Multivariate matching pursuit in optimal Gabor dictionaries: theory and software with interface for EEG/MEG via Svarog View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Rafał Kuś, Piotr Tadeusz Różański, Piotr Jerzy Durka

ABSTRACT

BACKGROUND: Matching pursuit algorithm (MP), especially with recent multivariate extensions, offers unique advantages in analysis of EEG and MEG. METHODS: We propose a novel construction of an optimal Gabor dictionary, based upon the metrics introduced in this paper. We implement this construction in a freely available software for MP decomposition of multivariate time series, with a user friendly interface via the Svarog package (Signal Viewer, Analyzer and Recorder On GPL, http://braintech.pl/svarog), and provide a hands-on introduction to its application to EEG. Finally, we describe numerical and mathematical optimizations used in this implementation. RESULTS: Optimal Gabor dictionaries, based on the metric introduced in this paper, for the first time allowed for a priori assessment of maximum one-step error of the MP algorithm. Variants of multivariate MP, implemented in the accompanying software, are organized according to the mathematical properties of the algorithms, relevant in the light of EEG/MEG analysis. Some of these variants have been successfully applied to both multichannel and multitrial EEG and MEG in previous studies, improving preprocessing for EEG/MEG inverse solutions and parameterization of evoked potentials in single trials; we mention also ongoing work and possible novel applications. CONCLUSIONS: Mathematical results presented in this paper improve our understanding of the basics of the MP algorithm. Simple introduction of its properties and advantages, together with the accompanying stable and user-friendly Open Source software package, pave the way for a widespread and reproducible analysis of multivariate EEG and MEG time series and novel applications, while retaining a high degree of compatibility with the traditional, visual analysis of EEG. More... »

PAGES

94

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1475-925x-12-94

DOI

http://dx.doi.org/10.1186/1475-925x-12-94

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026040425

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24059247


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetoencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sleep", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Faculty of Physics, University of Warsaw, ul. Ho\u017ca 69, 00-681, Warszawa, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ku\u015b", 
        "givenName": "Rafa\u0142", 
        "id": "sg:person.0624523375.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624523375.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Faculty of Physics, University of Warsaw, ul. Ho\u017ca 69, 00-681, Warszawa, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00f3\u017ca\u0144ski", 
        "givenName": "Piotr Tadeusz", 
        "id": "sg:person.01361712120.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361712120.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Faculty of Physics, University of Warsaw, ul. Ho\u017ca 69, 00-681, Warszawa, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durka", 
        "givenName": "Piotr Jerzy", 
        "id": "sg:person.0724722444.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2009.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000006270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2004.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000333417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2004.08.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001482228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.00139.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003573458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(02)00344-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004858698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(02)00344-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004858698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2011.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006377607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0270(02)00075-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006686634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6123(06)59008-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006742691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1528-1167.2006.00963.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008221544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2006.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009521343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1000610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011925971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-1684(00)00071-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012681431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(00)00543-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014939430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2006.01.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016220920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019227645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2003.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019572247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-925x-8-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019588643", 
          "https://doi.org/10.1186/1475-925x-8-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2202-13-89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019777160", 
          "https://doi.org/10.1186/1471-2202-13-89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02345286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019787159", 
          "https://doi.org/10.1007/bf02345286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02345286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019787159", 
          "https://doi.org/10.1007/bf02345286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12021-009-9059-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020032538", 
          "https://doi.org/10.1007/s12021-009-9059-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12021-009-9059-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020032538", 
          "https://doi.org/10.1007/s12021-009-9059-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3182570fd3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028784256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3182570fd3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028784256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0270(98)00016-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029857213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030232476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3181aed1a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032743916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3181aed1a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032743916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnp.0b013e3181aed1a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032743916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.49.1.277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034508436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.49.1.277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034508436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2012.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036559903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12021-010-9086-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038085741", 
          "https://doi.org/10.1007/s12021-010-9086-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12021-010-9086-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038085741", 
          "https://doi.org/10.1007/s12021-010-9086-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.504790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039539504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2011.01.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043180032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02584459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043254042", 
          "https://doi.org/10.1007/bf02584459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02584459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043254042", 
          "https://doi.org/10.1007/bf02584459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043617403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(99)00175-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046629848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-925x-4-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050043011", 
          "https://doi.org/10.1186/1475-925x-4-15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.yebeh.2008.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051005396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053153934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053153934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.051914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060731437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.051914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060731437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.258082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061228470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.905866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061231475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2008.2002151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061527302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2003.817253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2010.2043856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.14.4020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071360585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2007.4353581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077517813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.16-13-04240.1996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082938461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2002.5745294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093762114"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "BACKGROUND: Matching pursuit algorithm (MP), especially with recent multivariate extensions, offers unique advantages in analysis of EEG and MEG.\nMETHODS: We propose a novel construction of an optimal Gabor dictionary, based upon the metrics introduced in this paper. We implement this construction in a freely available software for MP decomposition of multivariate time series, with a user friendly interface via the Svarog package (Signal Viewer, Analyzer and Recorder On GPL, http://braintech.pl/svarog), and provide a hands-on introduction to its application to EEG. Finally, we describe numerical and mathematical optimizations used in this implementation.\nRESULTS: Optimal Gabor dictionaries, based on the metric introduced in this paper, for the first time allowed for a priori assessment of maximum one-step error of the MP algorithm. Variants of multivariate MP, implemented in the accompanying software, are organized according to the mathematical properties of the algorithms, relevant in the light of EEG/MEG analysis. Some of these variants have been successfully applied to both multichannel and multitrial EEG and MEG in previous studies, improving preprocessing for EEG/MEG inverse solutions and parameterization of evoked potentials in single trials; we mention also ongoing work and possible novel applications.\nCONCLUSIONS: Mathematical results presented in this paper improve our understanding of the basics of the MP algorithm. Simple introduction of its properties and advantages, together with the accompanying stable and user-friendly Open Source software package, pave the way for a widespread and reproducible analysis of multivariate EEG and MEG time series and novel applications, while retaining a high degree of compatibility with the traditional, visual analysis of EEG.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1475-925x-12-94", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031014", 
        "issn": [
          "1475-925X"
        ], 
        "name": "BioMedical Engineering OnLine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Multivariate matching pursuit in optimal Gabor dictionaries: theory and software with interface for EEG/MEG via Svarog", 
    "pagination": "94", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7c0e0485b7c97b6fb0b5434779972dddbd485f835134c7c4074274457aaab400"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24059247"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147518"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1475-925x-12-94"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026040425"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1475-925x-12-94", 
      "https://app.dimensions.ai/details/publication/pub.1026040425"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1475-925X-12-94"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-12-94'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-12-94'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-12-94'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-12-94'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      21 PREDICATES      83 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1475-925x-12-94 schema:about N115e1b0bac7a46979cc6225922434d82
2 N13b3c13a0949498abc6d59bbff225535
3 N14d19b7a1de54c508022e1902ee05777
4 N47a9965f31254365b064fffcfff7d78f
5 N58fc7dd36bbc43718f5cf82e471de4ef
6 N9484f3d63c7b439eab96e35f552620b1
7 Na59de0e38072478090d47d61e7a2a371
8 Nda94e1d0bfd44128b16daa1f78b03fb5
9 Nfe769466aa944eff98d8752a2fb8ebba
10 anzsrc-for:08
11 anzsrc-for:0803
12 schema:author N6ea6159cc59c48a1af41695a589d97af
13 schema:citation sg:pub.10.1007/bf02345286
14 sg:pub.10.1007/bf02584459
15 sg:pub.10.1007/s12021-009-9059-9
16 sg:pub.10.1007/s12021-010-9086-6
17 sg:pub.10.1186/1471-2202-13-89
18 sg:pub.10.1186/1475-925x-4-15
19 sg:pub.10.1186/1475-925x-8-4
20 https://doi.org/10.1016/j.clinph.2004.05.018
21 https://doi.org/10.1016/j.clinph.2004.08.024
22 https://doi.org/10.1016/j.clinph.2012.06.003
23 https://doi.org/10.1016/j.cmpb.2006.06.002
24 https://doi.org/10.1016/j.jneumeth.2003.10.009
25 https://doi.org/10.1016/j.jneumeth.2005.02.010
26 https://doi.org/10.1016/j.jneumeth.2005.04.001
27 https://doi.org/10.1016/j.jneumeth.2005.11.006
28 https://doi.org/10.1016/j.jneumeth.2006.01.026
29 https://doi.org/10.1016/j.jneumeth.2009.03.005
30 https://doi.org/10.1016/j.jneumeth.2011.01.025
31 https://doi.org/10.1016/j.jneumeth.2011.04.019
32 https://doi.org/10.1016/j.neuroimage.2011.12.002
33 https://doi.org/10.1016/j.yebeh.2008.08.021
34 https://doi.org/10.1016/s0079-6123(06)59008-9
35 https://doi.org/10.1016/s0165-0270(02)00075-4
36 https://doi.org/10.1016/s0165-0270(98)00016-8
37 https://doi.org/10.1016/s0165-1684(00)00071-2
38 https://doi.org/10.1016/s1388-2457(00)00543-5
39 https://doi.org/10.1016/s1388-2457(02)00344-9
40 https://doi.org/10.1016/s1388-2457(99)00175-3
41 https://doi.org/10.1097/wnp.0b013e3181aed1a1
42 https://doi.org/10.1097/wnp.0b013e3182570fd3
43 https://doi.org/10.1103/physreve.69.051914
44 https://doi.org/10.1109/78.258082
45 https://doi.org/10.1109/78.905866
46 https://doi.org/10.1109/icassp.2002.5745294
47 https://doi.org/10.1109/iembs.2007.4353581
48 https://doi.org/10.1109/tbme.2008.2002151
49 https://doi.org/10.1109/tip.2003.817253
50 https://doi.org/10.1109/tnsre.2010.2043856
51 https://doi.org/10.1111/j.1528-1167.2006.00963.x
52 https://doi.org/10.1117/12.504790
53 https://doi.org/10.1152/ajpcell.00139.2013
54 https://doi.org/10.1212/wnl.49.1.277
55 https://doi.org/10.1371/journal.pbio.1000610
56 https://doi.org/10.1523/jneurosci.16-13-04240.1996
57 https://doi.org/10.3748/wjg.14.4020
58 schema:datePublished 2013-12
59 schema:datePublishedReg 2013-12-01
60 schema:description BACKGROUND: Matching pursuit algorithm (MP), especially with recent multivariate extensions, offers unique advantages in analysis of EEG and MEG. METHODS: We propose a novel construction of an optimal Gabor dictionary, based upon the metrics introduced in this paper. We implement this construction in a freely available software for MP decomposition of multivariate time series, with a user friendly interface via the Svarog package (Signal Viewer, Analyzer and Recorder On GPL, http://braintech.pl/svarog), and provide a hands-on introduction to its application to EEG. Finally, we describe numerical and mathematical optimizations used in this implementation. RESULTS: Optimal Gabor dictionaries, based on the metric introduced in this paper, for the first time allowed for a priori assessment of maximum one-step error of the MP algorithm. Variants of multivariate MP, implemented in the accompanying software, are organized according to the mathematical properties of the algorithms, relevant in the light of EEG/MEG analysis. Some of these variants have been successfully applied to both multichannel and multitrial EEG and MEG in previous studies, improving preprocessing for EEG/MEG inverse solutions and parameterization of evoked potentials in single trials; we mention also ongoing work and possible novel applications. CONCLUSIONS: Mathematical results presented in this paper improve our understanding of the basics of the MP algorithm. Simple introduction of its properties and advantages, together with the accompanying stable and user-friendly Open Source software package, pave the way for a widespread and reproducible analysis of multivariate EEG and MEG time series and novel applications, while retaining a high degree of compatibility with the traditional, visual analysis of EEG.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf Nc6ec4a8cb0344bde99c6457560d854f0
65 Ne010b166978c4046b479dea4efba1d30
66 sg:journal.1031014
67 schema:name Multivariate matching pursuit in optimal Gabor dictionaries: theory and software with interface for EEG/MEG via Svarog
68 schema:pagination 94
69 schema:productId Nca7b455464254bb091061ef185b5e9a2
70 Nd2df93f623d04facb69f59c4c9eb3ed2
71 Ne3f9f83d439b490a8a9f85d8e34c0151
72 Nf09cda6096a74cb8b42d602882f01f52
73 Nf49d674517be474082a8f56477b5b77c
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026040425
75 https://doi.org/10.1186/1475-925x-12-94
76 schema:sdDatePublished 2019-04-11T01:07
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N058731d924a8423b8448dd07b1ac833f
79 schema:url http://link.springer.com/10.1186%2F1475-925X-12-94
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N058731d924a8423b8448dd07b1ac833f schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N115e1b0bac7a46979cc6225922434d82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Electroencephalography
87 rdf:type schema:DefinedTerm
88 N13b3c13a0949498abc6d59bbff225535 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Humans
90 rdf:type schema:DefinedTerm
91 N14d19b7a1de54c508022e1902ee05777 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Magnetoencephalography
93 rdf:type schema:DefinedTerm
94 N376d303665234696b3199e303db929e1 rdf:first sg:person.01361712120.35
95 rdf:rest Ned556762755e40c9b1bbdfc78ba35fa1
96 N47a9965f31254365b064fffcfff7d78f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Algorithms
98 rdf:type schema:DefinedTerm
99 N58fc7dd36bbc43718f5cf82e471de4ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Software
101 rdf:type schema:DefinedTerm
102 N6ea6159cc59c48a1af41695a589d97af rdf:first sg:person.0624523375.00
103 rdf:rest N376d303665234696b3199e303db929e1
104 N9484f3d63c7b439eab96e35f552620b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Models, Theoretical
106 rdf:type schema:DefinedTerm
107 Na59de0e38072478090d47d61e7a2a371 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Multivariate Analysis
109 rdf:type schema:DefinedTerm
110 Nc6ec4a8cb0344bde99c6457560d854f0 schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 Nca7b455464254bb091061ef185b5e9a2 schema:name nlm_unique_id
113 schema:value 101147518
114 rdf:type schema:PropertyValue
115 Nd2df93f623d04facb69f59c4c9eb3ed2 schema:name readcube_id
116 schema:value 7c0e0485b7c97b6fb0b5434779972dddbd485f835134c7c4074274457aaab400
117 rdf:type schema:PropertyValue
118 Nda94e1d0bfd44128b16daa1f78b03fb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Signal Processing, Computer-Assisted
120 rdf:type schema:DefinedTerm
121 Ne010b166978c4046b479dea4efba1d30 schema:volumeNumber 12
122 rdf:type schema:PublicationVolume
123 Ne3f9f83d439b490a8a9f85d8e34c0151 schema:name pubmed_id
124 schema:value 24059247
125 rdf:type schema:PropertyValue
126 Ned556762755e40c9b1bbdfc78ba35fa1 rdf:first sg:person.0724722444.23
127 rdf:rest rdf:nil
128 Nf09cda6096a74cb8b42d602882f01f52 schema:name doi
129 schema:value 10.1186/1475-925x-12-94
130 rdf:type schema:PropertyValue
131 Nf49d674517be474082a8f56477b5b77c schema:name dimensions_id
132 schema:value pub.1026040425
133 rdf:type schema:PropertyValue
134 Nfe769466aa944eff98d8752a2fb8ebba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Sleep
136 rdf:type schema:DefinedTerm
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
141 schema:name Computer Software
142 rdf:type schema:DefinedTerm
143 sg:journal.1031014 schema:issn 1475-925X
144 schema:name BioMedical Engineering OnLine
145 rdf:type schema:Periodical
146 sg:person.01361712120.35 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
147 schema:familyName Różański
148 schema:givenName Piotr Tadeusz
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361712120.35
150 rdf:type schema:Person
151 sg:person.0624523375.00 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
152 schema:familyName Kuś
153 schema:givenName Rafał
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624523375.00
155 rdf:type schema:Person
156 sg:person.0724722444.23 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
157 schema:familyName Durka
158 schema:givenName Piotr Jerzy
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23
160 rdf:type schema:Person
161 sg:pub.10.1007/bf02345286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019787159
162 https://doi.org/10.1007/bf02345286
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/bf02584459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043254042
165 https://doi.org/10.1007/bf02584459
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s12021-009-9059-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020032538
168 https://doi.org/10.1007/s12021-009-9059-9
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s12021-010-9086-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038085741
171 https://doi.org/10.1007/s12021-010-9086-6
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/1471-2202-13-89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019777160
174 https://doi.org/10.1186/1471-2202-13-89
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/1475-925x-4-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050043011
177 https://doi.org/10.1186/1475-925x-4-15
178 rdf:type schema:CreativeWork
179 sg:pub.10.1186/1475-925x-8-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019588643
180 https://doi.org/10.1186/1475-925x-8-4
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.clinph.2004.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000333417
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.clinph.2004.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001482228
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.clinph.2012.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036559903
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.cmpb.2006.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009521343
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.jneumeth.2003.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019572247
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.jneumeth.2005.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019227645
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.jneumeth.2005.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053153934
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.jneumeth.2005.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030232476
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.jneumeth.2006.01.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016220920
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.jneumeth.2009.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000006270
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.jneumeth.2011.01.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043180032
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.jneumeth.2011.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006377607
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.neuroimage.2011.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043617403
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.yebeh.2008.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051005396
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0079-6123(06)59008-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006742691
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s0165-0270(02)00075-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006686634
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s0165-0270(98)00016-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029857213
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/s0165-1684(00)00071-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012681431
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/s1388-2457(00)00543-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014939430
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s1388-2457(02)00344-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004858698
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s1388-2457(99)00175-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046629848
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1097/wnp.0b013e3181aed1a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032743916
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1097/wnp.0b013e3182570fd3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028784256
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physreve.69.051914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060731437
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1109/78.258082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228470
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1109/78.905866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061231475
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1109/icassp.2002.5745294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093762114
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1109/iembs.2007.4353581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077517813
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1109/tbme.2008.2002151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061527302
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1109/tip.2003.817253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640922
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1109/tnsre.2010.2043856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740447
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1111/j.1528-1167.2006.00963.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008221544
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1117/12.504790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039539504
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1152/ajpcell.00139.2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003573458
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1212/wnl.49.1.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034508436
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1371/journal.pbio.1000610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011925971
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1523/jneurosci.16-13-04240.1996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082938461
255 rdf:type schema:CreativeWork
256 https://doi.org/10.3748/wjg.14.4020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071360585
257 rdf:type schema:CreativeWork
258 https://www.grid.ac/institutes/grid.12847.38 schema:alternateName University of Warsaw
259 schema:name Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681, Warszawa, Poland
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...