Respondent-driven sampling on the Thailand-Cambodia border. I. Can malaria cases be contained in mobile migrant workers? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-05-10

AUTHORS

Amnat Khamsiriwatchara, Piyaporn Wangroongsarb, Julie Thwing, James Eliades, Wichai Satimai, Charles Delacollette, Jaranit Kaewkungwal

ABSTRACT

BACKGROUND: Reliable information on mobility patterns of migrants is a crucial part of the strategy to contain the spread of artemisinin-resistant malaria parasites in South-East Asia, and may also be helpful to efforts to address other public health problems for migrants and members of host communities. In order to limit the spread of malarial drug resistance, the malaria prevention and control programme will need to devise strategies to reach cross-border and mobile migrant populations. METHODOLOGY: The Respondent-driven sampling (RDS) method was used to survey migrant workers from Cambodia and Myanmar, both registered and undocumented, in three Thai provinces on the Thailand-Cambodia border in close proximity to areas with documented artemisinin-resistant malaria parasites. 1,719 participants (828 Cambodian and 891 Myanmar migrants) were recruited. Subpopulations of migrant workers were analysed using the Thailand Ministry of Health classification based on length of residence in Thailand of greater than six months (long-term, or M1) or less than six months (short-term, or M2). Key information collected on the structured questionnaire included patterns of mobility and migration, demographic characteristics, treatment-seeking behaviours, and knowledge, perceptions, and practices about malaria. RESULTS: Workers from Cambodia came from provinces across Cambodia, and 22% of Cambodian M1 and 72% of Cambodian M2 migrants had been in Cambodia in the last three months. Less than 6% returned with a frequency of greater than once per month. Of migrants from Cambodia, 32% of M1 and 68% of M2 were planning to return, and named provinces across Cambodia as their likely next destinations. Most workers from Myanmar came from Mon state (86%), had never returned to Myanmar (85%), and only 4% stated plans to return. CONCLUSION: Information on migratory patterns of migrants from Myanmar and Cambodia along the malaria endemic Thailand-Cambodian border within the artemisinin resistance containment zone will help target health interventions, including treatment follow-up and surveillance. More... »

PAGES

120-120

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1475-2875-10-120

DOI

http://dx.doi.org/10.1186/1475-2875-10-120

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045469023

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21554744


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cambodia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Transmission, Infectious", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Emigration and Immigration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endemic Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Malaria, Falciparum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myanmar", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plasmodium falciparum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thailand", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transients and Migrants", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Bangkok, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.479226.c", 
          "name": [
            "Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khamsiriwatchara", 
        "givenName": "Amnat", 
        "id": "sg:person.01317531331.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317531331.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bureau for Vector-borne Diseases, Ministry of Public Health, Bangkok, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.415836.d", 
          "name": [
            "Bureau for Vector-borne Diseases, Ministry of Public Health, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wangroongsarb", 
        "givenName": "Piyaporn", 
        "id": "sg:person.01227423514.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227423514.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centers for Disease Control and Prevention, CDC, Atlanta, USA", 
          "id": "http://www.grid.ac/institutes/grid.416738.f", 
          "name": [
            "Centers for Disease Control and Prevention, CDC, Atlanta, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thwing", 
        "givenName": "Julie", 
        "id": "sg:person.01322300063.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322300063.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "World Health Organization, Mekong Malaria Programme, c/o Faculty of Tropical Medicine, Mahidol University; 420/6, Rajvithi Rd, Bangkok 10400, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.10223.32", 
          "name": [
            "World Health Organization, Mekong Malaria Programme, c/o Faculty of Tropical Medicine, Mahidol University; 420/6, Rajvithi Rd, Bangkok 10400, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eliades", 
        "givenName": "James", 
        "id": "sg:person.01222755224.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222755224.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bureau for Vector-borne Diseases, Ministry of Public Health, Bangkok, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.415836.d", 
          "name": [
            "Bureau for Vector-borne Diseases, Ministry of Public Health, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Satimai", 
        "givenName": "Wichai", 
        "id": "sg:person.01300717074.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300717074.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "World Health Organization, Mekong Malaria Programme, c/o Faculty of Tropical Medicine, Mahidol University; 420/6, Rajvithi Rd, Bangkok 10400, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.10223.32", 
          "name": [
            "World Health Organization, Mekong Malaria Programme, c/o Faculty of Tropical Medicine, Mahidol University; 420/6, Rajvithi Rd, Bangkok 10400, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delacollette", 
        "givenName": "Charles", 
        "id": "sg:person.01075662013.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075662013.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Bangkok, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.479226.c", 
          "name": [
            "Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaewkungwal", 
        "givenName": "Jaranit", 
        "id": "sg:person.0615541604.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615541604.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1014534110868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047952743", 
          "https://doi.org/10.1023/a:1014534110868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11524-006-9108-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018614619", 
          "https://doi.org/10.1007/s11524-006-9108-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11524-006-9103-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035686833", 
          "https://doi.org/10.1007/s11524-006-9103-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11524-006-9105-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000213884", 
          "https://doi.org/10.1007/s11524-006-9105-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-10-117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019155916", 
          "https://doi.org/10.1186/1475-2875-10-117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014528612685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033626590", 
          "https://doi.org/10.1023/a:1014528612685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10461-008-9413-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014406704", 
          "https://doi.org/10.1007/s10461-008-9413-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11524-009-9365-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006796495", 
          "https://doi.org/10.1007/s11524-009-9365-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05-10", 
    "datePublishedReg": "2011-05-10", 
    "description": "BACKGROUND: Reliable information on mobility patterns of migrants is a crucial part of the strategy to contain the spread of artemisinin-resistant malaria parasites in South-East Asia, and may also be helpful to efforts to address other public health problems for migrants and members of host communities. In order to limit the spread of malarial drug resistance, the malaria prevention and control programme will need to devise strategies to reach cross-border and mobile migrant populations.\nMETHODOLOGY: The Respondent-driven sampling (RDS) method was used to survey migrant workers from Cambodia and Myanmar, both registered and undocumented, in three Thai provinces on the Thailand-Cambodia border in close proximity to areas with documented artemisinin-resistant malaria parasites. 1,719 participants (828 Cambodian and 891 Myanmar migrants) were recruited. Subpopulations of migrant workers were analysed using the Thailand Ministry of Health classification based on length of residence in Thailand of greater than six months (long-term, or M1) or less than six months (short-term, or M2). Key information collected on the structured questionnaire included patterns of mobility and migration, demographic characteristics, treatment-seeking behaviours, and knowledge, perceptions, and practices about malaria.\nRESULTS: Workers from Cambodia came from provinces across Cambodia, and 22% of Cambodian M1 and 72% of Cambodian M2 migrants had been in Cambodia in the last three months. Less than 6% returned with a frequency of greater than once per month. Of migrants from Cambodia, 32% of M1 and 68% of M2 were planning to return, and named provinces across Cambodia as their likely next destinations. Most workers from Myanmar came from Mon state (86%), had never returned to Myanmar (85%), and only 4% stated plans to return.\nCONCLUSION: Information on migratory patterns of migrants from Myanmar and Cambodia along the malaria endemic Thailand-Cambodian border within the artemisinin resistance containment zone will help target health interventions, including treatment follow-up and surveillance.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1475-2875-10-120", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030597", 
        "issn": [
          "1475-2875"
        ], 
        "name": "Malaria Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "artemisinin-resistant malaria parasites", 
      "Thailand-Cambodia border", 
      "malaria parasites", 
      "public health problem", 
      "malarial drug resistance", 
      "treatment-seeking behavior", 
      "mobile migrant populations", 
      "respondent-driven sampling", 
      "malaria prevention", 
      "malaria cases", 
      "health problems", 
      "mobile migrant workers", 
      "health interventions", 
      "drug resistance", 
      "months", 
      "demographic characteristics", 
      "Thailand Ministry", 
      "health classification", 
      "structured questionnaire", 
      "Thai provinces", 
      "control programs", 
      "migrant populations", 
      "length of residence", 
      "M1", 
      "parasites", 
      "malaria", 
      "workers", 
      "prevention", 
      "intervention", 
      "Mon State", 
      "South East Asia", 
      "most workers", 
      "treatment", 
      "subpopulations", 
      "surveillance", 
      "questionnaire", 
      "containment zones", 
      "spread", 
      "participants", 
      "Cambodia", 
      "patterns", 
      "sampling method", 
      "residence", 
      "population", 
      "reliable information", 
      "migrant workers", 
      "border", 
      "respondents", 
      "close proximity", 
      "strategies", 
      "m2", 
      "migratory patterns", 
      "cases", 
      "resistance", 
      "information", 
      "Province", 
      "migration", 
      "key information", 
      "Myanmar", 
      "program", 
      "Thailand", 
      "practice", 
      "frequency", 
      "members", 
      "classification", 
      "perception", 
      "patterns of mobility", 
      "knowledge", 
      "plan", 
      "sampling", 
      "Ministry", 
      "area", 
      "length", 
      "crucial part", 
      "characteristics", 
      "host communities", 
      "migrants", 
      "efforts", 
      "part", 
      "community", 
      "Asia", 
      "method", 
      "proximity", 
      "mobility patterns", 
      "state", 
      "mobility", 
      "behavior", 
      "order", 
      "problem", 
      "next destination", 
      "zone", 
      "destination", 
      "Cambodian M1", 
      "Cambodian M2 migrants", 
      "M2 migrants", 
      "likely next destinations", 
      "malaria endemic Thailand-Cambodian border", 
      "endemic Thailand-Cambodian border", 
      "Thailand-Cambodian border", 
      "artemisinin resistance containment zone", 
      "resistance containment zone"
    ], 
    "name": "Respondent-driven sampling on the Thailand-Cambodia border. I. Can malaria cases be contained in mobile migrant workers?", 
    "pagination": "120-120", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045469023"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1475-2875-10-120"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21554744"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1475-2875-10-120", 
      "https://app.dimensions.ai/details/publication/pub.1045469023"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_530.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1475-2875-10-120"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1475-2875-10-120'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1475-2875-10-120'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1475-2875-10-120'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1475-2875-10-120'


 

This table displays all metadata directly associated to this object as RDF triples.

301 TRIPLES      22 PREDICATES      149 URIs      133 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1475-2875-10-120 schema:about N038e87c9fd6a4e8189faccf8809e0982
2 N219be1d68cc8473fa50478736a696b61
3 N2b82775740cc464d91a586db35e62d33
4 N52276e6e42074463bd7c8d1c3d4123cc
5 N5bbce34556d040e29e1d527545526893
6 N80137e0e828346289f178c89726de873
7 N823174bc92c244e3bf172435108470b0
8 N89e18b0a582247739a94cb4988a39d37
9 N9687955c425b41a08d9986c6c5617fe6
10 Nc96f052357cc4aa994886703ec74093e
11 Nd83942618d474e3d9269906602a526c3
12 Ne1ea5c06bbbc42efb9c9ba0e0cc0f1a9
13 Ne785fc988d4645b5a165ecf4af38f7e7
14 Ne8b248dab6fc44209bb4782d807081d5
15 anzsrc-for:11
16 anzsrc-for:1117
17 schema:author N23ab41a47a414e569525b6c6c3f54b85
18 schema:citation sg:pub.10.1007/s10461-008-9413-1
19 sg:pub.10.1007/s11524-006-9103-0
20 sg:pub.10.1007/s11524-006-9105-y
21 sg:pub.10.1007/s11524-006-9108-8
22 sg:pub.10.1007/s11524-009-9365-4
23 sg:pub.10.1023/a:1014528612685
24 sg:pub.10.1023/a:1014534110868
25 sg:pub.10.1186/1475-2875-10-117
26 schema:datePublished 2011-05-10
27 schema:datePublishedReg 2011-05-10
28 schema:description BACKGROUND: Reliable information on mobility patterns of migrants is a crucial part of the strategy to contain the spread of artemisinin-resistant malaria parasites in South-East Asia, and may also be helpful to efforts to address other public health problems for migrants and members of host communities. In order to limit the spread of malarial drug resistance, the malaria prevention and control programme will need to devise strategies to reach cross-border and mobile migrant populations. METHODOLOGY: The Respondent-driven sampling (RDS) method was used to survey migrant workers from Cambodia and Myanmar, both registered and undocumented, in three Thai provinces on the Thailand-Cambodia border in close proximity to areas with documented artemisinin-resistant malaria parasites. 1,719 participants (828 Cambodian and 891 Myanmar migrants) were recruited. Subpopulations of migrant workers were analysed using the Thailand Ministry of Health classification based on length of residence in Thailand of greater than six months (long-term, or M1) or less than six months (short-term, or M2). Key information collected on the structured questionnaire included patterns of mobility and migration, demographic characteristics, treatment-seeking behaviours, and knowledge, perceptions, and practices about malaria. RESULTS: Workers from Cambodia came from provinces across Cambodia, and 22% of Cambodian M1 and 72% of Cambodian M2 migrants had been in Cambodia in the last three months. Less than 6% returned with a frequency of greater than once per month. Of migrants from Cambodia, 32% of M1 and 68% of M2 were planning to return, and named provinces across Cambodia as their likely next destinations. Most workers from Myanmar came from Mon state (86%), had never returned to Myanmar (85%), and only 4% stated plans to return. CONCLUSION: Information on migratory patterns of migrants from Myanmar and Cambodia along the malaria endemic Thailand-Cambodian border within the artemisinin resistance containment zone will help target health interventions, including treatment follow-up and surveillance.
29 schema:genre article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N08ba3d60a74a4e4097ec8fe0c232d225
33 N730310ebd3df4da59669f523c5fee614
34 sg:journal.1030597
35 schema:keywords Asia
36 Cambodia
37 Cambodian M1
38 Cambodian M2 migrants
39 M1
40 M2 migrants
41 Ministry
42 Mon State
43 Myanmar
44 Province
45 South East Asia
46 Thai provinces
47 Thailand
48 Thailand Ministry
49 Thailand-Cambodia border
50 Thailand-Cambodian border
51 area
52 artemisinin resistance containment zone
53 artemisinin-resistant malaria parasites
54 behavior
55 border
56 cases
57 characteristics
58 classification
59 close proximity
60 community
61 containment zones
62 control programs
63 crucial part
64 demographic characteristics
65 destination
66 drug resistance
67 efforts
68 endemic Thailand-Cambodian border
69 frequency
70 health classification
71 health interventions
72 health problems
73 host communities
74 information
75 intervention
76 key information
77 knowledge
78 length
79 length of residence
80 likely next destinations
81 m2
82 malaria
83 malaria cases
84 malaria endemic Thailand-Cambodian border
85 malaria parasites
86 malaria prevention
87 malarial drug resistance
88 members
89 method
90 migrant populations
91 migrant workers
92 migrants
93 migration
94 migratory patterns
95 mobile migrant populations
96 mobile migrant workers
97 mobility
98 mobility patterns
99 months
100 most workers
101 next destination
102 order
103 parasites
104 part
105 participants
106 patterns
107 patterns of mobility
108 perception
109 plan
110 population
111 practice
112 prevention
113 problem
114 program
115 proximity
116 public health problem
117 questionnaire
118 reliable information
119 residence
120 resistance
121 resistance containment zone
122 respondent-driven sampling
123 respondents
124 sampling
125 sampling method
126 spread
127 state
128 strategies
129 structured questionnaire
130 subpopulations
131 surveillance
132 treatment
133 treatment-seeking behavior
134 workers
135 zone
136 schema:name Respondent-driven sampling on the Thailand-Cambodia border. I. Can malaria cases be contained in mobile migrant workers?
137 schema:pagination 120-120
138 schema:productId N8f8ee13810314502847eba47cd50d72e
139 Nba81f603c6c748beb5b5c3a825953424
140 Nca791bcafa144dacb4f994eee3966214
141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045469023
142 https://doi.org/10.1186/1475-2875-10-120
143 schema:sdDatePublished 2022-01-01T18:25
144 schema:sdLicense https://scigraph.springernature.com/explorer/license/
145 schema:sdPublisher N3d7de994e19c4a2aa6263eed08e65630
146 schema:url https://doi.org/10.1186/1475-2875-10-120
147 sgo:license sg:explorer/license/
148 sgo:sdDataset articles
149 rdf:type schema:ScholarlyArticle
150 N038e87c9fd6a4e8189faccf8809e0982 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Emigration and Immigration
152 rdf:type schema:DefinedTerm
153 N08ba3d60a74a4e4097ec8fe0c232d225 schema:volumeNumber 10
154 rdf:type schema:PublicationVolume
155 N219be1d68cc8473fa50478736a696b61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Endemic Diseases
157 rdf:type schema:DefinedTerm
158 N23ab41a47a414e569525b6c6c3f54b85 rdf:first sg:person.01317531331.08
159 rdf:rest N2bbe8dafac5f44b1950b54321e238ecd
160 N2b82775740cc464d91a586db35e62d33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Male
162 rdf:type schema:DefinedTerm
163 N2bbe8dafac5f44b1950b54321e238ecd rdf:first sg:person.01227423514.81
164 rdf:rest Nb6946ed8e765492c821a57676e8b5fef
165 N3d7de994e19c4a2aa6263eed08e65630 schema:name Springer Nature - SN SciGraph project
166 rdf:type schema:Organization
167 N52276e6e42074463bd7c8d1c3d4123cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Drug Resistance
169 rdf:type schema:DefinedTerm
170 N5bbce34556d040e29e1d527545526893 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Myanmar
172 rdf:type schema:DefinedTerm
173 N5c635842e7174b25837a950e0ce1aaee rdf:first sg:person.01222755224.37
174 rdf:rest Nb299ba394d754fde82d192eb6e4ff76f
175 N666ed46892fa42bbb814ede0b6860838 rdf:first sg:person.01075662013.44
176 rdf:rest Ne9bc764a034f4b5081fc7246371c8264
177 N730310ebd3df4da59669f523c5fee614 schema:issueNumber 1
178 rdf:type schema:PublicationIssue
179 N80137e0e828346289f178c89726de873 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Female
181 rdf:type schema:DefinedTerm
182 N823174bc92c244e3bf172435108470b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Cambodia
184 rdf:type schema:DefinedTerm
185 N89e18b0a582247739a94cb4988a39d37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Surveys and Questionnaires
187 rdf:type schema:DefinedTerm
188 N8f8ee13810314502847eba47cd50d72e schema:name pubmed_id
189 schema:value 21554744
190 rdf:type schema:PropertyValue
191 N9687955c425b41a08d9986c6c5617fe6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Disease Transmission, Infectious
193 rdf:type schema:DefinedTerm
194 Nb299ba394d754fde82d192eb6e4ff76f rdf:first sg:person.01300717074.32
195 rdf:rest N666ed46892fa42bbb814ede0b6860838
196 Nb6946ed8e765492c821a57676e8b5fef rdf:first sg:person.01322300063.32
197 rdf:rest N5c635842e7174b25837a950e0ce1aaee
198 Nba81f603c6c748beb5b5c3a825953424 schema:name doi
199 schema:value 10.1186/1475-2875-10-120
200 rdf:type schema:PropertyValue
201 Nc96f052357cc4aa994886703ec74093e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Thailand
203 rdf:type schema:DefinedTerm
204 Nca791bcafa144dacb4f994eee3966214 schema:name dimensions_id
205 schema:value pub.1045469023
206 rdf:type schema:PropertyValue
207 Nd83942618d474e3d9269906602a526c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Malaria, Falciparum
209 rdf:type schema:DefinedTerm
210 Ne1ea5c06bbbc42efb9c9ba0e0cc0f1a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Transients and Migrants
212 rdf:type schema:DefinedTerm
213 Ne785fc988d4645b5a165ecf4af38f7e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
214 schema:name Humans
215 rdf:type schema:DefinedTerm
216 Ne8b248dab6fc44209bb4782d807081d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
217 schema:name Plasmodium falciparum
218 rdf:type schema:DefinedTerm
219 Ne9bc764a034f4b5081fc7246371c8264 rdf:first sg:person.0615541604.66
220 rdf:rest rdf:nil
221 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
222 schema:name Medical and Health Sciences
223 rdf:type schema:DefinedTerm
224 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
225 schema:name Public Health and Health Services
226 rdf:type schema:DefinedTerm
227 sg:journal.1030597 schema:issn 1475-2875
228 schema:name Malaria Journal
229 schema:publisher Springer Nature
230 rdf:type schema:Periodical
231 sg:person.01075662013.44 schema:affiliation grid-institutes:grid.10223.32
232 schema:familyName Delacollette
233 schema:givenName Charles
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075662013.44
235 rdf:type schema:Person
236 sg:person.01222755224.37 schema:affiliation grid-institutes:grid.10223.32
237 schema:familyName Eliades
238 schema:givenName James
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222755224.37
240 rdf:type schema:Person
241 sg:person.01227423514.81 schema:affiliation grid-institutes:grid.415836.d
242 schema:familyName Wangroongsarb
243 schema:givenName Piyaporn
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227423514.81
245 rdf:type schema:Person
246 sg:person.01300717074.32 schema:affiliation grid-institutes:grid.415836.d
247 schema:familyName Satimai
248 schema:givenName Wichai
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300717074.32
250 rdf:type schema:Person
251 sg:person.01317531331.08 schema:affiliation grid-institutes:grid.479226.c
252 schema:familyName Khamsiriwatchara
253 schema:givenName Amnat
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317531331.08
255 rdf:type schema:Person
256 sg:person.01322300063.32 schema:affiliation grid-institutes:grid.416738.f
257 schema:familyName Thwing
258 schema:givenName Julie
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322300063.32
260 rdf:type schema:Person
261 sg:person.0615541604.66 schema:affiliation grid-institutes:grid.479226.c
262 schema:familyName Kaewkungwal
263 schema:givenName Jaranit
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615541604.66
265 rdf:type schema:Person
266 sg:pub.10.1007/s10461-008-9413-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014406704
267 https://doi.org/10.1007/s10461-008-9413-1
268 rdf:type schema:CreativeWork
269 sg:pub.10.1007/s11524-006-9103-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035686833
270 https://doi.org/10.1007/s11524-006-9103-0
271 rdf:type schema:CreativeWork
272 sg:pub.10.1007/s11524-006-9105-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000213884
273 https://doi.org/10.1007/s11524-006-9105-y
274 rdf:type schema:CreativeWork
275 sg:pub.10.1007/s11524-006-9108-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018614619
276 https://doi.org/10.1007/s11524-006-9108-8
277 rdf:type schema:CreativeWork
278 sg:pub.10.1007/s11524-009-9365-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006796495
279 https://doi.org/10.1007/s11524-009-9365-4
280 rdf:type schema:CreativeWork
281 sg:pub.10.1023/a:1014528612685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033626590
282 https://doi.org/10.1023/a:1014528612685
283 rdf:type schema:CreativeWork
284 sg:pub.10.1023/a:1014534110868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047952743
285 https://doi.org/10.1023/a:1014534110868
286 rdf:type schema:CreativeWork
287 sg:pub.10.1186/1475-2875-10-117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019155916
288 https://doi.org/10.1186/1475-2875-10-117
289 rdf:type schema:CreativeWork
290 grid-institutes:grid.10223.32 schema:alternateName World Health Organization, Mekong Malaria Programme, c/o Faculty of Tropical Medicine, Mahidol University; 420/6, Rajvithi Rd, Bangkok 10400, Thailand
291 schema:name World Health Organization, Mekong Malaria Programme, c/o Faculty of Tropical Medicine, Mahidol University; 420/6, Rajvithi Rd, Bangkok 10400, Thailand
292 rdf:type schema:Organization
293 grid-institutes:grid.415836.d schema:alternateName Bureau for Vector-borne Diseases, Ministry of Public Health, Bangkok, Thailand
294 schema:name Bureau for Vector-borne Diseases, Ministry of Public Health, Bangkok, Thailand
295 rdf:type schema:Organization
296 grid-institutes:grid.416738.f schema:alternateName Centers for Disease Control and Prevention, CDC, Atlanta, USA
297 schema:name Centers for Disease Control and Prevention, CDC, Atlanta, USA
298 rdf:type schema:Organization
299 grid-institutes:grid.479226.c schema:alternateName Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Bangkok, Thailand
300 schema:name Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Bangkok, Thailand
301 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...