190-9622(03)02106-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029133091
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1046/j.1524-4725.1999.08130.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037962077
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1046/j.1524-4725.2002.01087.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002275677
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1055/s-2007-991187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057517998
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1056/nejmra054785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005377263
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1080/14764170903137113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007453936
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1089/pho.2010.2895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059306552
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/dsu.12116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044377987
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1111/j.1468-3083.2011.04406.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035333226
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1111/j.1473-2165.2008.00363.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018841577
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1111/j.1524-4725.2009.01433.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040958214
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1111/j.1524-4725.2011.01971.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030826241
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1111/j.1529-8019.2010.01382.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001697162
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1126/science.6836297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062640937
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1159/000315499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007523537
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1503/cmaj.100475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023408815
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3109/03091902.2011.564343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012384324
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
225 schema:name Department of Biomedical Engineering, Seoul National University College of Medicine, 110-799, Seoul, Korea
226 Department of Mechanical and Aerospace Engineering, Seoul National University College of Engineering, 151-742, Seoul, Korea
227 Institute of Medical and Biological Engineering, Seoul National University, 151-742, Seoul, Korea
228 Interdisciplinary Program for Bioengineering, Seoul National University, 110-744, Seoul, Korea
229 rdf:type schema:Organization
230 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
231 schema:name Department of Dermatology, Seoul National University Hospital, 110-744, Seoul, Korea
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...