Bacterial inclusion bodies as potential synthetic devices for pathogen recognition and a therapeutic substance release View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-02-07

AUTHORS

Klaudia Talafová, Eva Hrabárová, Dušan Chorvát, Jozef Nahálka

ABSTRACT

BACKGROUND: Adhesins of pathogens recognise the glycans on the host cell and mediate adherence. They are also crucial for determining the tissue preferences of pathogens. Currently, glyco-nanomaterials provide potential tool for antimicrobial therapy. We demonstrate that properly glyco-tailored inclusion bodies can specifically bind pathogen adhesins and release therapeutic substances. RESULTS: In this paper, we describe the preparation of tailored inclusion bodies via the conjugation of indicator protein aggregated to form inclusion bodies with soluble proteins. Whereas the indicator protein represents a remedy, the soluble proteins play a role in pathogen recognition. For conjugation, glutaraldehyde was used as linker. The treatment of conjugates with polar lysine, which was used to inactivate the residual glutaraldehyde, inhibited unwanted hydrophobic interactions between inclusion bodies. The tailored inclusion bodies specifically interacted with the SabA adhesin from Helicobacter pylori aggregated to form inclusion bodies that were bound to the sialic acids decorating the surface of human erythrocytes. We also tested the release of indicator proteins from the inclusion bodies using sortase A and Ssp DNAB intein self-cleaving modules, respectively. Sortase A released proteins in a relatively short period of time, whereas the intein cleavage took several weeks. CONCLUSIONS: The tailored inclusion bodies are promising "nanopills" for biomedical applications. They are able to specifically target the pathogen, while a self-cleaving module releases a soluble remedy. Various self-cleaving modules can be enabled to achieve the diverse pace of remedy release. More... »

PAGES

16-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1475-2859-12-16

DOI

http://dx.doi.org/10.1186/1475-2859-12-16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008551276

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23391325


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adhesins, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aminoacyltransferases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cysteine Endopeptidases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Erythrocytes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glutaral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Helicobacter pylori", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrophobic and Hydrophilic Interactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Inclusion Bodies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lysine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanostructures", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Chemistry, Centre of excellence for white-green biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, Nitra, SK, 94976, Slovak Republic", 
          "id": "http://www.grid.ac/institutes/grid.22539.3f", 
          "name": [
            "Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, D\u00fabravsk\u00e1 cesta 9, Bratislava, SK, 84538, Slovak Republic", 
            "Institute of Chemistry, Centre of excellence for white-green biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, Nitra, SK, 94976, Slovak Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Talafov\u00e1", 
        "givenName": "Klaudia", 
        "id": "sg:person.01246667244.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246667244.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Chemistry, Centre of excellence for white-green biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, Nitra, SK, 94976, Slovak Republic", 
          "id": "http://www.grid.ac/institutes/grid.22539.3f", 
          "name": [
            "Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, D\u00fabravsk\u00e1 cesta 9, Bratislava, SK, 84538, Slovak Republic", 
            "Institute of Chemistry, Centre of excellence for white-green biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, Nitra, SK, 94976, Slovak Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hrab\u00e1rov\u00e1", 
        "givenName": "Eva", 
        "id": "sg:person.01116405171.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116405171.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biophonic Department, International Laser Centre, Ilkovi\u010dova 3, Mlynsk\u00e1 dolina, Bratislava, SK, 81219, Slovak Republic", 
          "id": "http://www.grid.ac/institutes/grid.419374.c", 
          "name": [
            "Biophonic Department, International Laser Centre, Ilkovi\u010dova 3, Mlynsk\u00e1 dolina, Bratislava, SK, 81219, Slovak Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chorv\u00e1t", 
        "givenName": "Du\u0161an", 
        "id": "sg:person.01113413460.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113413460.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Chemistry, Centre of excellence for white-green biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, Nitra, SK, 94976, Slovak Republic", 
          "id": "http://www.grid.ac/institutes/grid.22539.3f", 
          "name": [
            "Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, D\u00fabravsk\u00e1 cesta 9, Bratislava, SK, 84538, Slovak Republic", 
            "Institute of Chemistry, Centre of excellence for white-green biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, Nitra, SK, 94976, Slovak Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nah\u00e1lka", 
        "givenName": "Jozef", 
        "id": "sg:person.01244467177.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244467177.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1475-2859-9-66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032937553", 
          "https://doi.org/10.1186/1475-2859-9-66"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-007-1233-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015686473", 
          "https://doi.org/10.1007/s00253-007-1233-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2859-4-27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026556270", 
          "https://doi.org/10.1186/1475-2859-4-27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2859-11-76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011364562", 
          "https://doi.org/10.1186/1475-2859-11-76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2859-11-67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032521088", 
          "https://doi.org/10.1186/1475-2859-11-67"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2859-10-42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034874838", 
          "https://doi.org/10.1186/1475-2859-10-42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-0881-9_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047785056", 
          "https://doi.org/10.1007/978-1-4614-0881-9_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6750-10-42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019523303", 
          "https://doi.org/10.1186/1472-6750-10-42"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-02-07", 
    "datePublishedReg": "2013-02-07", 
    "description": "BACKGROUND: Adhesins of pathogens recognise the glycans on the host cell and mediate adherence. They are also crucial for determining the tissue preferences of pathogens. Currently, glyco-nanomaterials provide potential tool for antimicrobial therapy. We demonstrate that properly glyco-tailored inclusion bodies can specifically bind pathogen adhesins and release therapeutic substances.\nRESULTS: In this paper, we describe the preparation of tailored inclusion bodies via the conjugation of indicator protein aggregated to form inclusion bodies with soluble proteins. Whereas the indicator protein represents a remedy, the soluble proteins play a role in pathogen recognition. For conjugation, glutaraldehyde was used as linker. The treatment of conjugates with polar lysine, which was used to inactivate the residual glutaraldehyde, inhibited unwanted hydrophobic interactions between inclusion bodies. The tailored inclusion bodies specifically interacted with the SabA adhesin from Helicobacter pylori aggregated to form inclusion bodies that were bound to the sialic acids decorating the surface of human erythrocytes. We also tested the release of indicator proteins from the inclusion bodies using sortase A and Ssp DNAB intein self-cleaving modules, respectively. Sortase A released proteins in a relatively short period of time, whereas the intein cleavage took several weeks.\nCONCLUSIONS: The tailored inclusion bodies are promising \"nanopills\" for biomedical applications. They are able to specifically target the pathogen, while a self-cleaving module releases a soluble remedy. Various self-cleaving modules can be enabled to achieve the diverse pace of remedy release.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1475-2859-12-16", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030599", 
        "issn": [
          "1475-2859"
        ], 
        "name": "Microbial Cell Factories", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "hydrophobic interactions", 
      "biomedical applications", 
      "sortase A", 
      "intein cleavage", 
      "pathogen adhesins", 
      "substance release", 
      "residual glutaraldehyde", 
      "synthetic devices", 
      "conjugation", 
      "bacterial inclusion bodies", 
      "therapeutic substances", 
      "glutaraldehyde", 
      "sialic acid", 
      "linker", 
      "nanopills", 
      "conjugates", 
      "SabA adhesin", 
      "preparation", 
      "sortase", 
      "release", 
      "glycans", 
      "soluble proteins", 
      "human erythrocytes", 
      "cleavage", 
      "acid", 
      "surface", 
      "lysine", 
      "substances", 
      "potential tool", 
      "interaction", 
      "protein", 
      "indicator proteins", 
      "applications", 
      "devices", 
      "inclusion bodies", 
      "recognition", 
      "cells", 
      "time", 
      "erythrocytes", 
      "short period", 
      "pathogens", 
      "tool", 
      "remedies", 
      "role", 
      "treatment", 
      "Helicobacter pylori", 
      "preferences", 
      "body", 
      "pathogen recognition", 
      "adhesins", 
      "module", 
      "host cells", 
      "paper", 
      "tissue preference", 
      "antimicrobial therapy", 
      "pylori", 
      "pace", 
      "therapy", 
      "period", 
      "adherence", 
      "weeks", 
      "Adhesins of pathogens", 
      "glyco-tailored inclusion bodies", 
      "treatment of conjugates", 
      "polar lysine", 
      "unwanted hydrophobic interactions", 
      "Ssp DNAB intein self-cleaving modules", 
      "DNAB intein self-cleaving modules", 
      "intein self-cleaving modules", 
      "self-cleaving modules", 
      "soluble remedy", 
      "diverse pace", 
      "remedy release", 
      "potential synthetic devices", 
      "therapeutic substance release"
    ], 
    "name": "Bacterial inclusion bodies as potential synthetic devices for pathogen recognition and a therapeutic substance release", 
    "pagination": "16-16", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008551276"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1475-2859-12-16"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23391325"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1475-2859-12-16", 
      "https://app.dimensions.ai/details/publication/pub.1008551276"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1475-2859-12-16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1475-2859-12-16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1475-2859-12-16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1475-2859-12-16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1475-2859-12-16'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      22 PREDICATES      123 URIs      107 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1475-2859-12-16 schema:about N0d1f8dace0d546e08987ba9619d38370
2 N13ef100da8444b5ba105ecbc949e0187
3 N1ce51b9bab6643be92dfd1faa1249bab
4 N403facaad1ea4e12be099bb35ff1f0b0
5 N47a377d0adbd4e709e60ba4c997fa5b9
6 N4b2a70d1214a4ab9acd219f3b9bbd43c
7 N5b36d86786e54daeb8e4713ef0cba455
8 N8260ebf36d834da5b0ad44c37b8bc72a
9 N8c94760739d341279fc81e67f4f02f04
10 Na98dc2a9a0f543fca31a5f36918faae9
11 Naeb6ca0f1c864e1ba9df3bff23da242d
12 Nf1b7358513b842a4bf76a58e34deb1de
13 Nf3e80a69c36744169f4d66bc18421573
14 Nfffba663734e4d1997cffa6dc6942199
15 anzsrc-for:06
16 anzsrc-for:0601
17 schema:author Nc55dd829b01b4ba08e91a98b57aa6252
18 schema:citation sg:pub.10.1007/978-1-4614-0881-9_2
19 sg:pub.10.1007/s00253-007-1233-0
20 sg:pub.10.1186/1472-6750-10-42
21 sg:pub.10.1186/1475-2859-10-42
22 sg:pub.10.1186/1475-2859-11-67
23 sg:pub.10.1186/1475-2859-11-76
24 sg:pub.10.1186/1475-2859-4-27
25 sg:pub.10.1186/1475-2859-9-66
26 schema:datePublished 2013-02-07
27 schema:datePublishedReg 2013-02-07
28 schema:description BACKGROUND: Adhesins of pathogens recognise the glycans on the host cell and mediate adherence. They are also crucial for determining the tissue preferences of pathogens. Currently, glyco-nanomaterials provide potential tool for antimicrobial therapy. We demonstrate that properly glyco-tailored inclusion bodies can specifically bind pathogen adhesins and release therapeutic substances. RESULTS: In this paper, we describe the preparation of tailored inclusion bodies via the conjugation of indicator protein aggregated to form inclusion bodies with soluble proteins. Whereas the indicator protein represents a remedy, the soluble proteins play a role in pathogen recognition. For conjugation, glutaraldehyde was used as linker. The treatment of conjugates with polar lysine, which was used to inactivate the residual glutaraldehyde, inhibited unwanted hydrophobic interactions between inclusion bodies. The tailored inclusion bodies specifically interacted with the SabA adhesin from Helicobacter pylori aggregated to form inclusion bodies that were bound to the sialic acids decorating the surface of human erythrocytes. We also tested the release of indicator proteins from the inclusion bodies using sortase A and Ssp DNAB intein self-cleaving modules, respectively. Sortase A released proteins in a relatively short period of time, whereas the intein cleavage took several weeks. CONCLUSIONS: The tailored inclusion bodies are promising "nanopills" for biomedical applications. They are able to specifically target the pathogen, while a self-cleaving module releases a soluble remedy. Various self-cleaving modules can be enabled to achieve the diverse pace of remedy release.
29 schema:genre article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf Nc2164d78d6f14a3d859d243262d7ec0f
33 Nc6f616e85e924a9c8ced231fbd3b7f21
34 sg:journal.1030599
35 schema:keywords Adhesins of pathogens
36 DNAB intein self-cleaving modules
37 Helicobacter pylori
38 SabA adhesin
39 Ssp DNAB intein self-cleaving modules
40 acid
41 adherence
42 adhesins
43 antimicrobial therapy
44 applications
45 bacterial inclusion bodies
46 biomedical applications
47 body
48 cells
49 cleavage
50 conjugates
51 conjugation
52 devices
53 diverse pace
54 erythrocytes
55 glutaraldehyde
56 glycans
57 glyco-tailored inclusion bodies
58 host cells
59 human erythrocytes
60 hydrophobic interactions
61 inclusion bodies
62 indicator proteins
63 intein cleavage
64 intein self-cleaving modules
65 interaction
66 linker
67 lysine
68 module
69 nanopills
70 pace
71 paper
72 pathogen adhesins
73 pathogen recognition
74 pathogens
75 period
76 polar lysine
77 potential synthetic devices
78 potential tool
79 preferences
80 preparation
81 protein
82 pylori
83 recognition
84 release
85 remedies
86 remedy release
87 residual glutaraldehyde
88 role
89 self-cleaving modules
90 short period
91 sialic acid
92 soluble proteins
93 soluble remedy
94 sortase
95 sortase A
96 substance release
97 substances
98 surface
99 synthetic devices
100 therapeutic substance release
101 therapeutic substances
102 therapy
103 time
104 tissue preference
105 tool
106 treatment
107 treatment of conjugates
108 unwanted hydrophobic interactions
109 weeks
110 schema:name Bacterial inclusion bodies as potential synthetic devices for pathogen recognition and a therapeutic substance release
111 schema:pagination 16-16
112 schema:productId N265ac1a94c2e4173bc4c5db1c7b2585e
113 N4e9f509785e4407391a74c99cb6414d6
114 N65d82288986d4f9a8e71b4aaa39a8269
115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008551276
116 https://doi.org/10.1186/1475-2859-12-16
117 schema:sdDatePublished 2021-12-01T19:30
118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
119 schema:sdPublisher N00a2923ade4d4878b7c9429c3552f8b4
120 schema:url https://doi.org/10.1186/1475-2859-12-16
121 sgo:license sg:explorer/license/
122 sgo:sdDataset articles
123 rdf:type schema:ScholarlyArticle
124 N00a2923ade4d4878b7c9429c3552f8b4 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 N0d1f8dace0d546e08987ba9619d38370 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Glutaral
128 rdf:type schema:DefinedTerm
129 N13ef100da8444b5ba105ecbc949e0187 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Bacteria
131 rdf:type schema:DefinedTerm
132 N1ce51b9bab6643be92dfd1faa1249bab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Aminoacyltransferases
134 rdf:type schema:DefinedTerm
135 N265ac1a94c2e4173bc4c5db1c7b2585e schema:name pubmed_id
136 schema:value 23391325
137 rdf:type schema:PropertyValue
138 N37532cb0d6cd4330ae37a18934887847 rdf:first sg:person.01244467177.13
139 rdf:rest rdf:nil
140 N3d50cd957b4f45f99ed5efcd2233e3b4 rdf:first sg:person.01116405171.39
141 rdf:rest Nc24a14c1bf6549d787c259cfcb587de2
142 N403facaad1ea4e12be099bb35ff1f0b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Lysine
144 rdf:type schema:DefinedTerm
145 N47a377d0adbd4e709e60ba4c997fa5b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Nanostructures
147 rdf:type schema:DefinedTerm
148 N4b2a70d1214a4ab9acd219f3b9bbd43c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Escherichia coli Proteins
150 rdf:type schema:DefinedTerm
151 N4e9f509785e4407391a74c99cb6414d6 schema:name dimensions_id
152 schema:value pub.1008551276
153 rdf:type schema:PropertyValue
154 N5b36d86786e54daeb8e4713ef0cba455 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Helicobacter pylori
156 rdf:type schema:DefinedTerm
157 N65d82288986d4f9a8e71b4aaa39a8269 schema:name doi
158 schema:value 10.1186/1475-2859-12-16
159 rdf:type schema:PropertyValue
160 N8260ebf36d834da5b0ad44c37b8bc72a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Hydrophobic and Hydrophilic Interactions
162 rdf:type schema:DefinedTerm
163 N8c94760739d341279fc81e67f4f02f04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Cysteine Endopeptidases
165 rdf:type schema:DefinedTerm
166 Na98dc2a9a0f543fca31a5f36918faae9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Humans
168 rdf:type schema:DefinedTerm
169 Naeb6ca0f1c864e1ba9df3bff23da242d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Bacterial Proteins
171 rdf:type schema:DefinedTerm
172 Nc2164d78d6f14a3d859d243262d7ec0f schema:issueNumber 1
173 rdf:type schema:PublicationIssue
174 Nc24a14c1bf6549d787c259cfcb587de2 rdf:first sg:person.01113413460.10
175 rdf:rest N37532cb0d6cd4330ae37a18934887847
176 Nc55dd829b01b4ba08e91a98b57aa6252 rdf:first sg:person.01246667244.32
177 rdf:rest N3d50cd957b4f45f99ed5efcd2233e3b4
178 Nc6f616e85e924a9c8ced231fbd3b7f21 schema:volumeNumber 12
179 rdf:type schema:PublicationVolume
180 Nf1b7358513b842a4bf76a58e34deb1de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Inclusion Bodies
182 rdf:type schema:DefinedTerm
183 Nf3e80a69c36744169f4d66bc18421573 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Adhesins, Bacterial
185 rdf:type schema:DefinedTerm
186 Nfffba663734e4d1997cffa6dc6942199 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Erythrocytes
188 rdf:type schema:DefinedTerm
189 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
190 schema:name Biological Sciences
191 rdf:type schema:DefinedTerm
192 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
193 schema:name Biochemistry and Cell Biology
194 rdf:type schema:DefinedTerm
195 sg:journal.1030599 schema:issn 1475-2859
196 schema:name Microbial Cell Factories
197 schema:publisher Springer Nature
198 rdf:type schema:Periodical
199 sg:person.01113413460.10 schema:affiliation grid-institutes:grid.419374.c
200 schema:familyName Chorvát
201 schema:givenName Dušan
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113413460.10
203 rdf:type schema:Person
204 sg:person.01116405171.39 schema:affiliation grid-institutes:grid.22539.3f
205 schema:familyName Hrabárová
206 schema:givenName Eva
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116405171.39
208 rdf:type schema:Person
209 sg:person.01244467177.13 schema:affiliation grid-institutes:grid.22539.3f
210 schema:familyName Nahálka
211 schema:givenName Jozef
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244467177.13
213 rdf:type schema:Person
214 sg:person.01246667244.32 schema:affiliation grid-institutes:grid.22539.3f
215 schema:familyName Talafová
216 schema:givenName Klaudia
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246667244.32
218 rdf:type schema:Person
219 sg:pub.10.1007/978-1-4614-0881-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047785056
220 https://doi.org/10.1007/978-1-4614-0881-9_2
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s00253-007-1233-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015686473
223 https://doi.org/10.1007/s00253-007-1233-0
224 rdf:type schema:CreativeWork
225 sg:pub.10.1186/1472-6750-10-42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019523303
226 https://doi.org/10.1186/1472-6750-10-42
227 rdf:type schema:CreativeWork
228 sg:pub.10.1186/1475-2859-10-42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034874838
229 https://doi.org/10.1186/1475-2859-10-42
230 rdf:type schema:CreativeWork
231 sg:pub.10.1186/1475-2859-11-67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032521088
232 https://doi.org/10.1186/1475-2859-11-67
233 rdf:type schema:CreativeWork
234 sg:pub.10.1186/1475-2859-11-76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011364562
235 https://doi.org/10.1186/1475-2859-11-76
236 rdf:type schema:CreativeWork
237 sg:pub.10.1186/1475-2859-4-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026556270
238 https://doi.org/10.1186/1475-2859-4-27
239 rdf:type schema:CreativeWork
240 sg:pub.10.1186/1475-2859-9-66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032937553
241 https://doi.org/10.1186/1475-2859-9-66
242 rdf:type schema:CreativeWork
243 grid-institutes:grid.22539.3f schema:alternateName Institute of Chemistry, Centre of excellence for white-green biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, Nitra, SK, 94976, Slovak Republic
244 schema:name Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK, 84538, Slovak Republic
245 Institute of Chemistry, Centre of excellence for white-green biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, Nitra, SK, 94976, Slovak Republic
246 rdf:type schema:Organization
247 grid-institutes:grid.419374.c schema:alternateName Biophonic Department, International Laser Centre, Ilkovičova 3, Mlynská dolina, Bratislava, SK, 81219, Slovak Republic
248 schema:name Biophonic Department, International Laser Centre, Ilkovičova 3, Mlynská dolina, Bratislava, SK, 81219, Slovak Republic
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...