Total and high molecular weight adiponectin have similar utility for the identification of insulin resistance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-06-23

AUTHORS

Paloma Almeda-Valdes, Daniel Cuevas-Ramos, Roopa Mehta, Francisco J Gomez-Perez, Ivette Cruz-Bautista, Olimpia Arellano-Campos, Mariana Navarrete-Lopez, Carlos A Aguilar-Salinas

ABSTRACT

BACKGROUND: Insulin resistance (IR) and related metabolic disturbances are characterized by low levels of adiponectin. High molecular weight adiponectin (HMWA) is considered the active form of adiponectin and a better marker of IR than total adiponectin. The objective of this study is to compare the utility of total adiponectin, HMWA and the HMWA/total adiponectin index (SA index) for the identification of IR and related metabolic conditions. METHODS: A cross-sectional analysis was performed in a group of ambulatory subjects, aged 20 to 70 years, in Mexico City. Areas under the receiver operator characteristic (ROC) curve for total, HMWA and the SA index were plotted for the identification of metabolic disturbances. Sensitivity and specificity, positive and negative predictive values, and accuracy for the identification of IR were calculated. RESULTS: The study included 101 men and 168 women. The areas under the ROC curve for total and HMWA for the identification of IR (0.664 vs. 0.669, P = 0.74), obesity (0.592 vs. 0.610, P = 0.32), hypertriglyceridemia (0.661 vs. 0.671, P = 0.50) and hypoalphalipoproteinemia (0.624 vs. 0.633, P = 0.58) were similar. A total adiponectin level of 8.03 mug/ml was associated with a sensitivity of 57.6%, a specificity of 65.9%, a positive predictive value of 50.0%, a negative predictive value of 72.4%, and an accuracy of 62.7% for the diagnosis of IR. The corresponding figures for a HMWA value of 4.25 mug/dl were 59.6%, 67.1%, 51.8%, 73.7% and 64.2%.The area under the ROC curve of the SA index for the identification of IR was 0.622 [95% CI 0.554-0.691], obesity 0.613 [95% CI 0.536-0.689], hypertriglyceridemia 0.616 [95% CI 0.549-0.683], and hypoalphalipoproteinemia 0.606 [95% CI 0.535-0.677]. CONCLUSIONS: Total adiponectin, HMWA and the SA index had similar utility for the identification of IR and metabolic disturbances. More... »

PAGES

26-26

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1475-2840-9-26

DOI

http://dx.doi.org/10.1186/1475-2840-9-26

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026061872

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20573249


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adiponectin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertriglyceridemia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypoalphalipoproteinemias", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insulin Resistance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mexico", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico", 
          "id": "http://www.grid.ac/institutes/grid.416850.e", 
          "name": [
            "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Almeda-Valdes", 
        "givenName": "Paloma", 
        "id": "sg:person.01164770456.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164770456.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico", 
          "id": "http://www.grid.ac/institutes/grid.416850.e", 
          "name": [
            "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cuevas-Ramos", 
        "givenName": "Daniel", 
        "id": "sg:person.01233103656.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233103656.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico", 
          "id": "http://www.grid.ac/institutes/grid.416850.e", 
          "name": [
            "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehta", 
        "givenName": "Roopa", 
        "id": "sg:person.0647030077.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647030077.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico", 
          "id": "http://www.grid.ac/institutes/grid.416850.e", 
          "name": [
            "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gomez-Perez", 
        "givenName": "Francisco J", 
        "id": "sg:person.01002140272.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002140272.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico", 
          "id": "http://www.grid.ac/institutes/grid.416850.e", 
          "name": [
            "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cruz-Bautista", 
        "givenName": "Ivette", 
        "id": "sg:person.01121154625.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121154625.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico", 
          "id": "http://www.grid.ac/institutes/grid.416850.e", 
          "name": [
            "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arellano-Campos", 
        "givenName": "Olimpia", 
        "id": "sg:person.0731362570.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731362570.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico", 
          "id": "http://www.grid.ac/institutes/grid.416850.e", 
          "name": [
            "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Navarrete-Lopez", 
        "givenName": "Mariana", 
        "id": "sg:person.01342210037.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342210037.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico", 
          "id": "http://www.grid.ac/institutes/grid.416850.e", 
          "name": [
            "Departamento de Endocrinolog\u00eda y Metabolismo Instituto Nacional de Ciencias M\u00e9dicas y Nutrici\u00f3n \"Salvador Zubir\u00e1n\" 14000 M\u00e9xico D.F., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aguilar-Salinas", 
        "givenName": "Carlos A", 
        "id": "sg:person.0757112137.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757112137.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00109-005-0011-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010495555", 
          "https://doi.org/10.1007/s00109-005-0011-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/90984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040199616", 
          "https://doi.org/10.1038/90984"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-06-23", 
    "datePublishedReg": "2010-06-23", 
    "description": "BACKGROUND: Insulin resistance (IR) and related metabolic disturbances are characterized by low levels of adiponectin. High molecular weight adiponectin (HMWA) is considered the active form of adiponectin and a better marker of IR than total adiponectin. The objective of this study is to compare the utility of total adiponectin, HMWA and the HMWA/total adiponectin index (SA index) for the identification of IR and related metabolic conditions.\nMETHODS: A cross-sectional analysis was performed in a group of ambulatory subjects, aged 20 to 70 years, in Mexico City. Areas under the receiver operator characteristic (ROC) curve for total, HMWA and the SA index were plotted for the identification of metabolic disturbances. Sensitivity and specificity, positive and negative predictive values, and accuracy for the identification of IR were calculated.\nRESULTS: The study included 101 men and 168 women. The areas under the ROC curve for total and HMWA for the identification of IR (0.664 vs. 0.669, P = 0.74), obesity (0.592 vs. 0.610, P = 0.32), hypertriglyceridemia (0.661 vs. 0.671, P = 0.50) and hypoalphalipoproteinemia (0.624 vs. 0.633, P = 0.58) were similar. A total adiponectin level of 8.03 mug/ml was associated with a sensitivity of 57.6%, a specificity of 65.9%, a positive predictive value of 50.0%, a negative predictive value of 72.4%, and an accuracy of 62.7% for the diagnosis of IR. The corresponding figures for a HMWA value of 4.25 mug/dl were 59.6%, 67.1%, 51.8%, 73.7% and 64.2%.The area under the ROC curve of the SA index for the identification of IR was 0.622 [95% CI 0.554-0.691], obesity 0.613 [95% CI 0.536-0.689], hypertriglyceridemia 0.616 [95% CI 0.549-0.683], and hypoalphalipoproteinemia 0.606 [95% CI 0.535-0.677].\nCONCLUSIONS: Total adiponectin, HMWA and the SA index had similar utility for the identification of IR and metabolic disturbances.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1475-2840-9-26", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031021", 
        "issn": [
          "1475-2840"
        ], 
        "name": "Cardiovascular Diabetology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "identification of IR", 
      "high molecular weight adiponectin", 
      "molecular weight adiponectin", 
      "insulin resistance", 
      "total adiponectin", 
      "negative predictive value", 
      "metabolic disturbances", 
      "predictive value", 
      "weight adiponectin", 
      "total adiponectin levels", 
      "receiver operator characteristic curve", 
      "ROC curve", 
      "diagnosis of IR", 
      "mug/dl", 
      "positive predictive value", 
      "operator characteristic curve", 
      "cross-sectional analysis", 
      "adiponectin index", 
      "adiponectin levels", 
      "adiponectin", 
      "ambulatory subjects", 
      "good marker", 
      "metabolic conditions", 
      "mug/", 
      "characteristic curve", 
      "similar utility", 
      "hypoalphalipoproteinemia", 
      "SA index", 
      "total", 
      "low levels", 
      "active form", 
      "index", 
      "hypertriglyceridemia", 
      "obesity", 
      "specificity", 
      "dl", 
      "diagnosis", 
      "women", 
      "levels", 
      "men", 
      "Mexico City", 
      "study", 
      "utility", 
      "markers", 
      "disturbances", 
      "subjects", 
      "sensitivity", 
      "identification", 
      "resistance", 
      "group", 
      "years", 
      "curves", 
      "area", 
      "values", 
      "objective", 
      "analysis", 
      "form", 
      "conditions", 
      "figures", 
      "city", 
      "accuracy", 
      "HMWA/total adiponectin index", 
      "total adiponectin index", 
      "HMWA value"
    ], 
    "name": "Total and high molecular weight adiponectin have similar utility for the identification of insulin resistance", 
    "pagination": "26-26", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026061872"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1475-2840-9-26"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20573249"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1475-2840-9-26", 
      "https://app.dimensions.ai/details/publication/pub.1026061872"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1475-2840-9-26"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1475-2840-9-26'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1475-2840-9-26'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1475-2840-9-26'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1475-2840-9-26'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      22 PREDICATES      111 URIs      101 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1475-2840-9-26 schema:about N30dc1133915343ca82da9cb39cceed4c
2 N44ed0a3d94c14bdc8af2a5f0d25c0fc2
3 N5f094609144040278f3db696e1773f8c
4 N60feb437a6d04b2f9df51f1dcefa4aa6
5 N7d1689e0c0a441f9a9117d7f8da39c43
6 N945330cf7bd9408893983b55d42a2913
7 N9f03cb5fd3f84e0bb693bf49974025b6
8 Na045539a72364577aeabd41689f98311
9 Naa9f272806e742c3b3075a505e0b2182
10 Nb1906c6b2bc84283973d855bc973bdc0
11 Nbd45bdc16d6c4fcb97cbd8f5631c35f0
12 Nbf8769da2f33478bbea24ce701ebf42e
13 Nc0f21f2b220f4661b3c176df5f039790
14 Nd4960ef858f940b59d97606a59a02437
15 Nd68d3ea59767478eb91f8dee9a3e8ab5
16 Ndf10d928e1014685b4fc261faffe8929
17 Neadf0eeb74ad47c69b4713dd1b6891ba
18 Ned0afddee80d49e6b410465973c32595
19 Nffd7abe47bdb44d8856fc2b6255b4aca
20 anzsrc-for:11
21 anzsrc-for:1103
22 schema:author Nc80f103c439d482a85f8e34b67344f22
23 schema:citation sg:pub.10.1007/s00109-005-0011-7
24 sg:pub.10.1038/90984
25 schema:datePublished 2010-06-23
26 schema:datePublishedReg 2010-06-23
27 schema:description BACKGROUND: Insulin resistance (IR) and related metabolic disturbances are characterized by low levels of adiponectin. High molecular weight adiponectin (HMWA) is considered the active form of adiponectin and a better marker of IR than total adiponectin. The objective of this study is to compare the utility of total adiponectin, HMWA and the HMWA/total adiponectin index (SA index) for the identification of IR and related metabolic conditions. METHODS: A cross-sectional analysis was performed in a group of ambulatory subjects, aged 20 to 70 years, in Mexico City. Areas under the receiver operator characteristic (ROC) curve for total, HMWA and the SA index were plotted for the identification of metabolic disturbances. Sensitivity and specificity, positive and negative predictive values, and accuracy for the identification of IR were calculated. RESULTS: The study included 101 men and 168 women. The areas under the ROC curve for total and HMWA for the identification of IR (0.664 vs. 0.669, P = 0.74), obesity (0.592 vs. 0.610, P = 0.32), hypertriglyceridemia (0.661 vs. 0.671, P = 0.50) and hypoalphalipoproteinemia (0.624 vs. 0.633, P = 0.58) were similar. A total adiponectin level of 8.03 mug/ml was associated with a sensitivity of 57.6%, a specificity of 65.9%, a positive predictive value of 50.0%, a negative predictive value of 72.4%, and an accuracy of 62.7% for the diagnosis of IR. The corresponding figures for a HMWA value of 4.25 mug/dl were 59.6%, 67.1%, 51.8%, 73.7% and 64.2%.The area under the ROC curve of the SA index for the identification of IR was 0.622 [95% CI 0.554-0.691], obesity 0.613 [95% CI 0.536-0.689], hypertriglyceridemia 0.616 [95% CI 0.549-0.683], and hypoalphalipoproteinemia 0.606 [95% CI 0.535-0.677]. CONCLUSIONS: Total adiponectin, HMWA and the SA index had similar utility for the identification of IR and metabolic disturbances.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N936922607cf74423b4342079224ee3ca
32 Nb20bc4776dea42eca37ed6d89ff315be
33 sg:journal.1031021
34 schema:keywords HMWA value
35 HMWA/total adiponectin index
36 Mexico City
37 ROC curve
38 SA index
39 accuracy
40 active form
41 adiponectin
42 adiponectin index
43 adiponectin levels
44 ambulatory subjects
45 analysis
46 area
47 characteristic curve
48 city
49 conditions
50 cross-sectional analysis
51 curves
52 diagnosis
53 diagnosis of IR
54 disturbances
55 dl
56 figures
57 form
58 good marker
59 group
60 high molecular weight adiponectin
61 hypertriglyceridemia
62 hypoalphalipoproteinemia
63 identification
64 identification of IR
65 index
66 insulin resistance
67 levels
68 low levels
69 markers
70 men
71 metabolic conditions
72 metabolic disturbances
73 molecular weight adiponectin
74 mug/
75 mug/dl
76 negative predictive value
77 obesity
78 objective
79 operator characteristic curve
80 positive predictive value
81 predictive value
82 receiver operator characteristic curve
83 resistance
84 sensitivity
85 similar utility
86 specificity
87 study
88 subjects
89 total
90 total adiponectin
91 total adiponectin index
92 total adiponectin levels
93 utility
94 values
95 weight adiponectin
96 women
97 years
98 schema:name Total and high molecular weight adiponectin have similar utility for the identification of insulin resistance
99 schema:pagination 26-26
100 schema:productId N3b51de0506b241808267517dd36e43b4
101 N49efd8af0af44014a26be30835b0460a
102 Nccf2e92333ac4747926c8c6bb74c278a
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026061872
104 https://doi.org/10.1186/1475-2840-9-26
105 schema:sdDatePublished 2021-11-01T18:14
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N0f338a215a734aa3958d754793baea69
108 schema:url https://doi.org/10.1186/1475-2840-9-26
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N090521d07d0342aabd516854952f7b96 rdf:first sg:person.0731362570.81
113 rdf:rest Nb87663f714e648f8a2c4093f5f6a0d5d
114 N0c3d52bfa76e4d37a39f2856be3f3786 rdf:first sg:person.01233103656.14
115 rdf:rest N6137e1f929c44b348cc998ae0197e121
116 N0f338a215a734aa3958d754793baea69 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 N30dc1133915343ca82da9cb39cceed4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Adult
120 rdf:type schema:DefinedTerm
121 N3b51de0506b241808267517dd36e43b4 schema:name doi
122 schema:value 10.1186/1475-2840-9-26
123 rdf:type schema:PropertyValue
124 N44ed0a3d94c14bdc8af2a5f0d25c0fc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Humans
126 rdf:type schema:DefinedTerm
127 N49efd8af0af44014a26be30835b0460a schema:name pubmed_id
128 schema:value 20573249
129 rdf:type schema:PropertyValue
130 N5f094609144040278f3db696e1773f8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Hypertriglyceridemia
132 rdf:type schema:DefinedTerm
133 N60feb437a6d04b2f9df51f1dcefa4aa6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Predictive Value of Tests
135 rdf:type schema:DefinedTerm
136 N6137e1f929c44b348cc998ae0197e121 rdf:first sg:person.0647030077.37
137 rdf:rest Nc08637abd963476085f4c496a11befe9
138 N7d1689e0c0a441f9a9117d7f8da39c43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Sensitivity and Specificity
140 rdf:type schema:DefinedTerm
141 N936922607cf74423b4342079224ee3ca schema:issueNumber 1
142 rdf:type schema:PublicationIssue
143 N945330cf7bd9408893983b55d42a2913 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Biomarkers
145 rdf:type schema:DefinedTerm
146 N9f03cb5fd3f84e0bb693bf49974025b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Female
148 rdf:type schema:DefinedTerm
149 Na045539a72364577aeabd41689f98311 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Young Adult
151 rdf:type schema:DefinedTerm
152 Naa9f272806e742c3b3075a505e0b2182 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Adiponectin
154 rdf:type schema:DefinedTerm
155 Nb1906c6b2bc84283973d855bc973bdc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Hypoalphalipoproteinemias
157 rdf:type schema:DefinedTerm
158 Nb20bc4776dea42eca37ed6d89ff315be schema:volumeNumber 9
159 rdf:type schema:PublicationVolume
160 Nb87663f714e648f8a2c4093f5f6a0d5d rdf:first sg:person.01342210037.49
161 rdf:rest Nb879033536fe4cd0a0f19eebc7c7feb2
162 Nb879033536fe4cd0a0f19eebc7c7feb2 rdf:first sg:person.0757112137.57
163 rdf:rest rdf:nil
164 Nbd45bdc16d6c4fcb97cbd8f5631c35f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Obesity
166 rdf:type schema:DefinedTerm
167 Nbf8769da2f33478bbea24ce701ebf42e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Mexico
169 rdf:type schema:DefinedTerm
170 Nc08637abd963476085f4c496a11befe9 rdf:first sg:person.01002140272.81
171 rdf:rest Ndbd885a76d2a4bca925f2f2d04cfe2bb
172 Nc0f21f2b220f4661b3c176df5f039790 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Aged
174 rdf:type schema:DefinedTerm
175 Nc80f103c439d482a85f8e34b67344f22 rdf:first sg:person.01164770456.93
176 rdf:rest N0c3d52bfa76e4d37a39f2856be3f3786
177 Nccf2e92333ac4747926c8c6bb74c278a schema:name dimensions_id
178 schema:value pub.1026061872
179 rdf:type schema:PropertyValue
180 Nd4960ef858f940b59d97606a59a02437 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Molecular Weight
182 rdf:type schema:DefinedTerm
183 Nd68d3ea59767478eb91f8dee9a3e8ab5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Insulin Resistance
185 rdf:type schema:DefinedTerm
186 Ndbd885a76d2a4bca925f2f2d04cfe2bb rdf:first sg:person.01121154625.80
187 rdf:rest N090521d07d0342aabd516854952f7b96
188 Ndf10d928e1014685b4fc261faffe8929 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Middle Aged
190 rdf:type schema:DefinedTerm
191 Neadf0eeb74ad47c69b4713dd1b6891ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Male
193 rdf:type schema:DefinedTerm
194 Ned0afddee80d49e6b410465973c32595 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name ROC Curve
196 rdf:type schema:DefinedTerm
197 Nffd7abe47bdb44d8856fc2b6255b4aca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Cross-Sectional Studies
199 rdf:type schema:DefinedTerm
200 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
201 schema:name Medical and Health Sciences
202 rdf:type schema:DefinedTerm
203 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
204 schema:name Clinical Sciences
205 rdf:type schema:DefinedTerm
206 sg:journal.1031021 schema:issn 1475-2840
207 schema:name Cardiovascular Diabetology
208 schema:publisher Springer Nature
209 rdf:type schema:Periodical
210 sg:person.01002140272.81 schema:affiliation grid-institutes:grid.416850.e
211 schema:familyName Gomez-Perez
212 schema:givenName Francisco J
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002140272.81
214 rdf:type schema:Person
215 sg:person.01121154625.80 schema:affiliation grid-institutes:grid.416850.e
216 schema:familyName Cruz-Bautista
217 schema:givenName Ivette
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121154625.80
219 rdf:type schema:Person
220 sg:person.01164770456.93 schema:affiliation grid-institutes:grid.416850.e
221 schema:familyName Almeda-Valdes
222 schema:givenName Paloma
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164770456.93
224 rdf:type schema:Person
225 sg:person.01233103656.14 schema:affiliation grid-institutes:grid.416850.e
226 schema:familyName Cuevas-Ramos
227 schema:givenName Daniel
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233103656.14
229 rdf:type schema:Person
230 sg:person.01342210037.49 schema:affiliation grid-institutes:grid.416850.e
231 schema:familyName Navarrete-Lopez
232 schema:givenName Mariana
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342210037.49
234 rdf:type schema:Person
235 sg:person.0647030077.37 schema:affiliation grid-institutes:grid.416850.e
236 schema:familyName Mehta
237 schema:givenName Roopa
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647030077.37
239 rdf:type schema:Person
240 sg:person.0731362570.81 schema:affiliation grid-institutes:grid.416850.e
241 schema:familyName Arellano-Campos
242 schema:givenName Olimpia
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731362570.81
244 rdf:type schema:Person
245 sg:person.0757112137.57 schema:affiliation grid-institutes:grid.416850.e
246 schema:familyName Aguilar-Salinas
247 schema:givenName Carlos A
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757112137.57
249 rdf:type schema:Person
250 sg:pub.10.1007/s00109-005-0011-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010495555
251 https://doi.org/10.1007/s00109-005-0011-7
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/90984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040199616
254 https://doi.org/10.1038/90984
255 rdf:type schema:CreativeWork
256 grid-institutes:grid.416850.e schema:alternateName Departamento de Endocrinología y Metabolismo Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" 14000 México D.F., México
257 schema:name Departamento de Endocrinología y Metabolismo Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" 14000 México D.F., México
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...