Age- and sex-specific prevalence and ten-year risk for cardiovascular disease of all 16 risk factor combinations of the metabolic syndrome ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Susanne Moebus, Chakrapani Balijepalli, Christian Lösch, Laura Göres, Bernd von Stritzky, Peter Bramlage, Jürgen Wasem, Karl-Heinz Jöckel

ABSTRACT

BACKGROUND: Based on the AHA/NHLBI-definition three out of five cardiometabolic traits must be present for the diagnosis of the metabolic syndrome (MetS), resulting in 16 different combination types. The associated cardiovascular risk may however be different and specific combination may be indicative of an increased risk, furthermore little is known to which extent these 16 combinations contribute to the overall prevalence of MetS. Here we assessed the prevalence of all 16 combination types of MetS, analyzed the impact of age and gender on prevalence rates, and estimated the 10-year risk of fatal and non-fatal myocardial infarction (MI) of each MetS combination type. METHODS: We used data of the German Metabolic and Cardiovascular Risk Project (GEMCAS), a cross-sectional study, performed during October 2005, including 35,869 participants (aged 18-99 years, 61% women). Age-standardized prevalence and 10-year PROCAM and ESC risk scores for MI were calculated. RESULTS: In both men and women the combination with elevated waist-circumference, blood pressure and glucose (WC-BP-GL) was the most frequent combination (28%), however a distinct unequal distribution was observed regarding age and sex. Any combination with GL was common in the elderly, whereas any combination with dyslipidemia and without GL was frequent in the younger. Men without MetS had an estimated mean 10-year risk of 4.7% (95%-CI: 4.5%-4.8%) for MI (PROCAM), whereas the mean 10-year risk of men with MetS was clearly higher (age-standardized 7.9%; 7.8-8.0%). In women without MetS the mean 10-year risk for MI was 1.1%, in those with MetS 2.3%. The highest impact on an estimated 10-year risk for MI (PROCAM) was observed with TG-HDL-GL-BP in both sexes (men 14.7%, women 3.9%). However, we could identify combinations with equal risks of non-fatal and fatal MI compared to participants without MetS. CONCLUSIONS: We observed large variations in the prevalence of all 16 combination types and their association to cardiovascular risk. The importance of different combinations of MetS changes with age and between genders putting emphasis on a tailored approach towards very young or very old subjects. This knowledge may guide clinicians to effectively screen individuals and prioritize diagnostic procedures depending on age and gender. More... »

PAGES

34

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1475-2840-9-34

DOI

http://dx.doi.org/10.1186/1475-2840-9-34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042008892

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20696055


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dyslipidemias", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Germany", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Infarction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Waist Circumference", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moebus", 
        "givenName": "Susanne", 
        "id": "sg:person.01260346064.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260346064.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balijepalli", 
        "givenName": "Chakrapani", 
        "id": "sg:person.0740414331.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740414331.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f6sch", 
        "givenName": "Christian", 
        "id": "sg:person.01121473323.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121473323.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f6res", 
        "givenName": "Laura", 
        "id": "sg:person.01037003165.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037003165.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sanofi (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.420214.1", 
          "name": [
            "Sanofi-Aventis Deutschland GmbH, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "von Stritzky", 
        "givenName": "Bernd", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Cardiovascular Pharmacology and Epidemiology, Mahlow, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bramlage", 
        "givenName": "Peter", 
        "id": "sg:person.01304431360.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304431360.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alfried Krupp von Bohlen und Halbach Foundation", 
          "id": "https://www.grid.ac/institutes/grid.454205.2", 
          "name": [
            "Alfried Krupp von Bohlen und Halbach Foundation, Institute for Healthcare Management, Faculty of Economics, University of Duisburg, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wasem", 
        "givenName": "J\u00fcrgen", 
        "id": "sg:person.01224432156.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224432156.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "J\u00f6ckel", 
        "givenName": "Karl-Heinz", 
        "id": "sg:person.01110577373.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110577373.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/hc0302.102575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005321039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3205(03)00646-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005740734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3205(03)00646-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005740734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.288.21.2709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009474275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehm024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010371996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.109.855817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011062235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc07-0186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011752993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1602467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012204327", 
          "https://doi.org/10.1038/sj.ejcn.1602467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1602467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012204327", 
          "https://doi.org/10.1038/sj.ejcn.1602467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2840-6-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016281833", 
          "https://doi.org/10.1186/1475-2840-6-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-9136(199807)15:7<539::aid-dia668>3.0.co;2-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016868849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.168.9.969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018002272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.109.863092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018202040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.165.22.2644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023369592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwi229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032730984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwi229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032730984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.285.19.2486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033739611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2840-6-22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036590317", 
          "https://doi.org/10.1186/1475-2840-6-22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-5491.2004.01400.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038013785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diabres.2008.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039104950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.hyp.0000251934.55488.ae", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041670569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.hyp.0000251934.55488.ae", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041670569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.108.523035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047053981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.108.523035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047053981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000111245.75752.c6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048171443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000140677.20606.0e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048457740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.28.9.2289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052593159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.29.01.06.dc05-1320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053268126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0195-668x(03)00114-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054625367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1464-5491.1999.00059.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056741551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2004-813850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057429172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2007-985359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057513598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2009-0084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064291199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076948974", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/83.6.1237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077253058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077945134", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: Based on the AHA/NHLBI-definition three out of five cardiometabolic traits must be present for the diagnosis of the metabolic syndrome (MetS), resulting in 16 different combination types. The associated cardiovascular risk may however be different and specific combination may be indicative of an increased risk, furthermore little is known to which extent these 16 combinations contribute to the overall prevalence of MetS. Here we assessed the prevalence of all 16 combination types of MetS, analyzed the impact of age and gender on prevalence rates, and estimated the 10-year risk of fatal and non-fatal myocardial infarction (MI) of each MetS combination type.\nMETHODS: We used data of the German Metabolic and Cardiovascular Risk Project (GEMCAS), a cross-sectional study, performed during October 2005, including 35,869 participants (aged 18-99 years, 61% women). Age-standardized prevalence and 10-year PROCAM and ESC risk scores for MI were calculated.\nRESULTS: In both men and women the combination with elevated waist-circumference, blood pressure and glucose (WC-BP-GL) was the most frequent combination (28%), however a distinct unequal distribution was observed regarding age and sex. Any combination with GL was common in the elderly, whereas any combination with dyslipidemia and without GL was frequent in the younger. Men without MetS had an estimated mean 10-year risk of 4.7% (95%-CI: 4.5%-4.8%) for MI (PROCAM), whereas the mean 10-year risk of men with MetS was clearly higher (age-standardized 7.9%; 7.8-8.0%). In women without MetS the mean 10-year risk for MI was 1.1%, in those with MetS 2.3%. The highest impact on an estimated 10-year risk for MI (PROCAM) was observed with TG-HDL-GL-BP in both sexes (men 14.7%, women 3.9%). However, we could identify combinations with equal risks of non-fatal and fatal MI compared to participants without MetS.\nCONCLUSIONS: We observed large variations in the prevalence of all 16 combination types and their association to cardiovascular risk. The importance of different combinations of MetS changes with age and between genders putting emphasis on a tailored approach towards very young or very old subjects. This knowledge may guide clinicians to effectively screen individuals and prioritize diagnostic procedures depending on age and gender.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1475-2840-9-34", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031021", 
        "issn": [
          "1475-2840"
        ], 
        "name": "Cardiovascular Diabetology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Age- and sex-specific prevalence and ten-year risk for cardiovascular disease of all 16 risk factor combinations of the metabolic syndrome - A cross-sectional study", 
    "pagination": "34", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c81c1b010717b4f9b09273666233d0ee2cb619be513f112644ae66e7abd03e91"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20696055"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147637"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1475-2840-9-34"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042008892"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1475-2840-9-34", 
      "https://app.dimensions.ai/details/publication/pub.1042008892"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1475-2840-9-34"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1475-2840-9-34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1475-2840-9-34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1475-2840-9-34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1475-2840-9-34'


 

This table displays all metadata directly associated to this object as RDF triples.

309 TRIPLES      21 PREDICATES      81 URIs      42 LITERALS      30 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1475-2840-9-34 schema:about N0a92d438f40141a3a15c3c8bf4aed1c3
2 N15a360df260c4c1c912b7789df00ac66
3 N24de9bf198ac4c2186cd630c08a81978
4 N351f0c66bf76493ca168a2f9acbeddc3
5 N4817fed4d1934f90b68e4755f19ab714
6 N4a7e525191e8414abec71eaf50b13366
7 N6ab807fd654e4dd2be85d04802a2a23a
8 N6d0eaaac479f4325bccdda5100fe6e8c
9 N72b6d963727b46e3875c06eca1c50711
10 N80826780c01a45508aad1ac06c795a24
11 N86f0a86e2bb14433a04e51aa608a437f
12 Na946fa4da9bd48cbb74bfcad28653c9a
13 Naa97a4c765bf46cea0bcae430b65a9c4
14 Naa9a021ceb0444b899ec63114ac19e0f
15 Nba0762cae5534905875981c97dcb0594
16 Nbb621dc8638a461a940074eed2838455
17 Ncee74dbc5d68466486cd58968c748672
18 Nd33081369972442ebebf470dcd096461
19 Ne4ee4573428547b5b75e7ee66fb2634a
20 Ne82412a22f484bf8a9f5cf7a26fdc4ea
21 Nfbaff480ff4d4e7eae5c42d307b6c2fd
22 anzsrc-for:11
23 anzsrc-for:1103
24 schema:author Nca02cb206a2740d9a168bf0c8f607104
25 schema:citation sg:pub.10.1038/sj.ejcn.1602467
26 sg:pub.10.1186/1475-2840-6-13
27 sg:pub.10.1186/1475-2840-6-22
28 https://app.dimensions.ai/details/publication/pub.1076948974
29 https://app.dimensions.ai/details/publication/pub.1077945134
30 https://doi.org/10.1001/archinte.165.22.2644
31 https://doi.org/10.1001/archinte.168.9.969
32 https://doi.org/10.1001/jama.285.19.2486
33 https://doi.org/10.1001/jama.288.21.2709
34 https://doi.org/10.1002/(sici)1096-9136(199807)15:7<539::aid-dia668>3.0.co;2-s
35 https://doi.org/10.1016/j.diabres.2008.05.011
36 https://doi.org/10.1016/s0024-3205(03)00646-5
37 https://doi.org/10.1016/s0195-668x(03)00114-3
38 https://doi.org/10.1046/j.1464-5491.1999.00059.x
39 https://doi.org/10.1055/s-2004-813850
40 https://doi.org/10.1055/s-2007-985359
41 https://doi.org/10.1093/ajcn/83.6.1237
42 https://doi.org/10.1093/aje/kwi229
43 https://doi.org/10.1093/eurheartj/ehm024
44 https://doi.org/10.1111/j.1464-5491.2004.01400.x
45 https://doi.org/10.1161/01.cir.0000111245.75752.c6
46 https://doi.org/10.1161/01.cir.0000140677.20606.0e
47 https://doi.org/10.1161/01.hyp.0000251934.55488.ae
48 https://doi.org/10.1161/circulationaha.109.855817
49 https://doi.org/10.1161/circulationaha.109.863092
50 https://doi.org/10.1161/hc0302.102575
51 https://doi.org/10.1161/strokeaha.108.523035
52 https://doi.org/10.1210/jc.2009-0084
53 https://doi.org/10.2337/dc07-0186
54 https://doi.org/10.2337/diacare.28.9.2289
55 https://doi.org/10.2337/diacare.29.01.06.dc05-1320
56 schema:datePublished 2010-12
57 schema:datePublishedReg 2010-12-01
58 schema:description BACKGROUND: Based on the AHA/NHLBI-definition three out of five cardiometabolic traits must be present for the diagnosis of the metabolic syndrome (MetS), resulting in 16 different combination types. The associated cardiovascular risk may however be different and specific combination may be indicative of an increased risk, furthermore little is known to which extent these 16 combinations contribute to the overall prevalence of MetS. Here we assessed the prevalence of all 16 combination types of MetS, analyzed the impact of age and gender on prevalence rates, and estimated the 10-year risk of fatal and non-fatal myocardial infarction (MI) of each MetS combination type. METHODS: We used data of the German Metabolic and Cardiovascular Risk Project (GEMCAS), a cross-sectional study, performed during October 2005, including 35,869 participants (aged 18-99 years, 61% women). Age-standardized prevalence and 10-year PROCAM and ESC risk scores for MI were calculated. RESULTS: In both men and women the combination with elevated waist-circumference, blood pressure and glucose (WC-BP-GL) was the most frequent combination (28%), however a distinct unequal distribution was observed regarding age and sex. Any combination with GL was common in the elderly, whereas any combination with dyslipidemia and without GL was frequent in the younger. Men without MetS had an estimated mean 10-year risk of 4.7% (95%-CI: 4.5%-4.8%) for MI (PROCAM), whereas the mean 10-year risk of men with MetS was clearly higher (age-standardized 7.9%; 7.8-8.0%). In women without MetS the mean 10-year risk for MI was 1.1%, in those with MetS 2.3%. The highest impact on an estimated 10-year risk for MI (PROCAM) was observed with TG-HDL-GL-BP in both sexes (men 14.7%, women 3.9%). However, we could identify combinations with equal risks of non-fatal and fatal MI compared to participants without MetS. CONCLUSIONS: We observed large variations in the prevalence of all 16 combination types and their association to cardiovascular risk. The importance of different combinations of MetS changes with age and between genders putting emphasis on a tailored approach towards very young or very old subjects. This knowledge may guide clinicians to effectively screen individuals and prioritize diagnostic procedures depending on age and gender.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree true
62 schema:isPartOf N18a9ae1f12364128a8a526e01439f402
63 Ndd47aff3042a4b0abd0678e2ec85535f
64 sg:journal.1031021
65 schema:name Age- and sex-specific prevalence and ten-year risk for cardiovascular disease of all 16 risk factor combinations of the metabolic syndrome - A cross-sectional study
66 schema:pagination 34
67 schema:productId N142735dabc89447f84fcc6b20967923c
68 N16c66023eb994775969ef135d576ab10
69 N1acf29ba330044adb5fac1ef292500af
70 N805308402e5149c6a87ba3bdc066d9a2
71 Nd72c8cea182349d59373dcb658a9411e
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042008892
73 https://doi.org/10.1186/1475-2840-9-34
74 schema:sdDatePublished 2019-04-10T22:39
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Nb345429897db4d1f9c618a101702fd57
77 schema:url http://link.springer.com/10.1186%2F1475-2840-9-34
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0a92d438f40141a3a15c3c8bf4aed1c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Blood Pressure
83 rdf:type schema:DefinedTerm
84 N142735dabc89447f84fcc6b20967923c schema:name nlm_unique_id
85 schema:value 101147637
86 rdf:type schema:PropertyValue
87 N15a360df260c4c1c912b7789df00ac66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Myocardial Infarction
89 rdf:type schema:DefinedTerm
90 N16c66023eb994775969ef135d576ab10 schema:name readcube_id
91 schema:value c81c1b010717b4f9b09273666233d0ee2cb619be513f112644ae66e7abd03e91
92 rdf:type schema:PropertyValue
93 N18a9ae1f12364128a8a526e01439f402 schema:volumeNumber 9
94 rdf:type schema:PublicationVolume
95 N1acf29ba330044adb5fac1ef292500af schema:name pubmed_id
96 schema:value 20696055
97 rdf:type schema:PropertyValue
98 N1fa7bfbf5e784fbe91cacd1b9961cf0a rdf:first sg:person.01037003165.94
99 rdf:rest N8ee7b9bc98544efaa1b735e19a3018e4
100 N24de9bf198ac4c2186cd630c08a81978 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Female
102 rdf:type schema:DefinedTerm
103 N351f0c66bf76493ca168a2f9acbeddc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Adult
105 rdf:type schema:DefinedTerm
106 N46e395aaebca4c4bb3e7bdc7979578cd schema:name Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg, Essen, Germany
107 rdf:type schema:Organization
108 N4817fed4d1934f90b68e4755f19ab714 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Prevalence
110 rdf:type schema:DefinedTerm
111 N4a7e525191e8414abec71eaf50b13366 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Risk Factors
113 rdf:type schema:DefinedTerm
114 N4f91595973904917b794a04343b82c58 schema:name Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg, Essen, Germany
115 rdf:type schema:Organization
116 N5998203ffdcd4eeab7dacd9aec94373c rdf:first sg:person.01304431360.27
117 rdf:rest N63ac287491704f6394d180e88a0e788f
118 N63ac287491704f6394d180e88a0e788f rdf:first sg:person.01224432156.64
119 rdf:rest Na963005861c54f078faa5019c2217198
120 N6ab807fd654e4dd2be85d04802a2a23a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Dyslipidemias
122 rdf:type schema:DefinedTerm
123 N6d0eaaac479f4325bccdda5100fe6e8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Metabolic Syndrome
125 rdf:type schema:DefinedTerm
126 N6e0c3928b85441b4a5afb59f12d779f2 rdf:first sg:person.01121473323.51
127 rdf:rest N1fa7bfbf5e784fbe91cacd1b9961cf0a
128 N72b6d963727b46e3875c06eca1c50711 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Adolescent
130 rdf:type schema:DefinedTerm
131 N805308402e5149c6a87ba3bdc066d9a2 schema:name doi
132 schema:value 10.1186/1475-2840-9-34
133 rdf:type schema:PropertyValue
134 N80826780c01a45508aad1ac06c795a24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Humans
136 rdf:type schema:DefinedTerm
137 N86f0a86e2bb14433a04e51aa608a437f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Age Distribution
139 rdf:type schema:DefinedTerm
140 N8a9712b45f44407f95611aea1a1fe3e0 rdf:first sg:person.0740414331.61
141 rdf:rest N6e0c3928b85441b4a5afb59f12d779f2
142 N8ee7b9bc98544efaa1b735e19a3018e4 rdf:first Nf412750530724be5b2ac6e3d27bcca62
143 rdf:rest N5998203ffdcd4eeab7dacd9aec94373c
144 Na946fa4da9bd48cbb74bfcad28653c9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Middle Aged
146 rdf:type schema:DefinedTerm
147 Na963005861c54f078faa5019c2217198 rdf:first sg:person.01110577373.52
148 rdf:rest rdf:nil
149 Naa97a4c765bf46cea0bcae430b65a9c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Young Adult
151 rdf:type schema:DefinedTerm
152 Naa9a021ceb0444b899ec63114ac19e0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Waist Circumference
154 rdf:type schema:DefinedTerm
155 Naf0eae43194a44a5be1fb84370d6f8a3 schema:name Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg, Essen, Germany
156 rdf:type schema:Organization
157 Nb345429897db4d1f9c618a101702fd57 schema:name Springer Nature - SN SciGraph project
158 rdf:type schema:Organization
159 Nba0762cae5534905875981c97dcb0594 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Germany
161 rdf:type schema:DefinedTerm
162 Nbb621dc8638a461a940074eed2838455 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Aged, 80 and over
164 rdf:type schema:DefinedTerm
165 Nbbd3bddc0a854c3b816be2b844d5b089 schema:name Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg, Essen, Germany
166 rdf:type schema:Organization
167 Nc1cd634e61c64a9abdce4f0e303a5e31 schema:name Institute for Cardiovascular Pharmacology and Epidemiology, Mahlow, Germany
168 rdf:type schema:Organization
169 Nca02cb206a2740d9a168bf0c8f607104 rdf:first sg:person.01260346064.17
170 rdf:rest N8a9712b45f44407f95611aea1a1fe3e0
171 Ncee74dbc5d68466486cd58968c748672 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Male
173 rdf:type schema:DefinedTerm
174 Nd33081369972442ebebf470dcd096461 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Sex Distribution
176 rdf:type schema:DefinedTerm
177 Nd72c8cea182349d59373dcb658a9411e schema:name dimensions_id
178 schema:value pub.1042008892
179 rdf:type schema:PropertyValue
180 Ndd47aff3042a4b0abd0678e2ec85535f schema:issueNumber 1
181 rdf:type schema:PublicationIssue
182 Ne4ee4573428547b5b75e7ee66fb2634a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Aged
184 rdf:type schema:DefinedTerm
185 Ne82412a22f484bf8a9f5cf7a26fdc4ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Cross-Sectional Studies
187 rdf:type schema:DefinedTerm
188 Nf412750530724be5b2ac6e3d27bcca62 schema:affiliation https://www.grid.ac/institutes/grid.420214.1
189 schema:familyName von Stritzky
190 schema:givenName Bernd
191 rdf:type schema:Person
192 Nfa81056017994040a4de499052c66c3f schema:name Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg, Essen, Germany
193 rdf:type schema:Organization
194 Nfbaff480ff4d4e7eae5c42d307b6c2fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Blood Glucose
196 rdf:type schema:DefinedTerm
197 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
198 schema:name Medical and Health Sciences
199 rdf:type schema:DefinedTerm
200 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
201 schema:name Clinical Sciences
202 rdf:type schema:DefinedTerm
203 sg:journal.1031021 schema:issn 1475-2840
204 schema:name Cardiovascular Diabetology
205 rdf:type schema:Periodical
206 sg:person.01037003165.94 schema:affiliation N4f91595973904917b794a04343b82c58
207 schema:familyName Göres
208 schema:givenName Laura
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037003165.94
210 rdf:type schema:Person
211 sg:person.01110577373.52 schema:affiliation Nbbd3bddc0a854c3b816be2b844d5b089
212 schema:familyName Jöckel
213 schema:givenName Karl-Heinz
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110577373.52
215 rdf:type schema:Person
216 sg:person.01121473323.51 schema:affiliation Naf0eae43194a44a5be1fb84370d6f8a3
217 schema:familyName Lösch
218 schema:givenName Christian
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121473323.51
220 rdf:type schema:Person
221 sg:person.01224432156.64 schema:affiliation https://www.grid.ac/institutes/grid.454205.2
222 schema:familyName Wasem
223 schema:givenName Jürgen
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224432156.64
225 rdf:type schema:Person
226 sg:person.01260346064.17 schema:affiliation Nfa81056017994040a4de499052c66c3f
227 schema:familyName Moebus
228 schema:givenName Susanne
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260346064.17
230 rdf:type schema:Person
231 sg:person.01304431360.27 schema:affiliation Nc1cd634e61c64a9abdce4f0e303a5e31
232 schema:familyName Bramlage
233 schema:givenName Peter
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304431360.27
235 rdf:type schema:Person
236 sg:person.0740414331.61 schema:affiliation N46e395aaebca4c4bb3e7bdc7979578cd
237 schema:familyName Balijepalli
238 schema:givenName Chakrapani
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740414331.61
240 rdf:type schema:Person
241 sg:pub.10.1038/sj.ejcn.1602467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012204327
242 https://doi.org/10.1038/sj.ejcn.1602467
243 rdf:type schema:CreativeWork
244 sg:pub.10.1186/1475-2840-6-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016281833
245 https://doi.org/10.1186/1475-2840-6-13
246 rdf:type schema:CreativeWork
247 sg:pub.10.1186/1475-2840-6-22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036590317
248 https://doi.org/10.1186/1475-2840-6-22
249 rdf:type schema:CreativeWork
250 https://app.dimensions.ai/details/publication/pub.1076948974 schema:CreativeWork
251 https://app.dimensions.ai/details/publication/pub.1077945134 schema:CreativeWork
252 https://doi.org/10.1001/archinte.165.22.2644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023369592
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1001/archinte.168.9.969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018002272
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1001/jama.285.19.2486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033739611
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1001/jama.288.21.2709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009474275
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1002/(sici)1096-9136(199807)15:7<539::aid-dia668>3.0.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1016868849
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/j.diabres.2008.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039104950
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/s0024-3205(03)00646-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005740734
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/s0195-668x(03)00114-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054625367
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1046/j.1464-5491.1999.00059.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056741551
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1055/s-2004-813850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057429172
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1055/s-2007-985359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057513598
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1093/ajcn/83.6.1237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077253058
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1093/aje/kwi229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032730984
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1093/eurheartj/ehm024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010371996
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1111/j.1464-5491.2004.01400.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038013785
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1161/01.cir.0000111245.75752.c6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048171443
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1161/01.cir.0000140677.20606.0e schema:sameAs https://app.dimensions.ai/details/publication/pub.1048457740
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1161/01.hyp.0000251934.55488.ae schema:sameAs https://app.dimensions.ai/details/publication/pub.1041670569
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1161/circulationaha.109.855817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011062235
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1161/circulationaha.109.863092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018202040
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1161/hc0302.102575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005321039
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1161/strokeaha.108.523035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047053981
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1210/jc.2009-0084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064291199
297 rdf:type schema:CreativeWork
298 https://doi.org/10.2337/dc07-0186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011752993
299 rdf:type schema:CreativeWork
300 https://doi.org/10.2337/diacare.28.9.2289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052593159
301 rdf:type schema:CreativeWork
302 https://doi.org/10.2337/diacare.29.01.06.dc05-1320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053268126
303 rdf:type schema:CreativeWork
304 https://www.grid.ac/institutes/grid.420214.1 schema:alternateName Sanofi (Germany)
305 schema:name Sanofi-Aventis Deutschland GmbH, Berlin, Germany
306 rdf:type schema:Organization
307 https://www.grid.ac/institutes/grid.454205.2 schema:alternateName Alfried Krupp von Bohlen und Halbach Foundation
308 schema:name Alfried Krupp von Bohlen und Halbach Foundation, Institute for Healthcare Management, Faculty of Economics, University of Duisburg, Essen, Germany
309 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...