Multivariate matching pursuit in optimal Gabor dictionaries: theory and software with interface for EEG/MEG via Svarog View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Rafał Kuś, Piotr Tadeusz Różański, Piotr Jerzy Durka

ABSTRACT

BACKGROUND: Matching pursuit algorithm (MP), especially with recent multivariate extensions, offers unique advantages in analysis of EEG and MEG. METHODS: We propose a novel construction of an optimal Gabor dictionary, based upon the metrics introduced in this paper. We implement this construction in a freely available software for MP decomposition of multivariate time series, with a user friendly interface via the Svarog package (Signal Viewer, Analyzer and Recorder On GPL, http://braintech.pl/svarog), and provide a hands-on introduction to its application to EEG. Finally, we describe numerical and mathematical optimizations used in this implementation. RESULTS: Optimal Gabor dictionaries, based on the metric introduced in this paper, for the first time allowed for a priori assessment of maximum one-step error of the MP algorithm. Variants of multivariate MP, implemented in the accompanying software, are organized according to the mathematical properties of the algorithms, relevant in the light of EEG/MEG analysis. Some of these variants have been successfully applied to both multichannel and multitrial EEG and MEG in previous studies, improving preprocessing for EEG/MEG inverse solutions and parameterization of evoked potentials in single trials; we mention also ongoing work and possible novel applications. CONCLUSIONS: Mathematical results presented in this paper improve our understanding of the basics of the MP algorithm. Simple introduction of its properties and advantages, together with the accompanying stable and user-friendly Open Source software package, pave the way for a widespread and reproducible analysis of multivariate EEG and MEG time series and novel applications, while retaining a high degree of compatibility with the traditional, visual analysis of EEG. More... »

PAGES

94

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1475-925x-12-94

DOI

http://dx.doi.org/10.1186/1475-925x-12-94

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026040425

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24059247


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetoencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sleep", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Faculty of Physics, University of Warsaw, ul. Ho\u017ca 69, 00-681, Warszawa, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ku\u015b", 
        "givenName": "Rafa\u0142", 
        "id": "sg:person.0624523375.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624523375.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Faculty of Physics, University of Warsaw, ul. Ho\u017ca 69, 00-681, Warszawa, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00f3\u017ca\u0144ski", 
        "givenName": "Piotr Tadeusz", 
        "id": "sg:person.01361712120.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361712120.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Faculty of Physics, University of Warsaw, ul. Ho\u017ca 69, 00-681, Warszawa, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durka", 
        "givenName": "Piotr Jerzy", 
        "id": "sg:person.0724722444.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2009.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000006270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2004.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000333417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2004.08.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001482228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.00139.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003573458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(02)00344-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004858698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(02)00344-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004858698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2011.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006377607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0270(02)00075-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006686634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6123(06)59008-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006742691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1528-1167.2006.00963.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008221544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2006.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009521343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1000610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011925971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-1684(00)00071-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012681431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(00)00543-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014939430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2006.01.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016220920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019227645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2003.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019572247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-925x-8-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019588643", 
          "https://doi.org/10.1186/1475-925x-8-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2202-13-89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019777160", 
          "https://doi.org/10.1186/1471-2202-13-89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02345286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019787159", 
          "https://doi.org/10.1007/bf02345286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02345286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019787159", 
          "https://doi.org/10.1007/bf02345286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12021-009-9059-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020032538", 
          "https://doi.org/10.1007/s12021-009-9059-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12021-009-9059-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020032538", 
          "https://doi.org/10.1007/s12021-009-9059-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3182570fd3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028784256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3182570fd3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028784256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0270(98)00016-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029857213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030232476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3181aed1a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032743916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3181aed1a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032743916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3181aed1a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032743916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.49.1.277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034508436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.49.1.277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034508436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2012.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036559903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12021-010-9086-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038085741", 
          "https://doi.org/10.1007/s12021-010-9086-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12021-010-9086-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038085741", 
          "https://doi.org/10.1007/s12021-010-9086-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.504790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039539504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2011.01.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043180032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02584459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043254042", 
          "https://doi.org/10.1007/bf02584459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02584459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043254042", 
          "https://doi.org/10.1007/bf02584459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043617403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(99)00175-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046629848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-925x-4-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050043011", 
          "https://doi.org/10.1186/1475-925x-4-15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.yebeh.2008.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051005396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053153934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053153934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.051914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060731437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.051914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060731437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.258082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061228470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.905866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061231475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2008.2002151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061527302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2003.817253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2010.2043856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.14.4020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071360585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2007.4353581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077517813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.16-13-04240.1996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082938461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2002.5745294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093762114"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "BACKGROUND: Matching pursuit algorithm (MP), especially with recent multivariate extensions, offers unique advantages in analysis of EEG and MEG.\nMETHODS: We propose a novel construction of an optimal Gabor dictionary, based upon the metrics introduced in this paper. We implement this construction in a freely available software for MP decomposition of multivariate time series, with a user friendly interface via the Svarog package (Signal Viewer, Analyzer and Recorder On GPL, http://braintech.pl/svarog), and provide a hands-on introduction to its application to EEG. Finally, we describe numerical and mathematical optimizations used in this implementation.\nRESULTS: Optimal Gabor dictionaries, based on the metric introduced in this paper, for the first time allowed for a priori assessment of maximum one-step error of the MP algorithm. Variants of multivariate MP, implemented in the accompanying software, are organized according to the mathematical properties of the algorithms, relevant in the light of EEG/MEG analysis. Some of these variants have been successfully applied to both multichannel and multitrial EEG and MEG in previous studies, improving preprocessing for EEG/MEG inverse solutions and parameterization of evoked potentials in single trials; we mention also ongoing work and possible novel applications.\nCONCLUSIONS: Mathematical results presented in this paper improve our understanding of the basics of the MP algorithm. Simple introduction of its properties and advantages, together with the accompanying stable and user-friendly Open Source software package, pave the way for a widespread and reproducible analysis of multivariate EEG and MEG time series and novel applications, while retaining a high degree of compatibility with the traditional, visual analysis of EEG.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1475-925x-12-94", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031014", 
        "issn": [
          "1475-925X"
        ], 
        "name": "BioMedical Engineering OnLine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Multivariate matching pursuit in optimal Gabor dictionaries: theory and software with interface for EEG/MEG via Svarog", 
    "pagination": "94", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7c0e0485b7c97b6fb0b5434779972dddbd485f835134c7c4074274457aaab400"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24059247"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147518"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1475-925x-12-94"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026040425"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1475-925x-12-94", 
      "https://app.dimensions.ai/details/publication/pub.1026040425"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1475-925X-12-94"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-12-94'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-12-94'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-12-94'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-12-94'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      21 PREDICATES      83 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1475-925x-12-94 schema:about N049ad7d394f74423904c46b79f9451b4
2 N235c88f1c5ce49898ea55d1b19e69a29
3 N3b57691f7b4b43ae89c25928676e519e
4 N6f5435dc41214ae09fa1ccd5ae1ca975
5 N7384406525654c92a1c6ddf8ae6f2160
6 N755186b0a5a742c0b1190d273b574a97
7 N988ac9af39d94dad8ca56056b5b616e9
8 Nc03f503f39e04950b6f0c8629da720c7
9 Nd3cc1364b69b4132b36069aee4072ff6
10 anzsrc-for:08
11 anzsrc-for:0803
12 schema:author N0ba7f7caba4d480faf2942c44e8e138c
13 schema:citation sg:pub.10.1007/bf02345286
14 sg:pub.10.1007/bf02584459
15 sg:pub.10.1007/s12021-009-9059-9
16 sg:pub.10.1007/s12021-010-9086-6
17 sg:pub.10.1186/1471-2202-13-89
18 sg:pub.10.1186/1475-925x-4-15
19 sg:pub.10.1186/1475-925x-8-4
20 https://doi.org/10.1016/j.clinph.2004.05.018
21 https://doi.org/10.1016/j.clinph.2004.08.024
22 https://doi.org/10.1016/j.clinph.2012.06.003
23 https://doi.org/10.1016/j.cmpb.2006.06.002
24 https://doi.org/10.1016/j.jneumeth.2003.10.009
25 https://doi.org/10.1016/j.jneumeth.2005.02.010
26 https://doi.org/10.1016/j.jneumeth.2005.04.001
27 https://doi.org/10.1016/j.jneumeth.2005.11.006
28 https://doi.org/10.1016/j.jneumeth.2006.01.026
29 https://doi.org/10.1016/j.jneumeth.2009.03.005
30 https://doi.org/10.1016/j.jneumeth.2011.01.025
31 https://doi.org/10.1016/j.jneumeth.2011.04.019
32 https://doi.org/10.1016/j.neuroimage.2011.12.002
33 https://doi.org/10.1016/j.yebeh.2008.08.021
34 https://doi.org/10.1016/s0079-6123(06)59008-9
35 https://doi.org/10.1016/s0165-0270(02)00075-4
36 https://doi.org/10.1016/s0165-0270(98)00016-8
37 https://doi.org/10.1016/s0165-1684(00)00071-2
38 https://doi.org/10.1016/s1388-2457(00)00543-5
39 https://doi.org/10.1016/s1388-2457(02)00344-9
40 https://doi.org/10.1016/s1388-2457(99)00175-3
41 https://doi.org/10.1097/wnp.0b013e3181aed1a1
42 https://doi.org/10.1097/wnp.0b013e3182570fd3
43 https://doi.org/10.1103/physreve.69.051914
44 https://doi.org/10.1109/78.258082
45 https://doi.org/10.1109/78.905866
46 https://doi.org/10.1109/icassp.2002.5745294
47 https://doi.org/10.1109/iembs.2007.4353581
48 https://doi.org/10.1109/tbme.2008.2002151
49 https://doi.org/10.1109/tip.2003.817253
50 https://doi.org/10.1109/tnsre.2010.2043856
51 https://doi.org/10.1111/j.1528-1167.2006.00963.x
52 https://doi.org/10.1117/12.504790
53 https://doi.org/10.1152/ajpcell.00139.2013
54 https://doi.org/10.1212/wnl.49.1.277
55 https://doi.org/10.1371/journal.pbio.1000610
56 https://doi.org/10.1523/jneurosci.16-13-04240.1996
57 https://doi.org/10.3748/wjg.14.4020
58 schema:datePublished 2013-12
59 schema:datePublishedReg 2013-12-01
60 schema:description BACKGROUND: Matching pursuit algorithm (MP), especially with recent multivariate extensions, offers unique advantages in analysis of EEG and MEG. METHODS: We propose a novel construction of an optimal Gabor dictionary, based upon the metrics introduced in this paper. We implement this construction in a freely available software for MP decomposition of multivariate time series, with a user friendly interface via the Svarog package (Signal Viewer, Analyzer and Recorder On GPL, http://braintech.pl/svarog), and provide a hands-on introduction to its application to EEG. Finally, we describe numerical and mathematical optimizations used in this implementation. RESULTS: Optimal Gabor dictionaries, based on the metric introduced in this paper, for the first time allowed for a priori assessment of maximum one-step error of the MP algorithm. Variants of multivariate MP, implemented in the accompanying software, are organized according to the mathematical properties of the algorithms, relevant in the light of EEG/MEG analysis. Some of these variants have been successfully applied to both multichannel and multitrial EEG and MEG in previous studies, improving preprocessing for EEG/MEG inverse solutions and parameterization of evoked potentials in single trials; we mention also ongoing work and possible novel applications. CONCLUSIONS: Mathematical results presented in this paper improve our understanding of the basics of the MP algorithm. Simple introduction of its properties and advantages, together with the accompanying stable and user-friendly Open Source software package, pave the way for a widespread and reproducible analysis of multivariate EEG and MEG time series and novel applications, while retaining a high degree of compatibility with the traditional, visual analysis of EEG.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf Na6527fe168a2455ca1069e368ee53328
65 Ndf8879e703b54745a7ce4cf053a44bc8
66 sg:journal.1031014
67 schema:name Multivariate matching pursuit in optimal Gabor dictionaries: theory and software with interface for EEG/MEG via Svarog
68 schema:pagination 94
69 schema:productId N470b863f00c141318d76fabc37019d59
70 N5c218854ac3547ba9ba092c04ffe98bb
71 N7f0608abcb564d9b960024f3b468b245
72 N9e55f029b50440ceb103e3646e910581
73 Nef6e3e590bd94c6a9fe96f89c931fbea
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026040425
75 https://doi.org/10.1186/1475-925x-12-94
76 schema:sdDatePublished 2019-04-11T01:07
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Na13f762fe2604959b1a0edbe0e99443c
79 schema:url http://link.springer.com/10.1186%2F1475-925X-12-94
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N049ad7d394f74423904c46b79f9451b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Models, Theoretical
85 rdf:type schema:DefinedTerm
86 N0ba7f7caba4d480faf2942c44e8e138c rdf:first sg:person.0624523375.00
87 rdf:rest Nb5f0d04eb57b46e492485d384289cd44
88 N235c88f1c5ce49898ea55d1b19e69a29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Algorithms
90 rdf:type schema:DefinedTerm
91 N3b57691f7b4b43ae89c25928676e519e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Signal Processing, Computer-Assisted
93 rdf:type schema:DefinedTerm
94 N470b863f00c141318d76fabc37019d59 schema:name nlm_unique_id
95 schema:value 101147518
96 rdf:type schema:PropertyValue
97 N5c218854ac3547ba9ba092c04ffe98bb schema:name pubmed_id
98 schema:value 24059247
99 rdf:type schema:PropertyValue
100 N6f5435dc41214ae09fa1ccd5ae1ca975 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Sleep
102 rdf:type schema:DefinedTerm
103 N7384406525654c92a1c6ddf8ae6f2160 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Humans
105 rdf:type schema:DefinedTerm
106 N755186b0a5a742c0b1190d273b574a97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Multivariate Analysis
108 rdf:type schema:DefinedTerm
109 N7f0608abcb564d9b960024f3b468b245 schema:name readcube_id
110 schema:value 7c0e0485b7c97b6fb0b5434779972dddbd485f835134c7c4074274457aaab400
111 rdf:type schema:PropertyValue
112 N988ac9af39d94dad8ca56056b5b616e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Electroencephalography
114 rdf:type schema:DefinedTerm
115 N9e55f029b50440ceb103e3646e910581 schema:name doi
116 schema:value 10.1186/1475-925x-12-94
117 rdf:type schema:PropertyValue
118 Na13f762fe2604959b1a0edbe0e99443c schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Na6527fe168a2455ca1069e368ee53328 schema:issueNumber 1
121 rdf:type schema:PublicationIssue
122 Nb5f0d04eb57b46e492485d384289cd44 rdf:first sg:person.01361712120.35
123 rdf:rest Nbbe2f589c5af457eb65f343586b10b17
124 Nbbe2f589c5af457eb65f343586b10b17 rdf:first sg:person.0724722444.23
125 rdf:rest rdf:nil
126 Nc03f503f39e04950b6f0c8629da720c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Software
128 rdf:type schema:DefinedTerm
129 Nd3cc1364b69b4132b36069aee4072ff6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Magnetoencephalography
131 rdf:type schema:DefinedTerm
132 Ndf8879e703b54745a7ce4cf053a44bc8 schema:volumeNumber 12
133 rdf:type schema:PublicationVolume
134 Nef6e3e590bd94c6a9fe96f89c931fbea schema:name dimensions_id
135 schema:value pub.1026040425
136 rdf:type schema:PropertyValue
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
141 schema:name Computer Software
142 rdf:type schema:DefinedTerm
143 sg:journal.1031014 schema:issn 1475-925X
144 schema:name BioMedical Engineering OnLine
145 rdf:type schema:Periodical
146 sg:person.01361712120.35 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
147 schema:familyName Różański
148 schema:givenName Piotr Tadeusz
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361712120.35
150 rdf:type schema:Person
151 sg:person.0624523375.00 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
152 schema:familyName Kuś
153 schema:givenName Rafał
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624523375.00
155 rdf:type schema:Person
156 sg:person.0724722444.23 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
157 schema:familyName Durka
158 schema:givenName Piotr Jerzy
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23
160 rdf:type schema:Person
161 sg:pub.10.1007/bf02345286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019787159
162 https://doi.org/10.1007/bf02345286
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/bf02584459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043254042
165 https://doi.org/10.1007/bf02584459
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s12021-009-9059-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020032538
168 https://doi.org/10.1007/s12021-009-9059-9
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s12021-010-9086-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038085741
171 https://doi.org/10.1007/s12021-010-9086-6
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/1471-2202-13-89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019777160
174 https://doi.org/10.1186/1471-2202-13-89
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/1475-925x-4-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050043011
177 https://doi.org/10.1186/1475-925x-4-15
178 rdf:type schema:CreativeWork
179 sg:pub.10.1186/1475-925x-8-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019588643
180 https://doi.org/10.1186/1475-925x-8-4
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.clinph.2004.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000333417
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.clinph.2004.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001482228
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.clinph.2012.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036559903
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.cmpb.2006.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009521343
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.jneumeth.2003.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019572247
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.jneumeth.2005.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019227645
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.jneumeth.2005.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053153934
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.jneumeth.2005.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030232476
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.jneumeth.2006.01.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016220920
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.jneumeth.2009.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000006270
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.jneumeth.2011.01.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043180032
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.jneumeth.2011.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006377607
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.neuroimage.2011.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043617403
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.yebeh.2008.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051005396
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0079-6123(06)59008-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006742691
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s0165-0270(02)00075-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006686634
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s0165-0270(98)00016-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029857213
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/s0165-1684(00)00071-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012681431
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/s1388-2457(00)00543-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014939430
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s1388-2457(02)00344-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004858698
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s1388-2457(99)00175-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046629848
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1097/wnp.0b013e3181aed1a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032743916
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1097/wnp.0b013e3182570fd3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028784256
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physreve.69.051914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060731437
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1109/78.258082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228470
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1109/78.905866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061231475
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1109/icassp.2002.5745294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093762114
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1109/iembs.2007.4353581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077517813
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1109/tbme.2008.2002151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061527302
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1109/tip.2003.817253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640922
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1109/tnsre.2010.2043856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740447
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1111/j.1528-1167.2006.00963.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008221544
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1117/12.504790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039539504
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1152/ajpcell.00139.2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003573458
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1212/wnl.49.1.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034508436
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1371/journal.pbio.1000610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011925971
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1523/jneurosci.16-13-04240.1996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082938461
255 rdf:type schema:CreativeWork
256 https://doi.org/10.3748/wjg.14.4020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071360585
257 rdf:type schema:CreativeWork
258 https://www.grid.ac/institutes/grid.12847.38 schema:alternateName University of Warsaw
259 schema:name Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681, Warszawa, Poland
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...