Empirical analysis shows reduced cost data collection may be an efficient method in economic clinical trials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Hildegard Seidl, Christa Meisinger, Rupert Wende, Rolf Holle

ABSTRACT

BACKGROUND: Data collection for economic evaluation alongside clinical trials is burdensome and cost-intensive. Limiting both the frequency of data collection and recall periods can solve the problem. As a consequence, gaps in survey periods arise and must be filled appropriately. The aims of our study are to assess the validity of incomplete cost data collection and define suitable resource categories. METHODS: In the randomised KORINNA study, cost data from 234 elderly patients were collected quarterly over a 1-year period. Different strategies for incomplete data collection were compared with complete data collection. The sample size calculation was modified in response to elasticity of variance. RESULTS: Resource categories suitable for incomplete data collection were physiotherapy, ambulatory clinic in hospital, medication, consultations, outpatient nursing service and paid household help. Cost estimation from complete and incomplete data collection showed no difference when omitting information from one quarter. When omitting information from two quarters, costs were underestimated by 3.9% to 4.6%.With respect to the observed increased standard deviation, a larger sample size would be required, increased by 3%. Nevertheless, more time was saved than extra time would be required for additional patients. CONCLUSION: Cost data can be collected efficiently by reducing the frequency of data collection. This can be achieved by incomplete data collection for shortened periods or complete data collection by extending recall windows. In our analysis, cost estimates per year for ambulatory healthcare and non-healthcare services in terms of three data collections was as valid and accurate as a four complete data collections. In contrast, data on hospitalisation, rehabilitation stays and care insurance benefits should be collected for the entire target period, using extended recall windows. When applying the method of incomplete data collection, sample size calculation has to be modified because of the increased standard deviation. This approach is suitable to enable economic evaluation with lower costs to both study participants and investigators. TRIAL REGISTRATION: The trial registration number is ISRCTN02893746. More... »

PAGES

318

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1472-6963-12-318

DOI

http://dx.doi.org/10.1186/1472-6963-12-318

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053038724

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22978572


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case Management", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Trials as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cost Savings", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cost-Benefit Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Collection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Empirical Research", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Care Costs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Matricaria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Infarction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sample Size", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Helmholtz Zentrum M\u00fcnchen \u2013 German Research Center for Environmental Health, Institute of Health Economics and Health Care Management, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seidl", 
        "givenName": "Hildegard", 
        "id": "sg:person.01150601764.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150601764.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Augsburg Hospital", 
          "id": "https://www.grid.ac/institutes/grid.419801.5", 
          "name": [
            "Helmholtz Zentrum M\u00fcnchen \u2013 German Research Center for Environmental Health, Institute of Epidemiology, Munich, Germany", 
            "MONICA/KORA Myocardial Infarction Registry, Augsburg Hospital, Stenglinstra\u00dfe 2, 86150, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meisinger", 
        "givenName": "Christa", 
        "id": "sg:person.013706140257.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013706140257.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Augsburg Hospital", 
          "id": "https://www.grid.ac/institutes/grid.419801.5", 
          "name": [
            "Department of Internal Medicine I \u2013 Cardiology, Augsburg Hospital, Stenglinstra\u00dfe 2, 86150, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wende", 
        "givenName": "Rupert", 
        "id": "sg:person.01265030364.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265030364.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Zentrum M\u00fcnchen", 
          "id": "https://www.grid.ac/institutes/grid.4567.0", 
          "name": [
            "Helmholtz Zentrum M\u00fcnchen \u2013 German Research Center for Environmental Health, Institute of Health Economics and Health Care Management, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holle", 
        "givenName": "Rolf", 
        "id": "sg:person.01215630466.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215630466.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1524-4733.2005.03065.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001248017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00392-004-1064-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004063667", 
          "https://doi.org/10.1007/s00392-004-1064-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6963-8-187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004193497", 
          "https://doi.org/10.1186/1472-6963-8-187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2318-10-29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004693705", 
          "https://doi.org/10.1186/1471-2318-10-29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10198-008-0101-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005578762", 
          "https://doi.org/10.1007/s10198-008-0101-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhealeco.2008.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010472894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-4356(99)00177-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013862135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0272989x98018002s10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016273901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0272989x98018002s10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016273901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1524-4733.2010.00788.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019483650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-8510(03)00083-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021504641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-8510(03)00083-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021504641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1192/bjp.188.4.323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022998476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(95)00166-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023467179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.publhealth.22.1.129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033856709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hec.826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035534480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2010.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035787854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.317.7167.1195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046394553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1524-4733.2007.00285.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049077965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02521343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050279613", 
          "https://doi.org/10.1007/bf02521343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02521343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050279613", 
          "https://doi.org/10.1007/bf02521343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00019053-199814040-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051516763", 
          "https://doi.org/10.2165/00019053-199814040-00003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00392-004-0109-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052780652", 
          "https://doi.org/10.1007/s00392-004-0109-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.healthpol.2005.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053354179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1077558705285298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054015803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1077558705285298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054015803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2005-858698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057442073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074468350", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta3060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074468350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta3060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074468350"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "BACKGROUND: Data collection for economic evaluation alongside clinical trials is burdensome and cost-intensive. Limiting both the frequency of data collection and recall periods can solve the problem. As a consequence, gaps in survey periods arise and must be filled appropriately. The aims of our study are to assess the validity of incomplete cost data collection and define suitable resource categories.\nMETHODS: In the randomised KORINNA study, cost data from 234 elderly patients were collected quarterly over a 1-year period. Different strategies for incomplete data collection were compared with complete data collection. The sample size calculation was modified in response to elasticity of variance.\nRESULTS: Resource categories suitable for incomplete data collection were physiotherapy, ambulatory clinic in hospital, medication, consultations, outpatient nursing service and paid household help. Cost estimation from complete and incomplete data collection showed no difference when omitting information from one quarter. When omitting information from two quarters, costs were underestimated by 3.9% to 4.6%.With respect to the observed increased standard deviation, a larger sample size would be required, increased by 3%. Nevertheless, more time was saved than extra time would be required for additional patients.\nCONCLUSION: Cost data can be collected efficiently by reducing the frequency of data collection. This can be achieved by incomplete data collection for shortened periods or complete data collection by extending recall windows. In our analysis, cost estimates per year for ambulatory healthcare and non-healthcare services in terms of three data collections was as valid and accurate as a four complete data collections. In contrast, data on hospitalisation, rehabilitation stays and care insurance benefits should be collected for the entire target period, using extended recall windows. When applying the method of incomplete data collection, sample size calculation has to be modified because of the increased standard deviation. This approach is suitable to enable economic evaluation with lower costs to both study participants and investigators.\nTRIAL REGISTRATION: The trial registration number is ISRCTN02893746.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1472-6963-12-318", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327417", 
        "issn": [
          "1472-6963"
        ], 
        "name": "BMC Health Services Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Empirical analysis shows reduced cost data collection may be an efficient method in economic clinical trials", 
    "pagination": "318", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fca3923d17c7d2ecd722b5b0d8c8dd091c286cc74f2d7bbc4fdd59d2896d8ab8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22978572"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101088677"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1472-6963-12-318"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053038724"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1472-6963-12-318", 
      "https://app.dimensions.ai/details/publication/pub.1053038724"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1472-6963-12-318"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1472-6963-12-318'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1472-6963-12-318'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1472-6963-12-318'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1472-6963-12-318'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      69 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1472-6963-12-318 schema:about N059808a0953a469f87dfd50bdbc13c80
2 N173c58deac6f4d11a2803beadbc0e8ae
3 N342b122a37354135980b2ebb61f9fdb1
4 N497825d0830b40ce99bc14117654a862
5 N4f7ef755cc7340b2977ead3aa3b0d6c6
6 N58fe4ce3cd7c4c459d45020d528379a3
7 N907268629ef54518abeb20c5982cfcb8
8 N94ad47806bc1410aa50f50014c1e1566
9 Nbf0bc2652c79482f8e3ec47013c9167f
10 Nc19a7d588910414a9332ad562660e14a
11 Ncee6cfa97bdb41ea8fa40278958c5d61
12 Ne09b514840334624aa8c200266c41b4b
13 Ne5680349433c4fb186c6be6c105a9514
14 Nf5d6bc97ff97421893f22ea2c31acabd
15 Nfdf426c429234488a23dfac4139edf41
16 anzsrc-for:11
17 anzsrc-for:1117
18 schema:author Na19b6265902945419ec57ad20359de0c
19 schema:citation sg:pub.10.1007/bf02521343
20 sg:pub.10.1007/s00392-004-0109-x
21 sg:pub.10.1007/s00392-004-1064-2
22 sg:pub.10.1007/s10198-008-0101-x
23 sg:pub.10.1186/1471-2318-10-29
24 sg:pub.10.1186/1472-6963-8-187
25 sg:pub.10.2165/00019053-199814040-00003
26 https://app.dimensions.ai/details/publication/pub.1074468350
27 https://doi.org/10.1002/hec.826
28 https://doi.org/10.1016/0197-2456(95)00166-2
29 https://doi.org/10.1016/j.ejca.2010.12.017
30 https://doi.org/10.1016/j.healthpol.2005.03.011
31 https://doi.org/10.1016/j.jhealeco.2008.05.012
32 https://doi.org/10.1016/s0168-8510(03)00083-6
33 https://doi.org/10.1016/s0895-4356(99)00177-8
34 https://doi.org/10.1055/s-2005-858698
35 https://doi.org/10.1111/j.1524-4733.2005.03065.x
36 https://doi.org/10.1111/j.1524-4733.2007.00285.x
37 https://doi.org/10.1111/j.1524-4733.2010.00788.x
38 https://doi.org/10.1136/bmj.317.7167.1195
39 https://doi.org/10.1146/annurev.publhealth.22.1.129
40 https://doi.org/10.1177/0272989x98018002s10
41 https://doi.org/10.1177/1077558705285298
42 https://doi.org/10.1192/bjp.188.4.323
43 https://doi.org/10.3310/hta3060
44 schema:datePublished 2012-12
45 schema:datePublishedReg 2012-12-01
46 schema:description BACKGROUND: Data collection for economic evaluation alongside clinical trials is burdensome and cost-intensive. Limiting both the frequency of data collection and recall periods can solve the problem. As a consequence, gaps in survey periods arise and must be filled appropriately. The aims of our study are to assess the validity of incomplete cost data collection and define suitable resource categories. METHODS: In the randomised KORINNA study, cost data from 234 elderly patients were collected quarterly over a 1-year period. Different strategies for incomplete data collection were compared with complete data collection. The sample size calculation was modified in response to elasticity of variance. RESULTS: Resource categories suitable for incomplete data collection were physiotherapy, ambulatory clinic in hospital, medication, consultations, outpatient nursing service and paid household help. Cost estimation from complete and incomplete data collection showed no difference when omitting information from one quarter. When omitting information from two quarters, costs were underestimated by 3.9% to 4.6%.With respect to the observed increased standard deviation, a larger sample size would be required, increased by 3%. Nevertheless, more time was saved than extra time would be required for additional patients. CONCLUSION: Cost data can be collected efficiently by reducing the frequency of data collection. This can be achieved by incomplete data collection for shortened periods or complete data collection by extending recall windows. In our analysis, cost estimates per year for ambulatory healthcare and non-healthcare services in terms of three data collections was as valid and accurate as a four complete data collections. In contrast, data on hospitalisation, rehabilitation stays and care insurance benefits should be collected for the entire target period, using extended recall windows. When applying the method of incomplete data collection, sample size calculation has to be modified because of the increased standard deviation. This approach is suitable to enable economic evaluation with lower costs to both study participants and investigators. TRIAL REGISTRATION: The trial registration number is ISRCTN02893746.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N912e79fc875142f7b5b8c5c12fbc7f52
51 N9223824c838442cc8912388f02e3402a
52 sg:journal.1327417
53 schema:name Empirical analysis shows reduced cost data collection may be an efficient method in economic clinical trials
54 schema:pagination 318
55 schema:productId N05f21e56b7a7427a902249565bd36a5b
56 N627fc528918946e597558591c4408659
57 N6a7d8688b36a453a9181f7a8c00934e1
58 Nacd3196d18fa4b3589c6e04012e5eda6
59 Nf5568880fc5947cdb765113e7b80f52d
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053038724
61 https://doi.org/10.1186/1472-6963-12-318
62 schema:sdDatePublished 2019-04-10T13:18
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N97c21b9bb2fe472980d4a53c42916122
65 schema:url http://link.springer.com/10.1186%2F1472-6963-12-318
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N059808a0953a469f87dfd50bdbc13c80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Empirical Research
71 rdf:type schema:DefinedTerm
72 N05f21e56b7a7427a902249565bd36a5b schema:name doi
73 schema:value 10.1186/1472-6963-12-318
74 rdf:type schema:PropertyValue
75 N173c58deac6f4d11a2803beadbc0e8ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Cost Savings
77 rdf:type schema:DefinedTerm
78 N342b122a37354135980b2ebb61f9fdb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Humans
80 rdf:type schema:DefinedTerm
81 N406d77e7b9a74854b75ab48d7e5d8aeb rdf:first sg:person.01215630466.46
82 rdf:rest rdf:nil
83 N497825d0830b40ce99bc14117654a862 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Female
85 rdf:type schema:DefinedTerm
86 N4f7ef755cc7340b2977ead3aa3b0d6c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Health Care Costs
88 rdf:type schema:DefinedTerm
89 N58fe4ce3cd7c4c459d45020d528379a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Reproducibility of Results
91 rdf:type schema:DefinedTerm
92 N627fc528918946e597558591c4408659 schema:name readcube_id
93 schema:value fca3923d17c7d2ecd722b5b0d8c8dd091c286cc74f2d7bbc4fdd59d2896d8ab8
94 rdf:type schema:PropertyValue
95 N6a7d8688b36a453a9181f7a8c00934e1 schema:name pubmed_id
96 schema:value 22978572
97 rdf:type schema:PropertyValue
98 N7443555d48bd41e384ed9d5954c19b34 rdf:first sg:person.01265030364.46
99 rdf:rest N406d77e7b9a74854b75ab48d7e5d8aeb
100 N88f4c84649e04f5f90b88192012af261 rdf:first sg:person.013706140257.01
101 rdf:rest N7443555d48bd41e384ed9d5954c19b34
102 N907268629ef54518abeb20c5982cfcb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Data Collection
104 rdf:type schema:DefinedTerm
105 N912e79fc875142f7b5b8c5c12fbc7f52 schema:volumeNumber 12
106 rdf:type schema:PublicationVolume
107 N9223824c838442cc8912388f02e3402a schema:issueNumber 1
108 rdf:type schema:PublicationIssue
109 N94ad47806bc1410aa50f50014c1e1566 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Cost-Benefit Analysis
111 rdf:type schema:DefinedTerm
112 N97c21b9bb2fe472980d4a53c42916122 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Na19b6265902945419ec57ad20359de0c rdf:first sg:person.01150601764.81
115 rdf:rest N88f4c84649e04f5f90b88192012af261
116 Nacd3196d18fa4b3589c6e04012e5eda6 schema:name nlm_unique_id
117 schema:value 101088677
118 rdf:type schema:PropertyValue
119 Nbf0bc2652c79482f8e3ec47013c9167f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Myocardial Infarction
121 rdf:type schema:DefinedTerm
122 Nc19a7d588910414a9332ad562660e14a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Clinical Trials as Topic
124 rdf:type schema:DefinedTerm
125 Ncee6cfa97bdb41ea8fa40278958c5d61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Aged
127 rdf:type schema:DefinedTerm
128 Ne09b514840334624aa8c200266c41b4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Matricaria
130 rdf:type schema:DefinedTerm
131 Ne5680349433c4fb186c6be6c105a9514 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Sample Size
133 rdf:type schema:DefinedTerm
134 Nf5568880fc5947cdb765113e7b80f52d schema:name dimensions_id
135 schema:value pub.1053038724
136 rdf:type schema:PropertyValue
137 Nf5d6bc97ff97421893f22ea2c31acabd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Male
139 rdf:type schema:DefinedTerm
140 Nfdf426c429234488a23dfac4139edf41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Case Management
142 rdf:type schema:DefinedTerm
143 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
144 schema:name Medical and Health Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
147 schema:name Public Health and Health Services
148 rdf:type schema:DefinedTerm
149 sg:journal.1327417 schema:issn 1472-6963
150 schema:name BMC Health Services Research
151 rdf:type schema:Periodical
152 sg:person.01150601764.81 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
153 schema:familyName Seidl
154 schema:givenName Hildegard
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150601764.81
156 rdf:type schema:Person
157 sg:person.01215630466.46 schema:affiliation https://www.grid.ac/institutes/grid.4567.0
158 schema:familyName Holle
159 schema:givenName Rolf
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215630466.46
161 rdf:type schema:Person
162 sg:person.01265030364.46 schema:affiliation https://www.grid.ac/institutes/grid.419801.5
163 schema:familyName Wende
164 schema:givenName Rupert
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265030364.46
166 rdf:type schema:Person
167 sg:person.013706140257.01 schema:affiliation https://www.grid.ac/institutes/grid.419801.5
168 schema:familyName Meisinger
169 schema:givenName Christa
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013706140257.01
171 rdf:type schema:Person
172 sg:pub.10.1007/bf02521343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050279613
173 https://doi.org/10.1007/bf02521343
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s00392-004-0109-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052780652
176 https://doi.org/10.1007/s00392-004-0109-x
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s00392-004-1064-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004063667
179 https://doi.org/10.1007/s00392-004-1064-2
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s10198-008-0101-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005578762
182 https://doi.org/10.1007/s10198-008-0101-x
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1471-2318-10-29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004693705
185 https://doi.org/10.1186/1471-2318-10-29
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/1472-6963-8-187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004193497
188 https://doi.org/10.1186/1472-6963-8-187
189 rdf:type schema:CreativeWork
190 sg:pub.10.2165/00019053-199814040-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051516763
191 https://doi.org/10.2165/00019053-199814040-00003
192 rdf:type schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1074468350 schema:CreativeWork
194 https://doi.org/10.1002/hec.826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035534480
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/0197-2456(95)00166-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023467179
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.ejca.2010.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035787854
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.healthpol.2005.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053354179
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.jhealeco.2008.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010472894
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s0168-8510(03)00083-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021504641
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s0895-4356(99)00177-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013862135
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1055/s-2005-858698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057442073
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1111/j.1524-4733.2005.03065.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001248017
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1111/j.1524-4733.2007.00285.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049077965
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1111/j.1524-4733.2010.00788.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019483650
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1136/bmj.317.7167.1195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046394553
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1146/annurev.publhealth.22.1.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033856709
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1177/0272989x98018002s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016273901
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1177/1077558705285298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054015803
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1192/bjp.188.4.323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022998476
225 rdf:type schema:CreativeWork
226 https://doi.org/10.3310/hta3060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074468350
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.419801.5 schema:alternateName Augsburg Hospital
229 schema:name Department of Internal Medicine I – Cardiology, Augsburg Hospital, Stenglinstraße 2, 86150, Augsburg, Germany
230 Helmholtz Zentrum München – German Research Center for Environmental Health, Institute of Epidemiology, Munich, Germany
231 MONICA/KORA Myocardial Infarction Registry, Augsburg Hospital, Stenglinstraße 2, 86150, Augsburg, Germany
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.4567.0 schema:alternateName Helmholtz Zentrum München
234 schema:name Helmholtz Zentrum München – German Research Center for Environmental Health, Institute of Health Economics and Health Care Management, Munich, Germany
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...