Combinational risk factors of metabolic syndrome identified by fuzzy neural network analysis of health-check data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Yasunori Ushida, Ryuji Kato, Kosuke Niwa, Daisuke Tanimura, Hideo Izawa, Kenji Yasui, Tomokazu Takase, Yasuko Yoshida, Mitsuo Kawase, Tsutomu Yoshida, Toyoaki Murohara, Hiroyuki Honda

ABSTRACT

BACKGROUND: Lifestyle-related diseases represented by metabolic syndrome develop as results of complex interaction. By using health check-up data from two large studies collected during a long-term follow-up, we searched for risk factors associated with the development of metabolic syndrome. METHODS: In our original study, we selected 77 case subjects who developed metabolic syndrome during the follow-up and 152 healthy control subjects who were free of lifestyle-related risk components from among 1803 Japanese male employees. In a replication study, we selected 2196 case subjects and 2196 healthy control subjects from among 31343 other Japanese male employees. By means of a bioinformatics approach using a fuzzy neural network (FNN), we searched any significant combinations that are associated with MetS. To ensure that the risk combination selected by FNN analysis was statistically reliable, we performed logistic regression analysis including adjustment. RESULTS: We selected a combination of an elevated level of γ-glutamyltranspeptidase (γ-GTP) and an elevated white blood cell (WBC) count as the most significant combination of risk factors for the development of metabolic syndrome. The FNN also identified the same tendency in a replication study. The clinical characteristics of γ-GTP level and WBC count were statistically significant even after adjustment, confirming that the results obtained from the fuzzy neural network are reasonable. Correlation ratio showed that an elevated level of γ-GTP is associated with habitual drinking of alcohol and a high WBC count is associated with habitual smoking. CONCLUSIONS: This result obtained by fuzzy neural network analysis of health check-up data from large long-term studies can be useful in providing a personalized novel diagnostic and therapeutic method involving the γ-GTP level and the WBC count. More... »

PAGES

80

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1472-6947-12-80

DOI

http://dx.doi.org/10.1186/1472-6947-12-80

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016246530

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22853735


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnostic Tests, Routine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Employment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Exposure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fuzzy Logic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leukocyte Count", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Life Style", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Outcome and Process Assessment (Health Care)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Specimen Handling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "gamma-Glutamyltransferase", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "School of Engineering, Nagoya University, 464-8603, Furo-cho, Chikusa-ku, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ushida", 
        "givenName": "Yasunori", 
        "id": "sg:person.0657536050.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657536050.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "School of Engineering, Nagoya University, 464-8603, Furo-cho, Chikusa-ku, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kato", 
        "givenName": "Ryuji", 
        "id": "sg:person.012035757272.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012035757272.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NGK Insulators (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.471216.7", 
          "name": [
            "NGK Insulators, Ltd, 467-8530, Sudacho, Mizuho-ku, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niwa", 
        "givenName": "Kosuke", 
        "id": "sg:person.0755642710.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755642710.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Nagoya University School of Medicine, 466-8550, Tsurumaicho, Showa-ku, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanimura", 
        "givenName": "Daisuke", 
        "id": "sg:person.0776467161.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776467161.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Nagoya University School of Medicine, 466-8550, Tsurumaicho, Showa-ku, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Izawa", 
        "givenName": "Hideo", 
        "id": "sg:person.01153042357.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153042357.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NGK Spark Plug (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.471218.9", 
          "name": [
            "NGK Health Insurance Society, 467-8530, Sudacho, Mizuho-ku, Nagoya, Japan", 
            "Aoyama Clinic, Sakae 3-7-13, 460-0008, Naka-ku, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yasui", 
        "givenName": "Kenji", 
        "id": "sg:person.01027111606.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027111606.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NGK Insulators (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.471216.7", 
          "name": [
            "NGK Insulators, Ltd, 467-8530, Sudacho, Mizuho-ku, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takase", 
        "givenName": "Tomokazu", 
        "id": "sg:person.01372625032.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372625032.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NGK Insulators (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.471216.7", 
          "name": [
            "NGK Insulators, Ltd, 467-8530, Sudacho, Mizuho-ku, Nagoya, Japan", 
            "MEXT Innovative Research Center for Preventative Medical Engineering, 464-8601, Furo-cho, Chikusa-ku, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshida", 
        "givenName": "Yasuko", 
        "id": "sg:person.07426074352.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07426074352.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NGK Insulators (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.471216.7", 
          "name": [
            "NGK Insulators, Ltd, 467-8530, Sudacho, Mizuho-ku, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawase", 
        "givenName": "Mitsuo", 
        "id": "sg:person.01347757743.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347757743.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meijo University", 
          "id": "https://www.grid.ac/institutes/grid.259879.8", 
          "name": [
            "Faculty of Pharmacy, Meijo University, Yagotoyama 150, 468-8503, Tenpaku-ku, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshida", 
        "givenName": "Tsutomu", 
        "id": "sg:person.0615263750.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615263750.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Nagoya University School of Medicine, 466-8550, Tsurumaicho, Showa-ku, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murohara", 
        "givenName": "Toyoaki", 
        "id": "sg:person.01166405657.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166405657.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "School of Engineering, Nagoya University, 464-8603, Furo-cho, Chikusa-ku, Nagoya, Japan", 
            "MEXT Innovative Research Center for Preventative Medical Engineering, 464-8601, Furo-cho, Chikusa-ku, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Honda", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.016617716011.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016617716011.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2011.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002150648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2621.2002.tb11411.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008815130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2169/internalmedicine.48.2094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010796430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2169/internalmedicine.48.2094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010796430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1349-7006.2002.tb01225.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011608055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1349-7006.2002.tb01225.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011608055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(04)15942-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016960758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1194/jlr.m200419-jlr200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017068915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2007.12.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017393705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.27.6.1427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018002624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)66378-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021290198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2010.201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023272084", 
          "https://doi.org/10.1038/ejhg.2010.201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.metabol.2009.08.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025611151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1753-0407.2010.00111.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026095488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-10-454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029681391", 
          "https://doi.org/10.1186/1471-2458-10-454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2169/internalmedicine.46.0136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029785399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1389-1723(00)89087-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037728049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.05.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037934759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiosc.2011.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041049669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diabres.2011.02.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042109472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5057/jjske.j090217-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043189690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1389-1723(99)80205-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046435841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1349-7006.2003.tb01374.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053221349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1349-7006.2003.tb01374.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053221349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.159069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1185/030079902125001443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064132390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1252/jcej.30.94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064515904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1252/jcej.34.369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064516477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1252/jcej.34.936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064516564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000112693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069095711"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "BACKGROUND: Lifestyle-related diseases represented by metabolic syndrome develop as results of complex interaction. By using health check-up data from two large studies collected during a long-term follow-up, we searched for risk factors associated with the development of metabolic syndrome.\nMETHODS: In our original study, we selected 77 case subjects who developed metabolic syndrome during the follow-up and 152 healthy control subjects who were free of lifestyle-related risk components from among 1803 Japanese male employees. In a replication study, we selected 2196 case subjects and 2196 healthy control subjects from among 31343 other Japanese male employees. By means of a bioinformatics approach using a fuzzy neural network (FNN), we searched any significant combinations that are associated with MetS. To ensure that the risk combination selected by FNN analysis was statistically reliable, we performed logistic regression analysis including adjustment.\nRESULTS: We selected a combination of an elevated level of \u03b3-glutamyltranspeptidase (\u03b3-GTP) and an elevated white blood cell (WBC) count as the most significant combination of risk factors for the development of metabolic syndrome. The FNN also identified the same tendency in a replication study. The clinical characteristics of \u03b3-GTP level and WBC count were statistically significant even after adjustment, confirming that the results obtained from the fuzzy neural network are reasonable. Correlation ratio showed that an elevated level of \u03b3-GTP is associated with habitual drinking of alcohol and a high WBC count is associated with habitual smoking.\nCONCLUSIONS: This result obtained by fuzzy neural network analysis of health check-up data from large long-term studies can be useful in providing a personalized novel diagnostic and therapeutic method involving the \u03b3-GTP level and the WBC count.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1472-6947-12-80", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6039470", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028432", 
        "issn": [
          "1472-6947"
        ], 
        "name": "BMC Medical Informatics and Decision Making", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Combinational risk factors of metabolic syndrome identified by fuzzy neural network analysis of health-check data", 
    "pagination": "80", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4d6931955dfe2aa4fc0f3dfdf5013d2fc0bcb0cfcff76ea04c2c4effa102e29e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22853735"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101088682"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1472-6947-12-80"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016246530"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1472-6947-12-80", 
      "https://app.dimensions.ai/details/publication/pub.1016246530"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1472-6947-12-80"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1472-6947-12-80'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1472-6947-12-80'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1472-6947-12-80'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1472-6947-12-80'


 

This table displays all metadata directly associated to this object as RDF triples.

335 TRIPLES      21 PREDICATES      79 URIs      44 LITERALS      32 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1472-6947-12-80 schema:about N021d8c7282074b7c94dc3e126942cb8b
2 N06699116b3f04657af87052fa95bafca
3 N0bfd57d2e32f42af8edac8a802c62407
4 N1f932ea007e54a20bca0db29a695fb0a
5 N210e9a22167f4bf7897c111c616731d3
6 N2a86f1dd9eed45eaa3b0076e695b92a9
7 N2b213c1889844d8283828d59613200b1
8 N2ee8134ab50b41f0b6bd3d60d64df7e1
9 N3c2bd666d7a24477b7222d8f8e6d3eec
10 N3e615e29b73c4c11a18a777477328221
11 N51620bdfc8504ddbb0585eaa07bb7c70
12 N54a35d0ad88446f8aaab686df536639b
13 N62b99bb85b7c41a4b3839e44c837d512
14 N7ac29dddcf5a4e36b1b1d5e135e07fc7
15 N9db21511c47b4ddba1d841b71e3253e7
16 Nbcc2453b005f4380987dcdc427d372c0
17 Nc205879bb5b0452cb667ea42ad8b34c2
18 Nc2f9d92c0e0a42d18964472ce0574682
19 Nd6c49de8b4e74631adcdfe89e8636bed
20 Nd7660e2607d846758d98efcbac5cf90e
21 Nd97db38fa0b4499d8f42f7682f7cb759
22 Neb071787fe2a48b4ac58cd3c980eb8ea
23 Nfe8c135c8822400fa877fa22d6ea200b
24 anzsrc-for:11
25 anzsrc-for:1117
26 schema:author N52d76ab09cb44164a5b1e099260d2ff3
27 schema:citation sg:pub.10.1038/ejhg.2010.201
28 sg:pub.10.1186/1471-2458-10-454
29 https://doi.org/10.1016/j.atherosclerosis.2007.12.053
30 https://doi.org/10.1016/j.compbiomed.2011.09.005
31 https://doi.org/10.1016/j.diabres.2011.02.029
32 https://doi.org/10.1016/j.jbiosc.2011.03.002
33 https://doi.org/10.1016/j.jmb.2005.05.026
34 https://doi.org/10.1016/j.metabol.2009.08.024
35 https://doi.org/10.1016/s0140-6736(04)15942-4
36 https://doi.org/10.1016/s0140-6736(05)66378-7
37 https://doi.org/10.1016/s1389-1723(00)89087-8
38 https://doi.org/10.1016/s1389-1723(99)80205-9
39 https://doi.org/10.1109/72.159069
40 https://doi.org/10.1111/j.1349-7006.2002.tb01225.x
41 https://doi.org/10.1111/j.1349-7006.2003.tb01374.x
42 https://doi.org/10.1111/j.1365-2621.2002.tb11411.x
43 https://doi.org/10.1111/j.1753-0407.2010.00111.x
44 https://doi.org/10.1185/030079902125001443
45 https://doi.org/10.1194/jlr.m200419-jlr200
46 https://doi.org/10.1252/jcej.30.94
47 https://doi.org/10.1252/jcej.34.369
48 https://doi.org/10.1252/jcej.34.936
49 https://doi.org/10.2144/000112693
50 https://doi.org/10.2169/internalmedicine.46.0136
51 https://doi.org/10.2169/internalmedicine.48.2094
52 https://doi.org/10.2337/diacare.27.6.1427
53 https://doi.org/10.5057/jjske.j090217-1
54 schema:datePublished 2012-12
55 schema:datePublishedReg 2012-12-01
56 schema:description BACKGROUND: Lifestyle-related diseases represented by metabolic syndrome develop as results of complex interaction. By using health check-up data from two large studies collected during a long-term follow-up, we searched for risk factors associated with the development of metabolic syndrome. METHODS: In our original study, we selected 77 case subjects who developed metabolic syndrome during the follow-up and 152 healthy control subjects who were free of lifestyle-related risk components from among 1803 Japanese male employees. In a replication study, we selected 2196 case subjects and 2196 healthy control subjects from among 31343 other Japanese male employees. By means of a bioinformatics approach using a fuzzy neural network (FNN), we searched any significant combinations that are associated with MetS. To ensure that the risk combination selected by FNN analysis was statistically reliable, we performed logistic regression analysis including adjustment. RESULTS: We selected a combination of an elevated level of γ-glutamyltranspeptidase (γ-GTP) and an elevated white blood cell (WBC) count as the most significant combination of risk factors for the development of metabolic syndrome. The FNN also identified the same tendency in a replication study. The clinical characteristics of γ-GTP level and WBC count were statistically significant even after adjustment, confirming that the results obtained from the fuzzy neural network are reasonable. Correlation ratio showed that an elevated level of γ-GTP is associated with habitual drinking of alcohol and a high WBC count is associated with habitual smoking. CONCLUSIONS: This result obtained by fuzzy neural network analysis of health check-up data from large long-term studies can be useful in providing a personalized novel diagnostic and therapeutic method involving the γ-GTP level and the WBC count.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf N3c2c7a24938a4416b89d8aa759eda3db
61 Nb40042db1a974ea4aea04245fb24bed7
62 sg:journal.1028432
63 schema:name Combinational risk factors of metabolic syndrome identified by fuzzy neural network analysis of health-check data
64 schema:pagination 80
65 schema:productId N12c72cfb0c2a4f6bb0ea13c52f9b31ee
66 N240bf86b9d564d4780fbdc6c64089f7b
67 N504c2fc05c5e42df8f2c04efd281a8a4
68 N68d8b468adfc4c0982669ad813ee9df4
69 Na0fd83cb37434e88a2d444ebeeef3ff8
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016246530
71 https://doi.org/10.1186/1472-6947-12-80
72 schema:sdDatePublished 2019-04-10T16:42
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nc56803d92ec74f229c2f3f3aca8a57c3
75 schema:url http://link.springer.com/10.1186%2F1472-6947-12-80
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N021d8c7282074b7c94dc3e126942cb8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Adult
81 rdf:type schema:DefinedTerm
82 N030357cfe23648159045f685fe05a977 rdf:first sg:person.016617716011.29
83 rdf:rest rdf:nil
84 N04328052a93742cfb71a397f1f3ffa5b rdf:first sg:person.01027111606.35
85 rdf:rest Neae66f23807a4767836ea04406be2d6f
86 N06699116b3f04657af87052fa95bafca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Risk Assessment
88 rdf:type schema:DefinedTerm
89 N0bfd57d2e32f42af8edac8a802c62407 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Neural Networks (Computer)
91 rdf:type schema:DefinedTerm
92 N12c72cfb0c2a4f6bb0ea13c52f9b31ee schema:name pubmed_id
93 schema:value 22853735
94 rdf:type schema:PropertyValue
95 N1463dad40bd74ce486856fd298005a79 rdf:first sg:person.0615263750.23
96 rdf:rest N2a98996aa8b94b8bb16b8275be4e8f4f
97 N1afc8ae2554c4015acf52109c8f36c0e rdf:first sg:person.0755642710.39
98 rdf:rest N4b2dba5b12ff4f05815526bfd2ad5a2a
99 N1f932ea007e54a20bca0db29a695fb0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Humans
101 rdf:type schema:DefinedTerm
102 N210e9a22167f4bf7897c111c616731d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Leukocyte Count
104 rdf:type schema:DefinedTerm
105 N240bf86b9d564d4780fbdc6c64089f7b schema:name readcube_id
106 schema:value 4d6931955dfe2aa4fc0f3dfdf5013d2fc0bcb0cfcff76ea04c2c4effa102e29e
107 rdf:type schema:PropertyValue
108 N2a86f1dd9eed45eaa3b0076e695b92a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Surveys and Questionnaires
110 rdf:type schema:DefinedTerm
111 N2a98996aa8b94b8bb16b8275be4e8f4f rdf:first sg:person.01166405657.56
112 rdf:rest N030357cfe23648159045f685fe05a977
113 N2b213c1889844d8283828d59613200b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Risk Factors
115 rdf:type schema:DefinedTerm
116 N2ee8134ab50b41f0b6bd3d60d64df7e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Outcome and Process Assessment (Health Care)
118 rdf:type schema:DefinedTerm
119 N3c2bd666d7a24477b7222d8f8e6d3eec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Employment
121 rdf:type schema:DefinedTerm
122 N3c2c7a24938a4416b89d8aa759eda3db schema:volumeNumber 12
123 rdf:type schema:PublicationVolume
124 N3e615e29b73c4c11a18a777477328221 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Computational Biology
126 rdf:type schema:DefinedTerm
127 N4048a6418ad64bf2b6c0918b309ba0b9 rdf:first sg:person.01347757743.02
128 rdf:rest N1463dad40bd74ce486856fd298005a79
129 N4b2dba5b12ff4f05815526bfd2ad5a2a rdf:first sg:person.0776467161.77
130 rdf:rest N54e0aebc938842d39a7edccc28e54e64
131 N504c2fc05c5e42df8f2c04efd281a8a4 schema:name doi
132 schema:value 10.1186/1472-6947-12-80
133 rdf:type schema:PropertyValue
134 N51620bdfc8504ddbb0585eaa07bb7c70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Metabolic Syndrome
136 rdf:type schema:DefinedTerm
137 N52d76ab09cb44164a5b1e099260d2ff3 rdf:first sg:person.0657536050.23
138 rdf:rest Nc7213cec349b4867ae3dc7b42cd3a106
139 N54a35d0ad88446f8aaab686df536639b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Diagnostic Tests, Routine
141 rdf:type schema:DefinedTerm
142 N54e0aebc938842d39a7edccc28e54e64 rdf:first sg:person.01153042357.81
143 rdf:rest N04328052a93742cfb71a397f1f3ffa5b
144 N62b99bb85b7c41a4b3839e44c837d512 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Fuzzy Logic
146 rdf:type schema:DefinedTerm
147 N68d8b468adfc4c0982669ad813ee9df4 schema:name nlm_unique_id
148 schema:value 101088682
149 rdf:type schema:PropertyValue
150 N7ac29dddcf5a4e36b1b1d5e135e07fc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Life Style
152 rdf:type schema:DefinedTerm
153 N9db21511c47b4ddba1d841b71e3253e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Reproducibility of Results
155 rdf:type schema:DefinedTerm
156 Na0fd83cb37434e88a2d444ebeeef3ff8 schema:name dimensions_id
157 schema:value pub.1016246530
158 rdf:type schema:PropertyValue
159 Nb40042db1a974ea4aea04245fb24bed7 schema:issueNumber 1
160 rdf:type schema:PublicationIssue
161 Nbcc2453b005f4380987dcdc427d372c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Follow-Up Studies
163 rdf:type schema:DefinedTerm
164 Nc205879bb5b0452cb667ea42ad8b34c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Body Mass Index
166 rdf:type schema:DefinedTerm
167 Nc2f9d92c0e0a42d18964472ce0574682 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Environmental Exposure
169 rdf:type schema:DefinedTerm
170 Nc56803d92ec74f229c2f3f3aca8a57c3 schema:name Springer Nature - SN SciGraph project
171 rdf:type schema:Organization
172 Nc7213cec349b4867ae3dc7b42cd3a106 rdf:first sg:person.012035757272.46
173 rdf:rest N1afc8ae2554c4015acf52109c8f36c0e
174 Nd6c49de8b4e74631adcdfe89e8636bed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Japan
176 rdf:type schema:DefinedTerm
177 Nd7660e2607d846758d98efcbac5cf90e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Male
179 rdf:type schema:DefinedTerm
180 Nd97db38fa0b4499d8f42f7682f7cb759 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name gamma-Glutamyltransferase
182 rdf:type schema:DefinedTerm
183 Neae66f23807a4767836ea04406be2d6f rdf:first sg:person.01372625032.63
184 rdf:rest Nf273a2f2473f47a8974e887adacba03f
185 Neb071787fe2a48b4ac58cd3c980eb8ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Logistic Models
187 rdf:type schema:DefinedTerm
188 Nf273a2f2473f47a8974e887adacba03f rdf:first sg:person.07426074352.27
189 rdf:rest N4048a6418ad64bf2b6c0918b309ba0b9
190 Nfe8c135c8822400fa877fa22d6ea200b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Specimen Handling
192 rdf:type schema:DefinedTerm
193 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
194 schema:name Medical and Health Sciences
195 rdf:type schema:DefinedTerm
196 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
197 schema:name Public Health and Health Services
198 rdf:type schema:DefinedTerm
199 sg:grant.6039470 http://pending.schema.org/fundedItem sg:pub.10.1186/1472-6947-12-80
200 rdf:type schema:MonetaryGrant
201 sg:journal.1028432 schema:issn 1472-6947
202 schema:name BMC Medical Informatics and Decision Making
203 rdf:type schema:Periodical
204 sg:person.01027111606.35 schema:affiliation https://www.grid.ac/institutes/grid.471218.9
205 schema:familyName Yasui
206 schema:givenName Kenji
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027111606.35
208 rdf:type schema:Person
209 sg:person.01153042357.81 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
210 schema:familyName Izawa
211 schema:givenName Hideo
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153042357.81
213 rdf:type schema:Person
214 sg:person.01166405657.56 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
215 schema:familyName Murohara
216 schema:givenName Toyoaki
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166405657.56
218 rdf:type schema:Person
219 sg:person.012035757272.46 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
220 schema:familyName Kato
221 schema:givenName Ryuji
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012035757272.46
223 rdf:type schema:Person
224 sg:person.01347757743.02 schema:affiliation https://www.grid.ac/institutes/grid.471216.7
225 schema:familyName Kawase
226 schema:givenName Mitsuo
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347757743.02
228 rdf:type schema:Person
229 sg:person.01372625032.63 schema:affiliation https://www.grid.ac/institutes/grid.471216.7
230 schema:familyName Takase
231 schema:givenName Tomokazu
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372625032.63
233 rdf:type schema:Person
234 sg:person.016617716011.29 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
235 schema:familyName Honda
236 schema:givenName Hiroyuki
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016617716011.29
238 rdf:type schema:Person
239 sg:person.0615263750.23 schema:affiliation https://www.grid.ac/institutes/grid.259879.8
240 schema:familyName Yoshida
241 schema:givenName Tsutomu
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615263750.23
243 rdf:type schema:Person
244 sg:person.0657536050.23 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
245 schema:familyName Ushida
246 schema:givenName Yasunori
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657536050.23
248 rdf:type schema:Person
249 sg:person.07426074352.27 schema:affiliation https://www.grid.ac/institutes/grid.471216.7
250 schema:familyName Yoshida
251 schema:givenName Yasuko
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07426074352.27
253 rdf:type schema:Person
254 sg:person.0755642710.39 schema:affiliation https://www.grid.ac/institutes/grid.471216.7
255 schema:familyName Niwa
256 schema:givenName Kosuke
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755642710.39
258 rdf:type schema:Person
259 sg:person.0776467161.77 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
260 schema:familyName Tanimura
261 schema:givenName Daisuke
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776467161.77
263 rdf:type schema:Person
264 sg:pub.10.1038/ejhg.2010.201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023272084
265 https://doi.org/10.1038/ejhg.2010.201
266 rdf:type schema:CreativeWork
267 sg:pub.10.1186/1471-2458-10-454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029681391
268 https://doi.org/10.1186/1471-2458-10-454
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/j.atherosclerosis.2007.12.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017393705
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/j.compbiomed.2011.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002150648
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/j.diabres.2011.02.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042109472
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/j.jbiosc.2011.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041049669
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/j.jmb.2005.05.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037934759
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/j.metabol.2009.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025611151
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1016/s0140-6736(04)15942-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016960758
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1016/s0140-6736(05)66378-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021290198
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1016/s1389-1723(00)89087-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037728049
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1016/s1389-1723(99)80205-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046435841
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1109/72.159069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218286
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1111/j.1349-7006.2002.tb01225.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011608055
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1111/j.1349-7006.2003.tb01374.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053221349
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1111/j.1365-2621.2002.tb11411.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008815130
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1111/j.1753-0407.2010.00111.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026095488
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1185/030079902125001443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064132390
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1194/jlr.m200419-jlr200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017068915
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1252/jcej.30.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064515904
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1252/jcej.34.369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064516477
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1252/jcej.34.936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064516564
309 rdf:type schema:CreativeWork
310 https://doi.org/10.2144/000112693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069095711
311 rdf:type schema:CreativeWork
312 https://doi.org/10.2169/internalmedicine.46.0136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029785399
313 rdf:type schema:CreativeWork
314 https://doi.org/10.2169/internalmedicine.48.2094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010796430
315 rdf:type schema:CreativeWork
316 https://doi.org/10.2337/diacare.27.6.1427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018002624
317 rdf:type schema:CreativeWork
318 https://doi.org/10.5057/jjske.j090217-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043189690
319 rdf:type schema:CreativeWork
320 https://www.grid.ac/institutes/grid.259879.8 schema:alternateName Meijo University
321 schema:name Faculty of Pharmacy, Meijo University, Yagotoyama 150, 468-8503, Tenpaku-ku, Nagoya, Japan
322 rdf:type schema:Organization
323 https://www.grid.ac/institutes/grid.27476.30 schema:alternateName Nagoya University
324 schema:name MEXT Innovative Research Center for Preventative Medical Engineering, 464-8601, Furo-cho, Chikusa-ku, Nagoya, Japan
325 Nagoya University School of Medicine, 466-8550, Tsurumaicho, Showa-ku, Nagoya, Japan
326 School of Engineering, Nagoya University, 464-8603, Furo-cho, Chikusa-ku, Nagoya, Japan
327 rdf:type schema:Organization
328 https://www.grid.ac/institutes/grid.471216.7 schema:alternateName NGK Insulators (Japan)
329 schema:name MEXT Innovative Research Center for Preventative Medical Engineering, 464-8601, Furo-cho, Chikusa-ku, Nagoya, Japan
330 NGK Insulators, Ltd, 467-8530, Sudacho, Mizuho-ku, Nagoya, Japan
331 rdf:type schema:Organization
332 https://www.grid.ac/institutes/grid.471218.9 schema:alternateName NGK Spark Plug (Japan)
333 schema:name Aoyama Clinic, Sakae 3-7-13, 460-0008, Naka-ku, Nagoya, Japan
334 NGK Health Insurance Society, 467-8530, Sudacho, Mizuho-ku, Nagoya, Japan
335 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...