Respondent-driven sampling on the Thailand-Cambodia border. I. Can malaria cases be contained in mobile migrant workers? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-05-10

AUTHORS

Amnat Khamsiriwatchara, Piyaporn Wangroongsarb, Julie Thwing, James Eliades, Wichai Satimai, Charles Delacollette, Jaranit Kaewkungwal

ABSTRACT

BACKGROUND: Reliable information on mobility patterns of migrants is a crucial part of the strategy to contain the spread of artemisinin-resistant malaria parasites in South-East Asia, and may also be helpful to efforts to address other public health problems for migrants and members of host communities. In order to limit the spread of malarial drug resistance, the malaria prevention and control programme will need to devise strategies to reach cross-border and mobile migrant populations. METHODOLOGY: The Respondent-driven sampling (RDS) method was used to survey migrant workers from Cambodia and Myanmar, both registered and undocumented, in three Thai provinces on the Thailand-Cambodia border in close proximity to areas with documented artemisinin-resistant malaria parasites. 1,719 participants (828 Cambodian and 891 Myanmar migrants) were recruited. Subpopulations of migrant workers were analysed using the Thailand Ministry of Health classification based on length of residence in Thailand of greater than six months (long-term, or M1) or less than six months (short-term, or M2). Key information collected on the structured questionnaire included patterns of mobility and migration, demographic characteristics, treatment-seeking behaviours, and knowledge, perceptions, and practices about malaria. RESULTS: Workers from Cambodia came from provinces across Cambodia, and 22% of Cambodian M1 and 72% of Cambodian M2 migrants had been in Cambodia in the last three months. Less than 6% returned with a frequency of greater than once per month. Of migrants from Cambodia, 32% of M1 and 68% of M2 were planning to return, and named provinces across Cambodia as their likely next destinations. Most workers from Myanmar came from Mon state (86%), had never returned to Myanmar (85%), and only 4% stated plans to return. CONCLUSION: Information on migratory patterns of migrants from Myanmar and Cambodia along the malaria endemic Thailand-Cambodian border within the artemisinin resistance containment zone will help target health interventions, including treatment follow-up and surveillance. More... »

PAGES

120-120

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1475-2875-10-120

DOI

http://dx.doi.org/10.1186/1475-2875-10-120

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045469023

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21554744


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cambodia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Transmission, Infectious", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Emigration and Immigration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endemic Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Malaria, Falciparum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myanmar", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plasmodium falciparum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thailand", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transients and Migrants", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Bangkok, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.479226.c", 
          "name": [
            "Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khamsiriwatchara", 
        "givenName": "Amnat", 
        "id": "sg:person.01317531331.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317531331.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bureau for Vector-borne Diseases, Ministry of Public Health, Bangkok, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.415836.d", 
          "name": [
            "Bureau for Vector-borne Diseases, Ministry of Public Health, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wangroongsarb", 
        "givenName": "Piyaporn", 
        "id": "sg:person.01227423514.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227423514.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centers for Disease Control and Prevention, CDC, Atlanta, USA", 
          "id": "http://www.grid.ac/institutes/grid.416738.f", 
          "name": [
            "Centers for Disease Control and Prevention, CDC, Atlanta, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thwing", 
        "givenName": "Julie", 
        "id": "sg:person.01322300063.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322300063.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "World Health Organization, Mekong Malaria Programme, c/o Faculty of Tropical Medicine, Mahidol University; 420/6, Rajvithi Rd, Bangkok 10400, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.10223.32", 
          "name": [
            "World Health Organization, Mekong Malaria Programme, c/o Faculty of Tropical Medicine, Mahidol University; 420/6, Rajvithi Rd, Bangkok 10400, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eliades", 
        "givenName": "James", 
        "id": "sg:person.01222755224.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222755224.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bureau for Vector-borne Diseases, Ministry of Public Health, Bangkok, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.415836.d", 
          "name": [
            "Bureau for Vector-borne Diseases, Ministry of Public Health, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Satimai", 
        "givenName": "Wichai", 
        "id": "sg:person.01300717074.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300717074.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "World Health Organization, Mekong Malaria Programme, c/o Faculty of Tropical Medicine, Mahidol University; 420/6, Rajvithi Rd, Bangkok 10400, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.10223.32", 
          "name": [
            "World Health Organization, Mekong Malaria Programme, c/o Faculty of Tropical Medicine, Mahidol University; 420/6, Rajvithi Rd, Bangkok 10400, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delacollette", 
        "givenName": "Charles", 
        "id": "sg:person.01075662013.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075662013.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Bangkok, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.479226.c", 
          "name": [
            "Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaewkungwal", 
        "givenName": "Jaranit", 
        "id": "sg:person.0615541604.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615541604.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1014534110868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047952743", 
          "https://doi.org/10.1023/a:1014534110868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11524-006-9108-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018614619", 
          "https://doi.org/10.1007/s11524-006-9108-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11524-006-9103-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035686833", 
          "https://doi.org/10.1007/s11524-006-9103-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11524-006-9105-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000213884", 
          "https://doi.org/10.1007/s11524-006-9105-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-10-117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019155916", 
          "https://doi.org/10.1186/1475-2875-10-117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014528612685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033626590", 
          "https://doi.org/10.1023/a:1014528612685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10461-008-9413-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014406704", 
          "https://doi.org/10.1007/s10461-008-9413-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11524-009-9365-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006796495", 
          "https://doi.org/10.1007/s11524-009-9365-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05-10", 
    "datePublishedReg": "2011-05-10", 
    "description": "BACKGROUND: Reliable information on mobility patterns of migrants is a crucial part of the strategy to contain the spread of artemisinin-resistant malaria parasites in South-East Asia, and may also be helpful to efforts to address other public health problems for migrants and members of host communities. In order to limit the spread of malarial drug resistance, the malaria prevention and control programme will need to devise strategies to reach cross-border and mobile migrant populations.\nMETHODOLOGY: The Respondent-driven sampling (RDS) method was used to survey migrant workers from Cambodia and Myanmar, both registered and undocumented, in three Thai provinces on the Thailand-Cambodia border in close proximity to areas with documented artemisinin-resistant malaria parasites. 1,719 participants (828 Cambodian and 891 Myanmar migrants) were recruited. Subpopulations of migrant workers were analysed using the Thailand Ministry of Health classification based on length of residence in Thailand of greater than six months (long-term, or M1) or less than six months (short-term, or M2). Key information collected on the structured questionnaire included patterns of mobility and migration, demographic characteristics, treatment-seeking behaviours, and knowledge, perceptions, and practices about malaria.\nRESULTS: Workers from Cambodia came from provinces across Cambodia, and 22% of Cambodian M1 and 72% of Cambodian M2 migrants had been in Cambodia in the last three months. Less than 6% returned with a frequency of greater than once per month. Of migrants from Cambodia, 32% of M1 and 68% of M2 were planning to return, and named provinces across Cambodia as their likely next destinations. Most workers from Myanmar came from Mon state (86%), had never returned to Myanmar (85%), and only 4% stated plans to return.\nCONCLUSION: Information on migratory patterns of migrants from Myanmar and Cambodia along the malaria endemic Thailand-Cambodian border within the artemisinin resistance containment zone will help target health interventions, including treatment follow-up and surveillance.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1475-2875-10-120", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030597", 
        "issn": [
          "1475-2875"
        ], 
        "name": "Malaria Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "artemisinin-resistant malaria parasites", 
      "Thailand-Cambodia border", 
      "malaria parasites", 
      "public health problem", 
      "malarial drug resistance", 
      "treatment-seeking behavior", 
      "mobile migrant populations", 
      "respondent-driven sampling", 
      "malaria prevention", 
      "malaria cases", 
      "health problems", 
      "mobile migrant workers", 
      "health interventions", 
      "drug resistance", 
      "months", 
      "demographic characteristics", 
      "Thailand Ministry", 
      "health classification", 
      "structured questionnaire", 
      "Thai provinces", 
      "control programs", 
      "migrant populations", 
      "length of residence", 
      "M1", 
      "parasites", 
      "malaria", 
      "workers", 
      "prevention", 
      "intervention", 
      "Mon State", 
      "South East Asia", 
      "most workers", 
      "treatment", 
      "subpopulations", 
      "surveillance", 
      "questionnaire", 
      "containment zones", 
      "spread", 
      "participants", 
      "Cambodia", 
      "patterns", 
      "sampling method", 
      "residence", 
      "population", 
      "reliable information", 
      "migrant workers", 
      "border", 
      "respondents", 
      "close proximity", 
      "strategies", 
      "m2", 
      "migratory patterns", 
      "cases", 
      "resistance", 
      "information", 
      "Province", 
      "migration", 
      "key information", 
      "Myanmar", 
      "program", 
      "Thailand", 
      "practice", 
      "frequency", 
      "members", 
      "classification", 
      "perception", 
      "patterns of mobility", 
      "knowledge", 
      "plan", 
      "sampling", 
      "Ministry", 
      "area", 
      "length", 
      "crucial part", 
      "characteristics", 
      "host communities", 
      "migrants", 
      "efforts", 
      "part", 
      "community", 
      "Asia", 
      "method", 
      "proximity", 
      "mobility patterns", 
      "state", 
      "mobility", 
      "behavior", 
      "order", 
      "problem", 
      "next destination", 
      "zone", 
      "destination", 
      "Cambodian M1", 
      "Cambodian M2 migrants", 
      "M2 migrants", 
      "likely next destinations", 
      "malaria endemic Thailand-Cambodian border", 
      "endemic Thailand-Cambodian border", 
      "Thailand-Cambodian border", 
      "artemisinin resistance containment zone", 
      "resistance containment zone"
    ], 
    "name": "Respondent-driven sampling on the Thailand-Cambodia border. I. Can malaria cases be contained in mobile migrant workers?", 
    "pagination": "120-120", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045469023"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1475-2875-10-120"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21554744"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1475-2875-10-120", 
      "https://app.dimensions.ai/details/publication/pub.1045469023"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_530.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1475-2875-10-120"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1475-2875-10-120'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1475-2875-10-120'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1475-2875-10-120'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1475-2875-10-120'


 

This table displays all metadata directly associated to this object as RDF triples.

301 TRIPLES      22 PREDICATES      149 URIs      133 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1475-2875-10-120 schema:about N033ac087460d4dc59b9ec57a02238101
2 N0a4e7e3c561547a68f4731fcab2711ff
3 N34cbb2821e764ebd8cbe3593fc39e588
4 N42fd7e5f93d5460d89b21611e8fc3ad5
5 N4881a170cfae4215ae723fecf71d4164
6 N5ab9e20083ac4da2bbc7a890c598e1cf
7 N5efd5ecdd44c4dd29a0fd9f4cec3a85c
8 Na0e0f2855292441d9b1f2a2a1c24d424
9 Na81f9c3378ab41ffa32a98c7a61a4d4b
10 Nad14b0c85b814053ba5410ad524dfb07
11 Nb0fbd011ecff4ed8bf3b498f522fc704
12 Nbb9bdeeb532d47afb85a4b34012e33df
13 Nc0565c073557491bbfb338cd9ac669c4
14 Nf2cad9d6fd33466cb4eb81c08f2eacb1
15 anzsrc-for:11
16 anzsrc-for:1117
17 schema:author N0b54dca1ca20404d978690b94d6ba7e0
18 schema:citation sg:pub.10.1007/s10461-008-9413-1
19 sg:pub.10.1007/s11524-006-9103-0
20 sg:pub.10.1007/s11524-006-9105-y
21 sg:pub.10.1007/s11524-006-9108-8
22 sg:pub.10.1007/s11524-009-9365-4
23 sg:pub.10.1023/a:1014528612685
24 sg:pub.10.1023/a:1014534110868
25 sg:pub.10.1186/1475-2875-10-117
26 schema:datePublished 2011-05-10
27 schema:datePublishedReg 2011-05-10
28 schema:description BACKGROUND: Reliable information on mobility patterns of migrants is a crucial part of the strategy to contain the spread of artemisinin-resistant malaria parasites in South-East Asia, and may also be helpful to efforts to address other public health problems for migrants and members of host communities. In order to limit the spread of malarial drug resistance, the malaria prevention and control programme will need to devise strategies to reach cross-border and mobile migrant populations. METHODOLOGY: The Respondent-driven sampling (RDS) method was used to survey migrant workers from Cambodia and Myanmar, both registered and undocumented, in three Thai provinces on the Thailand-Cambodia border in close proximity to areas with documented artemisinin-resistant malaria parasites. 1,719 participants (828 Cambodian and 891 Myanmar migrants) were recruited. Subpopulations of migrant workers were analysed using the Thailand Ministry of Health classification based on length of residence in Thailand of greater than six months (long-term, or M1) or less than six months (short-term, or M2). Key information collected on the structured questionnaire included patterns of mobility and migration, demographic characteristics, treatment-seeking behaviours, and knowledge, perceptions, and practices about malaria. RESULTS: Workers from Cambodia came from provinces across Cambodia, and 22% of Cambodian M1 and 72% of Cambodian M2 migrants had been in Cambodia in the last three months. Less than 6% returned with a frequency of greater than once per month. Of migrants from Cambodia, 32% of M1 and 68% of M2 were planning to return, and named provinces across Cambodia as their likely next destinations. Most workers from Myanmar came from Mon state (86%), had never returned to Myanmar (85%), and only 4% stated plans to return. CONCLUSION: Information on migratory patterns of migrants from Myanmar and Cambodia along the malaria endemic Thailand-Cambodian border within the artemisinin resistance containment zone will help target health interventions, including treatment follow-up and surveillance.
29 schema:genre article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf Nb69450cc4d83423e8e782f7ee5a2f39e
33 Ncb10e88aeb8441f5a0290bf3c3c26aad
34 sg:journal.1030597
35 schema:keywords Asia
36 Cambodia
37 Cambodian M1
38 Cambodian M2 migrants
39 M1
40 M2 migrants
41 Ministry
42 Mon State
43 Myanmar
44 Province
45 South East Asia
46 Thai provinces
47 Thailand
48 Thailand Ministry
49 Thailand-Cambodia border
50 Thailand-Cambodian border
51 area
52 artemisinin resistance containment zone
53 artemisinin-resistant malaria parasites
54 behavior
55 border
56 cases
57 characteristics
58 classification
59 close proximity
60 community
61 containment zones
62 control programs
63 crucial part
64 demographic characteristics
65 destination
66 drug resistance
67 efforts
68 endemic Thailand-Cambodian border
69 frequency
70 health classification
71 health interventions
72 health problems
73 host communities
74 information
75 intervention
76 key information
77 knowledge
78 length
79 length of residence
80 likely next destinations
81 m2
82 malaria
83 malaria cases
84 malaria endemic Thailand-Cambodian border
85 malaria parasites
86 malaria prevention
87 malarial drug resistance
88 members
89 method
90 migrant populations
91 migrant workers
92 migrants
93 migration
94 migratory patterns
95 mobile migrant populations
96 mobile migrant workers
97 mobility
98 mobility patterns
99 months
100 most workers
101 next destination
102 order
103 parasites
104 part
105 participants
106 patterns
107 patterns of mobility
108 perception
109 plan
110 population
111 practice
112 prevention
113 problem
114 program
115 proximity
116 public health problem
117 questionnaire
118 reliable information
119 residence
120 resistance
121 resistance containment zone
122 respondent-driven sampling
123 respondents
124 sampling
125 sampling method
126 spread
127 state
128 strategies
129 structured questionnaire
130 subpopulations
131 surveillance
132 treatment
133 treatment-seeking behavior
134 workers
135 zone
136 schema:name Respondent-driven sampling on the Thailand-Cambodia border. I. Can malaria cases be contained in mobile migrant workers?
137 schema:pagination 120-120
138 schema:productId N003c858a125249478cd312624b1311d0
139 Nddeeaf645a7b4ea9ae74210c44061f69
140 Ne326df6b44ab429b98d217e293ffdf2f
141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045469023
142 https://doi.org/10.1186/1475-2875-10-120
143 schema:sdDatePublished 2022-01-01T18:25
144 schema:sdLicense https://scigraph.springernature.com/explorer/license/
145 schema:sdPublisher N9d2863417b164f17ab76100076b9b275
146 schema:url https://doi.org/10.1186/1475-2875-10-120
147 sgo:license sg:explorer/license/
148 sgo:sdDataset articles
149 rdf:type schema:ScholarlyArticle
150 N003c858a125249478cd312624b1311d0 schema:name dimensions_id
151 schema:value pub.1045469023
152 rdf:type schema:PropertyValue
153 N033ac087460d4dc59b9ec57a02238101 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Transients and Migrants
155 rdf:type schema:DefinedTerm
156 N0a4e7e3c561547a68f4731fcab2711ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Disease Transmission, Infectious
158 rdf:type schema:DefinedTerm
159 N0b1ad53330794fabbd50838567299ae6 rdf:first sg:person.0615541604.66
160 rdf:rest rdf:nil
161 N0b54dca1ca20404d978690b94d6ba7e0 rdf:first sg:person.01317531331.08
162 rdf:rest Na0d0cabc5ebc4884949e48dabdd2e06b
163 N34cbb2821e764ebd8cbe3593fc39e588 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Myanmar
165 rdf:type schema:DefinedTerm
166 N42fd7e5f93d5460d89b21611e8fc3ad5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Drug Resistance
168 rdf:type schema:DefinedTerm
169 N45a4ba84ace147c78aa4d3ef42327dea rdf:first sg:person.01222755224.37
170 rdf:rest Nabadcfb2f42c40d0a88fe5b72cf420f2
171 N4881a170cfae4215ae723fecf71d4164 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Malaria, Falciparum
173 rdf:type schema:DefinedTerm
174 N5ab9e20083ac4da2bbc7a890c598e1cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Emigration and Immigration
176 rdf:type schema:DefinedTerm
177 N5efd5ecdd44c4dd29a0fd9f4cec3a85c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Thailand
179 rdf:type schema:DefinedTerm
180 N9d2863417b164f17ab76100076b9b275 schema:name Springer Nature - SN SciGraph project
181 rdf:type schema:Organization
182 Na0d0cabc5ebc4884949e48dabdd2e06b rdf:first sg:person.01227423514.81
183 rdf:rest Ne6c70776561a4d3883ebda31d85287ea
184 Na0e0f2855292441d9b1f2a2a1c24d424 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Female
186 rdf:type schema:DefinedTerm
187 Na81f9c3378ab41ffa32a98c7a61a4d4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Humans
189 rdf:type schema:DefinedTerm
190 Nab95d7897cf64536ac55e3345695ce77 rdf:first sg:person.01075662013.44
191 rdf:rest N0b1ad53330794fabbd50838567299ae6
192 Nabadcfb2f42c40d0a88fe5b72cf420f2 rdf:first sg:person.01300717074.32
193 rdf:rest Nab95d7897cf64536ac55e3345695ce77
194 Nad14b0c85b814053ba5410ad524dfb07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Surveys and Questionnaires
196 rdf:type schema:DefinedTerm
197 Nb0fbd011ecff4ed8bf3b498f522fc704 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Cambodia
199 rdf:type schema:DefinedTerm
200 Nb69450cc4d83423e8e782f7ee5a2f39e schema:issueNumber 1
201 rdf:type schema:PublicationIssue
202 Nbb9bdeeb532d47afb85a4b34012e33df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Plasmodium falciparum
204 rdf:type schema:DefinedTerm
205 Nc0565c073557491bbfb338cd9ac669c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Endemic Diseases
207 rdf:type schema:DefinedTerm
208 Ncb10e88aeb8441f5a0290bf3c3c26aad schema:volumeNumber 10
209 rdf:type schema:PublicationVolume
210 Nddeeaf645a7b4ea9ae74210c44061f69 schema:name doi
211 schema:value 10.1186/1475-2875-10-120
212 rdf:type schema:PropertyValue
213 Ne326df6b44ab429b98d217e293ffdf2f schema:name pubmed_id
214 schema:value 21554744
215 rdf:type schema:PropertyValue
216 Ne6c70776561a4d3883ebda31d85287ea rdf:first sg:person.01322300063.32
217 rdf:rest N45a4ba84ace147c78aa4d3ef42327dea
218 Nf2cad9d6fd33466cb4eb81c08f2eacb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
219 schema:name Male
220 rdf:type schema:DefinedTerm
221 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
222 schema:name Medical and Health Sciences
223 rdf:type schema:DefinedTerm
224 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
225 schema:name Public Health and Health Services
226 rdf:type schema:DefinedTerm
227 sg:journal.1030597 schema:issn 1475-2875
228 schema:name Malaria Journal
229 schema:publisher Springer Nature
230 rdf:type schema:Periodical
231 sg:person.01075662013.44 schema:affiliation grid-institutes:grid.10223.32
232 schema:familyName Delacollette
233 schema:givenName Charles
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075662013.44
235 rdf:type schema:Person
236 sg:person.01222755224.37 schema:affiliation grid-institutes:grid.10223.32
237 schema:familyName Eliades
238 schema:givenName James
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222755224.37
240 rdf:type schema:Person
241 sg:person.01227423514.81 schema:affiliation grid-institutes:grid.415836.d
242 schema:familyName Wangroongsarb
243 schema:givenName Piyaporn
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227423514.81
245 rdf:type schema:Person
246 sg:person.01300717074.32 schema:affiliation grid-institutes:grid.415836.d
247 schema:familyName Satimai
248 schema:givenName Wichai
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300717074.32
250 rdf:type schema:Person
251 sg:person.01317531331.08 schema:affiliation grid-institutes:grid.479226.c
252 schema:familyName Khamsiriwatchara
253 schema:givenName Amnat
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317531331.08
255 rdf:type schema:Person
256 sg:person.01322300063.32 schema:affiliation grid-institutes:grid.416738.f
257 schema:familyName Thwing
258 schema:givenName Julie
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322300063.32
260 rdf:type schema:Person
261 sg:person.0615541604.66 schema:affiliation grid-institutes:grid.479226.c
262 schema:familyName Kaewkungwal
263 schema:givenName Jaranit
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615541604.66
265 rdf:type schema:Person
266 sg:pub.10.1007/s10461-008-9413-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014406704
267 https://doi.org/10.1007/s10461-008-9413-1
268 rdf:type schema:CreativeWork
269 sg:pub.10.1007/s11524-006-9103-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035686833
270 https://doi.org/10.1007/s11524-006-9103-0
271 rdf:type schema:CreativeWork
272 sg:pub.10.1007/s11524-006-9105-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000213884
273 https://doi.org/10.1007/s11524-006-9105-y
274 rdf:type schema:CreativeWork
275 sg:pub.10.1007/s11524-006-9108-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018614619
276 https://doi.org/10.1007/s11524-006-9108-8
277 rdf:type schema:CreativeWork
278 sg:pub.10.1007/s11524-009-9365-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006796495
279 https://doi.org/10.1007/s11524-009-9365-4
280 rdf:type schema:CreativeWork
281 sg:pub.10.1023/a:1014528612685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033626590
282 https://doi.org/10.1023/a:1014528612685
283 rdf:type schema:CreativeWork
284 sg:pub.10.1023/a:1014534110868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047952743
285 https://doi.org/10.1023/a:1014534110868
286 rdf:type schema:CreativeWork
287 sg:pub.10.1186/1475-2875-10-117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019155916
288 https://doi.org/10.1186/1475-2875-10-117
289 rdf:type schema:CreativeWork
290 grid-institutes:grid.10223.32 schema:alternateName World Health Organization, Mekong Malaria Programme, c/o Faculty of Tropical Medicine, Mahidol University; 420/6, Rajvithi Rd, Bangkok 10400, Thailand
291 schema:name World Health Organization, Mekong Malaria Programme, c/o Faculty of Tropical Medicine, Mahidol University; 420/6, Rajvithi Rd, Bangkok 10400, Thailand
292 rdf:type schema:Organization
293 grid-institutes:grid.415836.d schema:alternateName Bureau for Vector-borne Diseases, Ministry of Public Health, Bangkok, Thailand
294 schema:name Bureau for Vector-borne Diseases, Ministry of Public Health, Bangkok, Thailand
295 rdf:type schema:Organization
296 grid-institutes:grid.416738.f schema:alternateName Centers for Disease Control and Prevention, CDC, Atlanta, USA
297 schema:name Centers for Disease Control and Prevention, CDC, Atlanta, USA
298 rdf:type schema:Organization
299 grid-institutes:grid.479226.c schema:alternateName Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Bangkok, Thailand
300 schema:name Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Bangkok, Thailand
301 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...