Estimation of malaria haplotype and genotype frequencies: a statistical approach to overcome the challenge associated with multiclonal infections View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Aimee R Taylor, Jennifer A Flegg, Samuel L Nsobya, Adoke Yeka, Moses R Kamya, Philip J Rosenthal, Grant Dorsey, Carol H Sibley, Philippe J Guerin, Chris C Holmes

ABSTRACT

BACKGROUND: Reliable measures of anti-malarial resistance are crucial for malaria control. Resistance is typically a complex trait: multiple mutations in a single parasite (a haplotype or genotype) are necessary for elaboration of the resistant phenotype. The frequency of a genetic motif (proportion of parasite clones in the parasite population that carry a given allele, haplotype or genotype) is a useful measure of resistance. In areas of high endemicity, malaria patients generally harbour multiple parasite clones; they have multiplicities of infection (MOIs) greater than one. However, most standard experimental procedures only allow measurement of marker prevalence (proportion of patient blood samples that test positive for a given mutation or combination of mutations), not frequency. It is misleading to compare marker prevalence between sites that have different mean MOIs; frequencies are required instead. METHODS: A Bayesian statistical model was developed to estimate Plasmodium falciparum genetic motif frequencies from prevalence data collected in the field. To assess model performance and computational speed, a detailed simulation study was implemented. Application of the model was tested using datasets from five sites in Uganda. The datasets included prevalence data on markers of resistance to sulphadoxine-pyrimethamine and an average MOI estimate for each study site. RESULTS: The simulation study revealed that the genetic motif frequencies that were estimated using the model were more accurate and precise than conventional estimates based on direct counting. Importantly, the model did not require measurements of the MOI in each patient; it used the average MOI in the patient population. Furthermore, if a dataset included partially genotyped patient blood samples, the model imputed the data that were missing. Using the model and the Ugandan data, genotype frequencies were estimated and four biologically relevant genotypes were identified. CONCLUSIONS: The model allows fast, accurate, reliable estimation of the frequency of genetic motifs associated with resistance to anti-malarials using prevalence data collected from malaria patients. The model does not require per-patient MOI measurements and can easily analyse data from five markers. The model will be a valuable tool for monitoring markers of anti-malarial drug resistance, including markers of resistance to artemisinin derivatives and partner drugs. More... »

PAGES

102

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1475-2875-13-102

DOI

http://dx.doi.org/10.1186/1475-2875-13-102

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009180426

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24636676


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Haplotypes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Malaria, Falciparum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plasmodium falciparum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uganda", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK", 
            "Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK", 
            "Department of Statistics, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "Aimee R", 
        "id": "sg:person.01333346150.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333346150.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK", 
            "Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flegg", 
        "givenName": "Jennifer A", 
        "id": "sg:person.0647314343.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647314343.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Makerere University", 
          "id": "https://www.grid.ac/institutes/grid.11194.3c", 
          "name": [
            "Department of Medicine, Makerere University, Kampala, Uganda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nsobya", 
        "givenName": "Samuel L", 
        "id": "sg:person.011544431027.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011544431027.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Uganda Malaria Surveillance Project, Kampala, Uganda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yeka", 
        "givenName": "Adoke", 
        "id": "sg:person.01370602373.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370602373.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Makerere University", 
          "id": "https://www.grid.ac/institutes/grid.11194.3c", 
          "name": [
            "Department of Medicine, Makerere University, Kampala, Uganda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamya", 
        "givenName": "Moses R", 
        "id": "sg:person.0755232421.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755232421.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Francisco", 
          "id": "https://www.grid.ac/institutes/grid.266102.1", 
          "name": [
            "Department of Medicine, University of California, San Francisco, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosenthal", 
        "givenName": "Philip J", 
        "id": "sg:person.01257314627.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257314627.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Francisco", 
          "id": "https://www.grid.ac/institutes/grid.266102.1", 
          "name": [
            "Department of Medicine, University of California, San Francisco, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dorsey", 
        "givenName": "Grant", 
        "id": "sg:person.0665130027.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665130027.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK", 
            "Department of Genome Sciences, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sibley", 
        "givenName": "Carol H", 
        "id": "sg:person.01151146024.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151146024.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK", 
            "Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guerin", 
        "givenName": "Philippe J", 
        "id": "sg:person.011240766722.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011240766722.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Statistics, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holmes", 
        "givenName": "Chris C", 
        "id": "sg:person.07502733057.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07502733057.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0057689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001233277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.23.9114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003325233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.23.9109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005481775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0163-7258(00)00115-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008826460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010217292", 
          "https://doi.org/10.1038/nature12876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0808859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011738279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/cmr.15.4.564-594.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013510676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/idr.s31409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014976417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1000055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020228832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0905922106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020498965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1995.0203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023730154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jeb.00658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026013397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-11-355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028137830", 
          "https://doi.org/10.1186/1475-2875-11-355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4269/ajtmh.2010.10-0072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028156844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/500951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034630551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0764-4469(98)80009-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036130939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036264627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.5792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037441150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pt.2013.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037644778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/pr.57.1.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037940339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/ijb-2012-0016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042195621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-7-130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043759696", 
          "https://doi.org/10.1186/1475-2875-7-130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/338566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044250968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-8-250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048631463", 
          "https://doi.org/10.1186/1475-2875-8-250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1994.00397.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051593980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)60484-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053009002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1098876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5897/ajb12.1487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073481686"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Reliable measures of anti-malarial resistance are crucial for malaria control. Resistance is typically a complex trait: multiple mutations in a single parasite (a haplotype or genotype) are necessary for elaboration of the resistant phenotype. The frequency of a genetic motif (proportion of parasite clones in the parasite population that carry a given allele, haplotype or genotype) is a useful measure of resistance. In areas of high endemicity, malaria patients generally harbour multiple parasite clones; they have multiplicities of infection (MOIs) greater than one. However, most standard experimental procedures only allow measurement of marker prevalence (proportion of patient blood samples that test positive for a given mutation or combination of mutations), not frequency. It is misleading to compare marker prevalence between sites that have different mean MOIs; frequencies are required instead.\nMETHODS: A Bayesian statistical model was developed to estimate Plasmodium falciparum genetic motif frequencies from prevalence data collected in the field. To assess model performance and computational speed, a detailed simulation study was implemented. Application of the model was tested using datasets from five sites in Uganda. The datasets included prevalence data on markers of resistance to sulphadoxine-pyrimethamine and an average MOI estimate for each study site.\nRESULTS: The simulation study revealed that the genetic motif frequencies that were estimated using the model were more accurate and precise than conventional estimates based on direct counting. Importantly, the model did not require measurements of the MOI in each patient; it used the average MOI in the patient population. Furthermore, if a dataset included partially genotyped patient blood samples, the model imputed the data that were missing. Using the model and the Ugandan data, genotype frequencies were estimated and four biologically relevant genotypes were identified.\nCONCLUSIONS: The model allows fast, accurate, reliable estimation of the frequency of genetic motifs associated with resistance to anti-malarials using prevalence data collected from malaria patients. The model does not require per-patient MOI measurements and can easily analyse data from five markers. The model will be a valuable tool for monitoring markers of anti-malarial drug resistance, including markers of resistance to artemisinin derivatives and partner drugs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1475-2875-13-102", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3636942", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2695862", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030597", 
        "issn": [
          "1475-2875"
        ], 
        "name": "Malaria Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Estimation of malaria haplotype and genotype frequencies: a statistical approach to overcome the challenge associated with multiclonal infections", 
    "pagination": "102", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2bbc1e7c12bb2e266ea6cfa2e4a4afb49eb027d7dd679094899401fcdbe18a58"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24636676"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101139802"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1475-2875-13-102"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009180426"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1475-2875-13-102", 
      "https://app.dimensions.ai/details/publication/pub.1009180426"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1475-2875-13-102"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1475-2875-13-102'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1475-2875-13-102'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1475-2875-13-102'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1475-2875-13-102'


 

This table displays all metadata directly associated to this object as RDF triples.

277 TRIPLES      21 PREDICATES      67 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1475-2875-13-102 schema:about N024c4c2a0739412aa38f0e7fd7feedc0
2 N03c7aaefdcf04978add95faa4cb26481
3 N17bbdd12912e4d2d925a504cd545c879
4 N511d2e2700744d65acbae54765d72783
5 N5448bf40e2844b6baa7455f842a34bc1
6 N5e9f580db1ed47b3b008361a51096524
7 Na4fbd84b25964e1fab34bf493e826fb9
8 Naa23c7259b6042219d1f49ec43a4df49
9 Nc488081ecc2c44b0b70f0456cc8c20b7
10 Nd3aa94e5a0b946878ceb635d2bce54bd
11 anzsrc-for:01
12 anzsrc-for:0104
13 schema:author Nc27201f7b6ad470087f6f73c4c1da99d
14 schema:citation sg:pub.10.1038/nature12876
15 sg:pub.10.1186/1475-2875-11-355
16 sg:pub.10.1186/1475-2875-7-130
17 sg:pub.10.1186/1475-2875-8-250
18 https://doi.org/10.1002/sim.5792
19 https://doi.org/10.1016/j.pt.2013.08.002
20 https://doi.org/10.1016/s0140-6736(12)60484-x
21 https://doi.org/10.1016/s0163-7258(00)00115-7
22 https://doi.org/10.1016/s0764-4469(98)80009-7
23 https://doi.org/10.1056/nejmoa0808859
24 https://doi.org/10.1073/pnas.0905922106
25 https://doi.org/10.1073/pnas.85.23.9109
26 https://doi.org/10.1073/pnas.85.23.9114
27 https://doi.org/10.1086/338566
28 https://doi.org/10.1086/500951
29 https://doi.org/10.1098/rspb.1995.0203
30 https://doi.org/10.1111/j.1432-1033.1994.00397.x
31 https://doi.org/10.1124/pr.57.1.4
32 https://doi.org/10.1126/science.1098876
33 https://doi.org/10.1128/cmr.15.4.564-594.2002
34 https://doi.org/10.1242/jeb.00658
35 https://doi.org/10.1371/journal.pmed.1000055
36 https://doi.org/10.1371/journal.pone.0057689
37 https://doi.org/10.1515/ijb-2012-0016
38 https://doi.org/10.2147/idr.s31409
39 https://doi.org/10.2202/1544-6115.1321
40 https://doi.org/10.4269/ajtmh.2010.10-0072
41 https://doi.org/10.5897/ajb12.1487
42 schema:datePublished 2014-12
43 schema:datePublishedReg 2014-12-01
44 schema:description BACKGROUND: Reliable measures of anti-malarial resistance are crucial for malaria control. Resistance is typically a complex trait: multiple mutations in a single parasite (a haplotype or genotype) are necessary for elaboration of the resistant phenotype. The frequency of a genetic motif (proportion of parasite clones in the parasite population that carry a given allele, haplotype or genotype) is a useful measure of resistance. In areas of high endemicity, malaria patients generally harbour multiple parasite clones; they have multiplicities of infection (MOIs) greater than one. However, most standard experimental procedures only allow measurement of marker prevalence (proportion of patient blood samples that test positive for a given mutation or combination of mutations), not frequency. It is misleading to compare marker prevalence between sites that have different mean MOIs; frequencies are required instead. METHODS: A Bayesian statistical model was developed to estimate Plasmodium falciparum genetic motif frequencies from prevalence data collected in the field. To assess model performance and computational speed, a detailed simulation study was implemented. Application of the model was tested using datasets from five sites in Uganda. The datasets included prevalence data on markers of resistance to sulphadoxine-pyrimethamine and an average MOI estimate for each study site. RESULTS: The simulation study revealed that the genetic motif frequencies that were estimated using the model were more accurate and precise than conventional estimates based on direct counting. Importantly, the model did not require measurements of the MOI in each patient; it used the average MOI in the patient population. Furthermore, if a dataset included partially genotyped patient blood samples, the model imputed the data that were missing. Using the model and the Ugandan data, genotype frequencies were estimated and four biologically relevant genotypes were identified. CONCLUSIONS: The model allows fast, accurate, reliable estimation of the frequency of genetic motifs associated with resistance to anti-malarials using prevalence data collected from malaria patients. The model does not require per-patient MOI measurements and can easily analyse data from five markers. The model will be a valuable tool for monitoring markers of anti-malarial drug resistance, including markers of resistance to artemisinin derivatives and partner drugs.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N3d872d2f007940bd8c27c276be0e8e4d
49 Ndd535b7e021843aabd2ee1af4fff2b66
50 sg:journal.1030597
51 schema:name Estimation of malaria haplotype and genotype frequencies: a statistical approach to overcome the challenge associated with multiclonal infections
52 schema:pagination 102
53 schema:productId N68bf22075b1b48939679fa91c10b8d9c
54 N9ef109551619494385784e43fd5e0478
55 Na91b3ff7ccb446bbac029f4485cc4b22
56 Nc1b4b3c6b8504ade8494a73f1984b5ff
57 Nfc7f7b5b8d634c008df4a6a9c1810c47
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009180426
59 https://doi.org/10.1186/1475-2875-13-102
60 schema:sdDatePublished 2019-04-11T01:59
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nfa0d0df85a134f7cae7a314ec85c021e
63 schema:url http://link.springer.com/10.1186%2F1475-2875-13-102
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N024c4c2a0739412aa38f0e7fd7feedc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Plasmodium falciparum
69 rdf:type schema:DefinedTerm
70 N03c7aaefdcf04978add95faa4cb26481 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Haplotypes
72 rdf:type schema:DefinedTerm
73 N1342c9cc104a446b827d39428af8daf8 rdf:first sg:person.01151146024.95
74 rdf:rest N7a56edd44b334dfd830299b3bc139ff4
75 N17bbdd12912e4d2d925a504cd545c879 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Genotype
77 rdf:type schema:DefinedTerm
78 N22625cfb2d3f429ca2d8d8f35e2e9dc4 rdf:first sg:person.0755232421.14
79 rdf:rest N487d447885bb49c598e5287efdaefb55
80 N3d872d2f007940bd8c27c276be0e8e4d schema:issueNumber 1
81 rdf:type schema:PublicationIssue
82 N487d447885bb49c598e5287efdaefb55 rdf:first sg:person.01257314627.56
83 rdf:rest N8728d1e13b9d4de1a0de4ff894cca084
84 N4be0693c692740918d1f0de37c767447 rdf:first sg:person.0647314343.21
85 rdf:rest Nc53e7eb2d01840f48551b65441cab73f
86 N511d2e2700744d65acbae54765d72783 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Prevalence
88 rdf:type schema:DefinedTerm
89 N5448bf40e2844b6baa7455f842a34bc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Humans
91 rdf:type schema:DefinedTerm
92 N5e9f580db1ed47b3b008361a51096524 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Gene Frequency
94 rdf:type schema:DefinedTerm
95 N68bf22075b1b48939679fa91c10b8d9c schema:name dimensions_id
96 schema:value pub.1009180426
97 rdf:type schema:PropertyValue
98 N7a56edd44b334dfd830299b3bc139ff4 rdf:first sg:person.011240766722.12
99 rdf:rest Nfe2ff941ab1e4d90aa16c3d594b3b293
100 N8728d1e13b9d4de1a0de4ff894cca084 rdf:first sg:person.0665130027.45
101 rdf:rest N1342c9cc104a446b827d39428af8daf8
102 N9ef109551619494385784e43fd5e0478 schema:name nlm_unique_id
103 schema:value 101139802
104 rdf:type schema:PropertyValue
105 Na4fbd84b25964e1fab34bf493e826fb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Malaria, Falciparum
107 rdf:type schema:DefinedTerm
108 Na91b3ff7ccb446bbac029f4485cc4b22 schema:name pubmed_id
109 schema:value 24636676
110 rdf:type schema:PropertyValue
111 Naa23c7259b6042219d1f49ec43a4df49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Drug Resistance
113 rdf:type schema:DefinedTerm
114 Naa5f1eae0bc449edacefc2b203dbbf82 rdf:first sg:person.01370602373.05
115 rdf:rest N22625cfb2d3f429ca2d8d8f35e2e9dc4
116 Nc1b4b3c6b8504ade8494a73f1984b5ff schema:name doi
117 schema:value 10.1186/1475-2875-13-102
118 rdf:type schema:PropertyValue
119 Nc27201f7b6ad470087f6f73c4c1da99d rdf:first sg:person.01333346150.65
120 rdf:rest N4be0693c692740918d1f0de37c767447
121 Nc488081ecc2c44b0b70f0456cc8c20b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Uganda
123 rdf:type schema:DefinedTerm
124 Nc53e7eb2d01840f48551b65441cab73f rdf:first sg:person.011544431027.52
125 rdf:rest Naa5f1eae0bc449edacefc2b203dbbf82
126 Nd3aa94e5a0b946878ceb635d2bce54bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Models, Statistical
128 rdf:type schema:DefinedTerm
129 Ndd535b7e021843aabd2ee1af4fff2b66 schema:volumeNumber 13
130 rdf:type schema:PublicationVolume
131 Nfa0d0df85a134f7cae7a314ec85c021e schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 Nfc7f7b5b8d634c008df4a6a9c1810c47 schema:name readcube_id
134 schema:value 2bbc1e7c12bb2e266ea6cfa2e4a4afb49eb027d7dd679094899401fcdbe18a58
135 rdf:type schema:PropertyValue
136 Nfe2ff941ab1e4d90aa16c3d594b3b293 rdf:first sg:person.07502733057.17
137 rdf:rest rdf:nil
138 Nfec4bead6560407ea420ec5c8ff3b37f schema:name Uganda Malaria Surveillance Project, Kampala, Uganda
139 rdf:type schema:Organization
140 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
141 schema:name Mathematical Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
144 schema:name Statistics
145 rdf:type schema:DefinedTerm
146 sg:grant.2695862 http://pending.schema.org/fundedItem sg:pub.10.1186/1475-2875-13-102
147 rdf:type schema:MonetaryGrant
148 sg:grant.3636942 http://pending.schema.org/fundedItem sg:pub.10.1186/1475-2875-13-102
149 rdf:type schema:MonetaryGrant
150 sg:journal.1030597 schema:issn 1475-2875
151 schema:name Malaria Journal
152 rdf:type schema:Periodical
153 sg:person.011240766722.12 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
154 schema:familyName Guerin
155 schema:givenName Philippe J
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011240766722.12
157 rdf:type schema:Person
158 sg:person.01151146024.95 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
159 schema:familyName Sibley
160 schema:givenName Carol H
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151146024.95
162 rdf:type schema:Person
163 sg:person.011544431027.52 schema:affiliation https://www.grid.ac/institutes/grid.11194.3c
164 schema:familyName Nsobya
165 schema:givenName Samuel L
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011544431027.52
167 rdf:type schema:Person
168 sg:person.01257314627.56 schema:affiliation https://www.grid.ac/institutes/grid.266102.1
169 schema:familyName Rosenthal
170 schema:givenName Philip J
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257314627.56
172 rdf:type schema:Person
173 sg:person.01333346150.65 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
174 schema:familyName Taylor
175 schema:givenName Aimee R
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333346150.65
177 rdf:type schema:Person
178 sg:person.01370602373.05 schema:affiliation Nfec4bead6560407ea420ec5c8ff3b37f
179 schema:familyName Yeka
180 schema:givenName Adoke
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370602373.05
182 rdf:type schema:Person
183 sg:person.0647314343.21 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
184 schema:familyName Flegg
185 schema:givenName Jennifer A
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647314343.21
187 rdf:type schema:Person
188 sg:person.0665130027.45 schema:affiliation https://www.grid.ac/institutes/grid.266102.1
189 schema:familyName Dorsey
190 schema:givenName Grant
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665130027.45
192 rdf:type schema:Person
193 sg:person.07502733057.17 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
194 schema:familyName Holmes
195 schema:givenName Chris C
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07502733057.17
197 rdf:type schema:Person
198 sg:person.0755232421.14 schema:affiliation https://www.grid.ac/institutes/grid.11194.3c
199 schema:familyName Kamya
200 schema:givenName Moses R
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755232421.14
202 rdf:type schema:Person
203 sg:pub.10.1038/nature12876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010217292
204 https://doi.org/10.1038/nature12876
205 rdf:type schema:CreativeWork
206 sg:pub.10.1186/1475-2875-11-355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028137830
207 https://doi.org/10.1186/1475-2875-11-355
208 rdf:type schema:CreativeWork
209 sg:pub.10.1186/1475-2875-7-130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043759696
210 https://doi.org/10.1186/1475-2875-7-130
211 rdf:type schema:CreativeWork
212 sg:pub.10.1186/1475-2875-8-250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048631463
213 https://doi.org/10.1186/1475-2875-8-250
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1002/sim.5792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037441150
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.pt.2013.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037644778
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/s0140-6736(12)60484-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053009002
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/s0163-7258(00)00115-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008826460
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/s0764-4469(98)80009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036130939
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1056/nejmoa0808859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011738279
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1073/pnas.0905922106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020498965
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1073/pnas.85.23.9109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005481775
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1073/pnas.85.23.9114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003325233
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1086/338566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044250968
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1086/500951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034630551
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1098/rspb.1995.0203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023730154
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1111/j.1432-1033.1994.00397.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051593980
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1124/pr.57.1.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037940339
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1126/science.1098876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449701
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1128/cmr.15.4.564-594.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013510676
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1242/jeb.00658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026013397
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1371/journal.pmed.1000055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020228832
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1371/journal.pone.0057689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001233277
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1515/ijb-2012-0016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042195621
254 rdf:type schema:CreativeWork
255 https://doi.org/10.2147/idr.s31409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014976417
256 rdf:type schema:CreativeWork
257 https://doi.org/10.2202/1544-6115.1321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036264627
258 rdf:type schema:CreativeWork
259 https://doi.org/10.4269/ajtmh.2010.10-0072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028156844
260 rdf:type schema:CreativeWork
261 https://doi.org/10.5897/ajb12.1487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073481686
262 rdf:type schema:CreativeWork
263 https://www.grid.ac/institutes/grid.11194.3c schema:alternateName Makerere University
264 schema:name Department of Medicine, Makerere University, Kampala, Uganda
265 rdf:type schema:Organization
266 https://www.grid.ac/institutes/grid.266102.1 schema:alternateName University of California, San Francisco
267 schema:name Department of Medicine, University of California, San Francisco, USA
268 rdf:type schema:Organization
269 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
270 schema:name Department of Genome Sciences, University of Washington, Seattle, WA, USA
271 WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
272 rdf:type schema:Organization
273 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
274 schema:name Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
275 Department of Statistics, University of Oxford, Oxford, UK
276 WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
277 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...