Electroencephalographic profiles for differentiation of disorders of consciousness View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Urszula Malinowska, Camille Chatelle, Marie-Aurélie Bruno, Quentin Noirhomme, Steven Laureys, Piotr J Durka

ABSTRACT

BACKGROUND: Electroencephalography (EEG) is best suited for long-term monitoring of brain functions in patients with disorders of consciousness (DOC). Mathematical tools are needed to facilitate efficient interpretation of long-duration sleep-wake EEG recordings. METHODS: Starting with matching pursuit (MP) decomposition, we automatically detect and parametrize sleep spindles, slow wave activity, K-complexes and alpha, beta and theta waves present in EEG recordings, and automatically construct profiles of their time evolution, relevant to the assessment of residual brain function in patients with DOC. RESULTS: Above proposed EEG profiles were computed for 32 patients diagnosed as minimally conscious state (MCS, 20 patients), vegetative state/unresponsive wakefulness syndrome (VS/UWS, 11 patients) and Locked-in Syndrome (LiS, 1 patient). Their interpretation revealed significant correlations between patients' behavioral diagnosis and: (a) occurrence of sleep EEG patterns including sleep spindles, slow wave activity and light/deep sleep cycles, (b) appearance and variability across time of alpha, beta, and theta rhythms. Discrimination between MCS and VS/UWS based upon prominent features of these profiles classified correctly 87% of cases. CONCLUSIONS: Proposed EEG profiles offer user-independent, repeatable, comprehensive and continuous representation of relevant EEG characteristics, intended as an aid in differentiation between VS/UWS and MCS states and diagnostic prognosis. To enable further development of this methodology into clinically usable tests, we share user-friendly software for MP decomposition of EEG (http://braintech.pl/svarog) and scripts used for creation of the presented profiles (attached to this article). More... »

PAGES

109

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1475-925x-12-109

DOI

http://dx.doi.org/10.1186/1475-925x-12-109

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007865773

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24143892


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Consciousness Disorders", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophysiological Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sleep", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Wakefulness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Faculty of Physics, University of Warsaw, ul. Ho\u017ca 69, 00-681, Warszawa, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malinowska", 
        "givenName": "Urszula", 
        "id": "sg:person.0605416522.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605416522.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier Universitaire de Li\u00e8ge", 
          "id": "https://www.grid.ac/institutes/grid.411374.4", 
          "name": [
            "Coma Science Group, Cyclotron Research Centre, University of Li\u00e8ge, Li\u00e8ge, Belgium", 
            "Neurology Dept, University Hospital of Li\u00e8ge, Li\u00e8ge, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chatelle", 
        "givenName": "Camille", 
        "id": "sg:person.0726030174.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726030174.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier Universitaire de Li\u00e8ge", 
          "id": "https://www.grid.ac/institutes/grid.411374.4", 
          "name": [
            "Coma Science Group, Cyclotron Research Centre, University of Li\u00e8ge, Li\u00e8ge, Belgium", 
            "Neurology Dept, University Hospital of Li\u00e8ge, Li\u00e8ge, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruno", 
        "givenName": "Marie-Aur\u00e9lie", 
        "id": "sg:person.0636337051.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636337051.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier Universitaire de Li\u00e8ge", 
          "id": "https://www.grid.ac/institutes/grid.411374.4", 
          "name": [
            "Coma Science Group, Cyclotron Research Centre, University of Li\u00e8ge, Li\u00e8ge, Belgium", 
            "Neurology Dept, University Hospital of Li\u00e8ge, Li\u00e8ge, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noirhomme", 
        "givenName": "Quentin", 
        "id": "sg:person.01252301702.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252301702.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier Universitaire de Li\u00e8ge", 
          "id": "https://www.grid.ac/institutes/grid.411374.4", 
          "name": [
            "Coma Science Group, Cyclotron Research Centre, University of Li\u00e8ge, Li\u00e8ge, Belgium", 
            "Neurology Dept, University Hospital of Li\u00e8ge, Li\u00e8ge, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laureys", 
        "givenName": "Steven", 
        "id": "sg:person.01245371011.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245371011.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.12847.38", 
          "name": [
            "Faculty of Physics, University of Warsaw, ul. Ho\u017ca 69, 00-681, Warszawa, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durka", 
        "givenName": "Piotr J", 
        "id": "sg:person.0724722444.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1212/wnl.58.3.349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000915302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.58.3.349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000915302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1741-7015-8-68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002233937", 
          "https://doi.org/10.1186/1741-7015-8-68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0270(02)00075-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006686634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199406023302206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006917334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awr152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007965497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(63)90096-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011627500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(63)90096-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011627500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2869.2005.00472.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017080202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2869.2005.00472.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017080202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(73)90045-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018615334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(73)90045-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018615334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/smrv.1999.0086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018790795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019227645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12021-009-9059-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020032538", 
          "https://doi.org/10.1007/s12021-009-9059-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12021-009-9059-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020032538", 
          "https://doi.org/10.1007/s12021-009-9059-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(93)90085-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023425912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(93)90085-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023425912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1196/annals.1417.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023878900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-925x-12-94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026040425", 
          "https://doi.org/10.1186/1475-925x-12-94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archneur.1988.00520350074019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026695425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(83)90224-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030746896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(83)90224-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030746896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0987-7053(01)00270-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030895129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02699050210127303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030906824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02339931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031789229", 
          "https://doi.org/10.1007/bf02339931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02339931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031789229", 
          "https://doi.org/10.1007/bf02339931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00313105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035606922", 
          "https://doi.org/10.1007/bf00313105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00313105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035606922", 
          "https://doi.org/10.1007/bf00313105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(74)90232-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035901977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(74)90232-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035901977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2006.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037863895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(99)00303-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038367643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apmr.2004.02.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038544824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-4475(77)80055-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039898857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(80)90135-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040448877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(80)90135-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040448877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/smrv.1999.0099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043490356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/02699052.2012.698362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045346525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.58.4.484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050313246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.smrv.2009.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050545956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(91)90187-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050595056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(91)90187-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050595056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0905370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050852911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.59.1.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052136730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/smrv.2000.0106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057078144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/neu.2012.2654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059301703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.258082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061228470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/memb.2006.1657784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061401603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/155005948301400106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064060772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/155005948301400106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064060772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181e8e8df", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181e8e8df", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181e8e8df", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e318249f764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064356802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e318249f764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064356802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e318249f764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064356802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.26.8.769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064361862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.34.1.118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064365024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.44.4.758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064372450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sleep/24.6.703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074882168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080171064", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "BACKGROUND: Electroencephalography (EEG) is best suited for long-term monitoring of brain functions in patients with disorders of consciousness (DOC). Mathematical tools are needed to facilitate efficient interpretation of long-duration sleep-wake EEG recordings.\nMETHODS: Starting with matching pursuit (MP) decomposition, we automatically detect and parametrize sleep spindles, slow wave activity, K-complexes and alpha, beta and theta waves present in EEG recordings, and automatically construct profiles of their time evolution, relevant to the assessment of residual brain function in patients with DOC.\nRESULTS: Above proposed EEG profiles were computed for 32 patients diagnosed as minimally conscious state (MCS, 20 patients), vegetative state/unresponsive wakefulness syndrome (VS/UWS, 11 patients) and Locked-in Syndrome (LiS, 1 patient). Their interpretation revealed significant correlations between patients' behavioral diagnosis and: (a) occurrence of sleep EEG patterns including sleep spindles, slow wave activity and light/deep sleep cycles, (b) appearance and variability across time of alpha, beta, and theta rhythms. Discrimination between MCS and VS/UWS based upon prominent features of these profiles classified correctly 87% of cases.\nCONCLUSIONS: Proposed EEG profiles offer user-independent, repeatable, comprehensive and continuous representation of relevant EEG characteristics, intended as an aid in differentiation between VS/UWS and MCS states and diagnostic prognosis. To enable further development of this methodology into clinically usable tests, we share user-friendly software for MP decomposition of EEG (http://braintech.pl/svarog) and scripts used for creation of the presented profiles (attached to this article).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1475-925x-12-109", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031014", 
        "issn": [
          "1475-925X"
        ], 
        "name": "BioMedical Engineering OnLine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Electroencephalographic profiles for differentiation of disorders of consciousness", 
    "pagination": "109", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2577ffb1fbc11b4ea191dcb63989bf71c1c75579514f501d16784a1281f4d9dd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24143892"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147518"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1475-925x-12-109"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007865773"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1475-925x-12-109", 
      "https://app.dimensions.ai/details/publication/pub.1007865773"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/1475-925X-12-109"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-12-109'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-12-109'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-12-109'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1475-925x-12-109'


 

This table displays all metadata directly associated to this object as RDF triples.

322 TRIPLES      21 PREDICATES      93 URIs      40 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1475-925x-12-109 schema:about N03d5b0ae2bfe47cd9a3b8d217372b91e
2 N0426ea29fef8463ba66f5d442671ec3a
3 N1c74119730f74493aac3911d7dd74e1f
4 N1ff69d8d08c24241b625baf06004924a
5 N24e5d1615c1a4dd2aa9465fba16c24f0
6 N29c6bf3132764d1f92a56821b34fb30b
7 N2d3cefe7fb594b8eb1bab140f8b5a225
8 N3a3c987e1c6a41d3901b035997c6632c
9 N3b6f6af764064633b7cf573316bb88fb
10 N45a19ba798cd4a91911d36f0659a973b
11 N46f2509b1fb14e9190f4c1df2b63a030
12 N79183962fffc4a59ac2901249638f5ff
13 N7a3d859f54234c1e887be5390433e753
14 N80399d42d894401abf3ef833eb498cfd
15 Nc86ece28f9d3429dbddee687c6cc50e7
16 Nd6ae872b76aa4482bff0361c4668e35e
17 Ne14973a39b174c9897b79449bb7ee714
18 Nfc33ea8ef15d4d5794a7157f6c76291f
19 Nfd283423802d43ea9f706c8d43741d98
20 anzsrc-for:11
21 anzsrc-for:1109
22 schema:author N40dd0be3a08f4b6caad5acb9c3068e63
23 schema:citation sg:pub.10.1007/bf00313105
24 sg:pub.10.1007/bf02339931
25 sg:pub.10.1007/s12021-009-9059-9
26 sg:pub.10.1186/1475-925x-12-94
27 sg:pub.10.1186/1741-7015-8-68
28 https://app.dimensions.ai/details/publication/pub.1080171064
29 https://doi.org/10.1001/archneur.1988.00520350074019
30 https://doi.org/10.1016/0013-4694(63)90096-8
31 https://doi.org/10.1016/0013-4694(73)90045-x
32 https://doi.org/10.1016/0013-4694(74)90232-6
33 https://doi.org/10.1016/0013-4694(80)90135-2
34 https://doi.org/10.1016/0013-4694(83)90224-9
35 https://doi.org/10.1016/0013-4694(91)90187-9
36 https://doi.org/10.1016/0013-4694(93)90085-a
37 https://doi.org/10.1016/j.apmr.2004.02.033
38 https://doi.org/10.1016/j.compbiomed.2006.08.005
39 https://doi.org/10.1016/j.jneumeth.2005.02.010
40 https://doi.org/10.1016/j.smrv.2009.04.003
41 https://doi.org/10.1016/s0165-0270(02)00075-4
42 https://doi.org/10.1016/s0370-4475(77)80055-5
43 https://doi.org/10.1016/s0987-7053(01)00270-2
44 https://doi.org/10.1016/s1388-2457(99)00303-x
45 https://doi.org/10.1053/smrv.1999.0086
46 https://doi.org/10.1053/smrv.1999.0099
47 https://doi.org/10.1053/smrv.2000.0106
48 https://doi.org/10.1056/nejm199406023302206
49 https://doi.org/10.1056/nejmoa0905370
50 https://doi.org/10.1080/02699050210127303
51 https://doi.org/10.1089/neu.2012.2654
52 https://doi.org/10.1093/brain/awr152
53 https://doi.org/10.1093/sleep/24.6.703
54 https://doi.org/10.1109/78.258082
55 https://doi.org/10.1109/memb.2006.1657784
56 https://doi.org/10.1111/j.1365-2869.2005.00472.x
57 https://doi.org/10.1136/jnnp.58.4.484
58 https://doi.org/10.1136/jnnp.59.1.17
59 https://doi.org/10.1177/155005948301400106
60 https://doi.org/10.1196/annals.1417.018
61 https://doi.org/10.1212/wnl.0b013e3181e8e8df
62 https://doi.org/10.1212/wnl.0b013e318249f764
63 https://doi.org/10.1212/wnl.26.8.769
64 https://doi.org/10.1212/wnl.34.1.118
65 https://doi.org/10.1212/wnl.44.4.758
66 https://doi.org/10.1212/wnl.58.3.349
67 https://doi.org/10.3109/02699052.2012.698362
68 schema:datePublished 2013-12
69 schema:datePublishedReg 2013-12-01
70 schema:description BACKGROUND: Electroencephalography (EEG) is best suited for long-term monitoring of brain functions in patients with disorders of consciousness (DOC). Mathematical tools are needed to facilitate efficient interpretation of long-duration sleep-wake EEG recordings. METHODS: Starting with matching pursuit (MP) decomposition, we automatically detect and parametrize sleep spindles, slow wave activity, K-complexes and alpha, beta and theta waves present in EEG recordings, and automatically construct profiles of their time evolution, relevant to the assessment of residual brain function in patients with DOC. RESULTS: Above proposed EEG profiles were computed for 32 patients diagnosed as minimally conscious state (MCS, 20 patients), vegetative state/unresponsive wakefulness syndrome (VS/UWS, 11 patients) and Locked-in Syndrome (LiS, 1 patient). Their interpretation revealed significant correlations between patients' behavioral diagnosis and: (a) occurrence of sleep EEG patterns including sleep spindles, slow wave activity and light/deep sleep cycles, (b) appearance and variability across time of alpha, beta, and theta rhythms. Discrimination between MCS and VS/UWS based upon prominent features of these profiles classified correctly 87% of cases. CONCLUSIONS: Proposed EEG profiles offer user-independent, repeatable, comprehensive and continuous representation of relevant EEG characteristics, intended as an aid in differentiation between VS/UWS and MCS states and diagnostic prognosis. To enable further development of this methodology into clinically usable tests, we share user-friendly software for MP decomposition of EEG (http://braintech.pl/svarog) and scripts used for creation of the presented profiles (attached to this article).
71 schema:genre research_article
72 schema:inLanguage en
73 schema:isAccessibleForFree true
74 schema:isPartOf Ne46f158264d7480fbba89ad2dfbcdeaf
75 Ne7e8da388a274e67be436c1c0c8dca31
76 sg:journal.1031014
77 schema:name Electroencephalographic profiles for differentiation of disorders of consciousness
78 schema:pagination 109
79 schema:productId N04f939d457794871ac6915775c76a6ce
80 N4dd089a74bf24635bca2cbede9896865
81 N96a77f4e4d194c4fa7ca558d5ea6e6b0
82 Nade4c64395564539b26031164c4ac4cf
83 Nd2074581efc5476ea9027de0a5c8c797
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007865773
85 https://doi.org/10.1186/1475-925x-12-109
86 schema:sdDatePublished 2019-04-10T14:02
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Ndc848efd473941458ca4a5bd6b835e27
89 schema:url http://link.springer.com/10.1186/1475-925X-12-109
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N03d5b0ae2bfe47cd9a3b8d217372b91e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Aged
95 rdf:type schema:DefinedTerm
96 N0426ea29fef8463ba66f5d442671ec3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Electrophysiological Phenomena
98 rdf:type schema:DefinedTerm
99 N04f939d457794871ac6915775c76a6ce schema:name readcube_id
100 schema:value 2577ffb1fbc11b4ea191dcb63989bf71c1c75579514f501d16784a1281f4d9dd
101 rdf:type schema:PropertyValue
102 N06be6cf6f97645668e2e1ea68f9967a4 rdf:first sg:person.0636337051.46
103 rdf:rest N1965fad2ea1b4d89acae16d1c4b30b4f
104 N1965fad2ea1b4d89acae16d1c4b30b4f rdf:first sg:person.01252301702.36
105 rdf:rest N23cc9042d6d54cde85940e0f9491ae90
106 N1c74119730f74493aac3911d7dd74e1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Young Adult
108 rdf:type schema:DefinedTerm
109 N1f50d539bddd46ed94d1b40fc93221d8 rdf:first sg:person.0726030174.68
110 rdf:rest N06be6cf6f97645668e2e1ea68f9967a4
111 N1ff69d8d08c24241b625baf06004924a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Child, Preschool
113 rdf:type schema:DefinedTerm
114 N23cc9042d6d54cde85940e0f9491ae90 rdf:first sg:person.01245371011.95
115 rdf:rest Ncbe5bdb8be944660a696998b817a692b
116 N24e5d1615c1a4dd2aa9465fba16c24f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Adult
118 rdf:type schema:DefinedTerm
119 N29c6bf3132764d1f92a56821b34fb30b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Child
121 rdf:type schema:DefinedTerm
122 N2d3cefe7fb594b8eb1bab140f8b5a225 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Signal Processing, Computer-Assisted
124 rdf:type schema:DefinedTerm
125 N3a3c987e1c6a41d3901b035997c6632c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Diagnosis, Differential
127 rdf:type schema:DefinedTerm
128 N3b6f6af764064633b7cf573316bb88fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Sleep
130 rdf:type schema:DefinedTerm
131 N40dd0be3a08f4b6caad5acb9c3068e63 rdf:first sg:person.0605416522.75
132 rdf:rest N1f50d539bddd46ed94d1b40fc93221d8
133 N45a19ba798cd4a91911d36f0659a973b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Aged, 80 and over
135 rdf:type schema:DefinedTerm
136 N46f2509b1fb14e9190f4c1df2b63a030 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Electroencephalography
138 rdf:type schema:DefinedTerm
139 N4dd089a74bf24635bca2cbede9896865 schema:name doi
140 schema:value 10.1186/1475-925x-12-109
141 rdf:type schema:PropertyValue
142 N79183962fffc4a59ac2901249638f5ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Wakefulness
144 rdf:type schema:DefinedTerm
145 N7a3d859f54234c1e887be5390433e753 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Male
147 rdf:type schema:DefinedTerm
148 N80399d42d894401abf3ef833eb498cfd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Adolescent
150 rdf:type schema:DefinedTerm
151 N96a77f4e4d194c4fa7ca558d5ea6e6b0 schema:name nlm_unique_id
152 schema:value 101147518
153 rdf:type schema:PropertyValue
154 Nade4c64395564539b26031164c4ac4cf schema:name pubmed_id
155 schema:value 24143892
156 rdf:type schema:PropertyValue
157 Nc86ece28f9d3429dbddee687c6cc50e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Middle Aged
159 rdf:type schema:DefinedTerm
160 Ncbe5bdb8be944660a696998b817a692b rdf:first sg:person.0724722444.23
161 rdf:rest rdf:nil
162 Nd2074581efc5476ea9027de0a5c8c797 schema:name dimensions_id
163 schema:value pub.1007865773
164 rdf:type schema:PropertyValue
165 Nd6ae872b76aa4482bff0361c4668e35e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Humans
167 rdf:type schema:DefinedTerm
168 Ndc848efd473941458ca4a5bd6b835e27 schema:name Springer Nature - SN SciGraph project
169 rdf:type schema:Organization
170 Ne14973a39b174c9897b79449bb7ee714 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Brain
172 rdf:type schema:DefinedTerm
173 Ne46f158264d7480fbba89ad2dfbcdeaf schema:issueNumber 1
174 rdf:type schema:PublicationIssue
175 Ne7e8da388a274e67be436c1c0c8dca31 schema:volumeNumber 12
176 rdf:type schema:PublicationVolume
177 Nfc33ea8ef15d4d5794a7157f6c76291f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Female
179 rdf:type schema:DefinedTerm
180 Nfd283423802d43ea9f706c8d43741d98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Consciousness Disorders
182 rdf:type schema:DefinedTerm
183 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
184 schema:name Medical and Health Sciences
185 rdf:type schema:DefinedTerm
186 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
187 schema:name Neurosciences
188 rdf:type schema:DefinedTerm
189 sg:journal.1031014 schema:issn 1475-925X
190 schema:name BioMedical Engineering OnLine
191 rdf:type schema:Periodical
192 sg:person.01245371011.95 schema:affiliation https://www.grid.ac/institutes/grid.411374.4
193 schema:familyName Laureys
194 schema:givenName Steven
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245371011.95
196 rdf:type schema:Person
197 sg:person.01252301702.36 schema:affiliation https://www.grid.ac/institutes/grid.411374.4
198 schema:familyName Noirhomme
199 schema:givenName Quentin
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252301702.36
201 rdf:type schema:Person
202 sg:person.0605416522.75 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
203 schema:familyName Malinowska
204 schema:givenName Urszula
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605416522.75
206 rdf:type schema:Person
207 sg:person.0636337051.46 schema:affiliation https://www.grid.ac/institutes/grid.411374.4
208 schema:familyName Bruno
209 schema:givenName Marie-Aurélie
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636337051.46
211 rdf:type schema:Person
212 sg:person.0724722444.23 schema:affiliation https://www.grid.ac/institutes/grid.12847.38
213 schema:familyName Durka
214 schema:givenName Piotr J
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724722444.23
216 rdf:type schema:Person
217 sg:person.0726030174.68 schema:affiliation https://www.grid.ac/institutes/grid.411374.4
218 schema:familyName Chatelle
219 schema:givenName Camille
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726030174.68
221 rdf:type schema:Person
222 sg:pub.10.1007/bf00313105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035606922
223 https://doi.org/10.1007/bf00313105
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/bf02339931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031789229
226 https://doi.org/10.1007/bf02339931
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s12021-009-9059-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020032538
229 https://doi.org/10.1007/s12021-009-9059-9
230 rdf:type schema:CreativeWork
231 sg:pub.10.1186/1475-925x-12-94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026040425
232 https://doi.org/10.1186/1475-925x-12-94
233 rdf:type schema:CreativeWork
234 sg:pub.10.1186/1741-7015-8-68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002233937
235 https://doi.org/10.1186/1741-7015-8-68
236 rdf:type schema:CreativeWork
237 https://app.dimensions.ai/details/publication/pub.1080171064 schema:CreativeWork
238 https://doi.org/10.1001/archneur.1988.00520350074019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026695425
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/0013-4694(63)90096-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011627500
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/0013-4694(73)90045-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018615334
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/0013-4694(74)90232-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035901977
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/0013-4694(80)90135-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040448877
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/0013-4694(83)90224-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030746896
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/0013-4694(91)90187-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050595056
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/0013-4694(93)90085-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1023425912
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.apmr.2004.02.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038544824
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.compbiomed.2006.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037863895
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/j.jneumeth.2005.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019227645
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.smrv.2009.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050545956
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/s0165-0270(02)00075-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006686634
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/s0370-4475(77)80055-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039898857
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/s0987-7053(01)00270-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030895129
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/s1388-2457(99)00303-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038367643
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1053/smrv.1999.0086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018790795
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1053/smrv.1999.0099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043490356
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1053/smrv.2000.0106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057078144
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1056/nejm199406023302206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006917334
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1056/nejmoa0905370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050852911
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1080/02699050210127303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030906824
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1089/neu.2012.2654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059301703
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1093/brain/awr152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007965497
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1093/sleep/24.6.703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074882168
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1109/78.258082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228470
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1109/memb.2006.1657784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061401603
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1111/j.1365-2869.2005.00472.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017080202
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1136/jnnp.58.4.484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050313246
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1136/jnnp.59.1.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052136730
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1177/155005948301400106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064060772
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1196/annals.1417.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023878900
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1212/wnl.0b013e3181e8e8df schema:sameAs https://app.dimensions.ai/details/publication/pub.1064355418
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1212/wnl.0b013e318249f764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064356802
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1212/wnl.26.8.769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064361862
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1212/wnl.34.1.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064365024
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1212/wnl.44.4.758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064372450
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1212/wnl.58.3.349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000915302
313 rdf:type schema:CreativeWork
314 https://doi.org/10.3109/02699052.2012.698362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045346525
315 rdf:type schema:CreativeWork
316 https://www.grid.ac/institutes/grid.12847.38 schema:alternateName University of Warsaw
317 schema:name Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681, Warszawa, Poland
318 rdf:type schema:Organization
319 https://www.grid.ac/institutes/grid.411374.4 schema:alternateName Centre Hospitalier Universitaire de Liège
320 schema:name Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium
321 Neurology Dept, University Hospital of Liège, Liège, Belgium
322 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...