The Chronic Kidney Disease Model: A General Purpose Model of Disease Progression and Treatment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Lori A Orlando, Eric J Belasco, Uptal D Patel, David B Matchar

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is the focus of recent national policy efforts; however, decision makers must account for multiple therapeutic options, comorbidities and complications. The objective of the Chronic Kidney Disease model is to provide guidance to decision makers. We describe this model and give an example of how it can inform clinical and policy decisions. METHODS: Monte Carlo simulation of CKD natural history and treatment. Health states include myocardial infarction, stroke with and without disability, congestive heart failure, CKD stages 1-5, bone disease, dialysis, transplant and death. Each cycle is 1 month. Projections account for race, age, gender, diabetes, proteinuria, hypertension, cardiac disease, and CKD stage. Treatment strategies include hypertension control, diabetes control, use of HMG-CoA reductase inhibitors, use of angiotensin converting enzyme inhibitors, nephrology specialty care, CKD screening, and a combination of these. The model architecture is flexible permitting updates as new data become available. The primary outcome is quality adjusted life years (QALYs). Secondary outcomes include health state events and CKD progression rate. RESULTS: The model was validated for GFR change/year -3.0 ± 1.9 vs. -1.7 ± 3.4 (in the AASK trial), and annual myocardial infarction and mortality rates 3.6 ± 0.9% and 1.6 ± 0.5% vs. 4.4% and 1.6% in the Go study. To illustrate the model's utility we estimated lifetime impact of a hypothetical treatment for primary prevention of vascular disease. As vascular risk declined, QALY improved but risk of dialysis increased. At baseline, 20% and 60% reduction: QALYs = 17.6, 18.2, and 19.0 and dialysis = 7.7%, 8.1%, and 10.4%, respectively. CONCLUSIONS: The CKD Model is a valid, general purpose model intended as a resource to inform clinical and policy decisions improving CKD care. Its value as a tool is illustrated in our example which projects a relationship between decreasing cardiac disease and increasing ESRD. More... »

PAGES

41

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1472-6947-11-41

DOI

http://dx.doi.org/10.1186/1472-6947-11-41

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045991976

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21679455


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Comorbidity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality-Adjusted Life Years", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Renal Insufficiency, Chronic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Assistant Professor of Medicine, Duke University, 3475 Erwin Rd, Wallace Clinic Ste #204, 27705, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orlando", 
        "givenName": "Lori A", 
        "id": "sg:person.01270554032.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270554032.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas Tech University", 
          "id": "https://www.grid.ac/institutes/grid.264784.b", 
          "name": [
            "Texas Tech University, AAEC, MS 42132, 79409, Lubbock, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belasco", 
        "givenName": "Eric J", 
        "id": "sg:person.01346414074.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346414074.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Duke University, DUMC 364627710, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patel", 
        "givenName": "Uptal D", 
        "id": "sg:person.01071327570.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071327570.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Duke University, DUMC 3896, 27710, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matchar", 
        "givenName": "David B", 
        "id": "sg:person.01047233414.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047233414.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00365510802144870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002119538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1185/030079904x1980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005280433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa041031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005610447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2003.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006565107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.27.6.1330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007275742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ki.5002009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007756777", 
          "https://doi.org/10.1038/sj.ki.5002009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2005121337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010875438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2005121337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010875438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.juro.2007.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013127609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0749-3797(01)00399-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015373173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000143892.84582.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021742077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.298.17.2038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022327258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.100.20.2054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024318962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2004050355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024606970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2004050355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024606970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2008.07.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026036576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.288.19.2421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027820125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10641969909061027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028651516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/ajkd.2003.50007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033735392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/ajkd.2003.50007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033735392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.98.24.2659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034450352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.1993.03500100070030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036722941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2008.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037362160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.296.24.2939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038844748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1052-3057(03)00042-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042800981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1052-3057(03)00042-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042800981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-5273(98)00062-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042823760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.164.6.659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046965982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1440-1797.2008.01073.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048777814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(02)02663-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050699787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(02)02663-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050699787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.32.6.1425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052068469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00008483-199801000-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060286826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00008483-199801000-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060286826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00008483-199801000-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060286826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-139-2-200307150-00013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073706427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074590289", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077417960", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077439364", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082931427", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Chronic kidney disease (CKD) is the focus of recent national policy efforts; however, decision makers must account for multiple therapeutic options, comorbidities and complications. The objective of the Chronic Kidney Disease model is to provide guidance to decision makers. We describe this model and give an example of how it can inform clinical and policy decisions.\nMETHODS: Monte Carlo simulation of CKD natural history and treatment. Health states include myocardial infarction, stroke with and without disability, congestive heart failure, CKD stages 1-5, bone disease, dialysis, transplant and death. Each cycle is 1 month. Projections account for race, age, gender, diabetes, proteinuria, hypertension, cardiac disease, and CKD stage. Treatment strategies include hypertension control, diabetes control, use of HMG-CoA reductase inhibitors, use of angiotensin converting enzyme inhibitors, nephrology specialty care, CKD screening, and a combination of these. The model architecture is flexible permitting updates as new data become available. The primary outcome is quality adjusted life years (QALYs). Secondary outcomes include health state events and CKD progression rate.\nRESULTS: The model was validated for GFR change/year -3.0 \u00b1 1.9 vs. -1.7 \u00b1 3.4 (in the AASK trial), and annual myocardial infarction and mortality rates 3.6 \u00b1 0.9% and 1.6 \u00b1 0.5% vs. 4.4% and 1.6% in the Go study. To illustrate the model's utility we estimated lifetime impact of a hypothetical treatment for primary prevention of vascular disease. As vascular risk declined, QALY improved but risk of dialysis increased. At baseline, 20% and 60% reduction: QALYs = 17.6, 18.2, and 19.0 and dialysis = 7.7%, 8.1%, and 10.4%, respectively.\nCONCLUSIONS: The CKD Model is a valid, general purpose model intended as a resource to inform clinical and policy decisions improving CKD care. Its value as a tool is illustrated in our example which projects a relationship between decreasing cardiac disease and increasing ESRD.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1472-6947-11-41", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1028432", 
        "issn": [
          "1472-6947"
        ], 
        "name": "BMC Medical Informatics and Decision Making", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "The Chronic Kidney Disease Model: A General Purpose Model of Disease Progression and Treatment", 
    "pagination": "41", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "db14549844997afaf80dcf81c113d333b192ab95edec38b9f4658b7414bcc85f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21679455"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101088682"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1472-6947-11-41"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045991976"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1472-6947-11-41", 
      "https://app.dimensions.ai/details/publication/pub.1045991976"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1472-6947-11-41"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1472-6947-11-41'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1472-6947-11-41'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1472-6947-11-41'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1472-6947-11-41'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      70 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1472-6947-11-41 schema:about N3a674100b36a45918de68f8ab1dae727
2 N3e8f93e3567347af8291b4c6db3098a6
3 N55359445bc934672b5f1ce8e53141dde
4 N5f9ec71e7a3b4d1f903177a3cef70ebd
5 N6e8bc9f8405a4cdca4c22792d7bfac51
6 N808a2adb393649ae8d70f4d4d800e2df
7 N8e99e9b2a20746bc9d4c75ad35275242
8 Nac8089cb8fe8474b80ec11a1f89a2b33
9 anzsrc-for:11
10 anzsrc-for:1117
11 schema:author Na7ed1c6bf96d4574aac198e6458a8e5a
12 schema:citation sg:pub.10.1038/sj.ki.5002009
13 https://app.dimensions.ai/details/publication/pub.1074590289
14 https://app.dimensions.ai/details/publication/pub.1077417960
15 https://app.dimensions.ai/details/publication/pub.1077439364
16 https://app.dimensions.ai/details/publication/pub.1082931427
17 https://doi.org/10.1001/archinte.164.6.659
18 https://doi.org/10.1001/jama.1993.03500100070030
19 https://doi.org/10.1001/jama.288.19.2421
20 https://doi.org/10.1001/jama.296.24.2939
21 https://doi.org/10.1001/jama.298.17.2038
22 https://doi.org/10.1016/j.juro.2007.02.006
23 https://doi.org/10.1016/s0167-5273(98)00062-x
24 https://doi.org/10.1016/s0735-1097(02)02663-3
25 https://doi.org/10.1016/s0749-3797(01)00399-3
26 https://doi.org/10.1016/s1052-3057(03)00042-9
27 https://doi.org/10.1053/ajkd.2003.50007
28 https://doi.org/10.1053/j.ajkd.2003.10.001
29 https://doi.org/10.1053/j.ajkd.2008.01.015
30 https://doi.org/10.1053/j.ajkd.2008.07.049
31 https://doi.org/10.1056/nejmoa041031
32 https://doi.org/10.1080/00365510802144870
33 https://doi.org/10.1097/00008483-199801000-00006
34 https://doi.org/10.1111/j.1440-1797.2008.01073.x
35 https://doi.org/10.1161/01.cir.0000143892.84582.60
36 https://doi.org/10.1161/01.cir.100.20.2054
37 https://doi.org/10.1161/01.cir.98.24.2659
38 https://doi.org/10.1161/01.str.32.6.1425
39 https://doi.org/10.1185/030079904x1980
40 https://doi.org/10.1681/asn.2004050355
41 https://doi.org/10.1681/asn.2005121337
42 https://doi.org/10.2337/diacare.27.6.1330
43 https://doi.org/10.3109/10641969909061027
44 https://doi.org/10.7326/0003-4819-139-2-200307150-00013
45 schema:datePublished 2011-12
46 schema:datePublishedReg 2011-12-01
47 schema:description BACKGROUND: Chronic kidney disease (CKD) is the focus of recent national policy efforts; however, decision makers must account for multiple therapeutic options, comorbidities and complications. The objective of the Chronic Kidney Disease model is to provide guidance to decision makers. We describe this model and give an example of how it can inform clinical and policy decisions. METHODS: Monte Carlo simulation of CKD natural history and treatment. Health states include myocardial infarction, stroke with and without disability, congestive heart failure, CKD stages 1-5, bone disease, dialysis, transplant and death. Each cycle is 1 month. Projections account for race, age, gender, diabetes, proteinuria, hypertension, cardiac disease, and CKD stage. Treatment strategies include hypertension control, diabetes control, use of HMG-CoA reductase inhibitors, use of angiotensin converting enzyme inhibitors, nephrology specialty care, CKD screening, and a combination of these. The model architecture is flexible permitting updates as new data become available. The primary outcome is quality adjusted life years (QALYs). Secondary outcomes include health state events and CKD progression rate. RESULTS: The model was validated for GFR change/year -3.0 ± 1.9 vs. -1.7 ± 3.4 (in the AASK trial), and annual myocardial infarction and mortality rates 3.6 ± 0.9% and 1.6 ± 0.5% vs. 4.4% and 1.6% in the Go study. To illustrate the model's utility we estimated lifetime impact of a hypothetical treatment for primary prevention of vascular disease. As vascular risk declined, QALY improved but risk of dialysis increased. At baseline, 20% and 60% reduction: QALYs = 17.6, 18.2, and 19.0 and dialysis = 7.7%, 8.1%, and 10.4%, respectively. CONCLUSIONS: The CKD Model is a valid, general purpose model intended as a resource to inform clinical and policy decisions improving CKD care. Its value as a tool is illustrated in our example which projects a relationship between decreasing cardiac disease and increasing ESRD.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N0abb7eff1ca2415e985df7a436363c10
52 Na8112509ceed4c2b91ba954cc5eb5070
53 sg:journal.1028432
54 schema:name The Chronic Kidney Disease Model: A General Purpose Model of Disease Progression and Treatment
55 schema:pagination 41
56 schema:productId N2e57472f6a9d4c8380fff5df762f862d
57 N30bbea75dc894572b2a176b67ac30d95
58 N51a38eb5a596460b9016d3a5607e669d
59 N61adf1b70c9542a0968e3d9bf2b777d4
60 N7b81df098e6a469c9ec2b4e29d8ac610
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045991976
62 https://doi.org/10.1186/1472-6947-11-41
63 schema:sdDatePublished 2019-04-10T17:32
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N79e9f2faa4af4119bcdc5740d12d01e4
66 schema:url http://link.springer.com/10.1186%2F1472-6947-11-41
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N021d086e736a4bb3991ed6544a861a4a rdf:first sg:person.01071327570.86
71 rdf:rest N995dc4a90d094f5583581865c6b7044c
72 N0abb7eff1ca2415e985df7a436363c10 schema:volumeNumber 11
73 rdf:type schema:PublicationVolume
74 N2e57472f6a9d4c8380fff5df762f862d schema:name readcube_id
75 schema:value db14549844997afaf80dcf81c113d333b192ab95edec38b9f4658b7414bcc85f
76 rdf:type schema:PropertyValue
77 N30bbea75dc894572b2a176b67ac30d95 schema:name doi
78 schema:value 10.1186/1472-6947-11-41
79 rdf:type schema:PropertyValue
80 N3a674100b36a45918de68f8ab1dae727 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Models, Theoretical
82 rdf:type schema:DefinedTerm
83 N3e8f93e3567347af8291b4c6db3098a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Comorbidity
85 rdf:type schema:DefinedTerm
86 N51a38eb5a596460b9016d3a5607e669d schema:name nlm_unique_id
87 schema:value 101088682
88 rdf:type schema:PropertyValue
89 N55359445bc934672b5f1ce8e53141dde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Risk Factors
91 rdf:type schema:DefinedTerm
92 N5f9ec71e7a3b4d1f903177a3cef70ebd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Monte Carlo Method
94 rdf:type schema:DefinedTerm
95 N61adf1b70c9542a0968e3d9bf2b777d4 schema:name pubmed_id
96 schema:value 21679455
97 rdf:type schema:PropertyValue
98 N6e8bc9f8405a4cdca4c22792d7bfac51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Humans
100 rdf:type schema:DefinedTerm
101 N79e9f2faa4af4119bcdc5740d12d01e4 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N7b81df098e6a469c9ec2b4e29d8ac610 schema:name dimensions_id
104 schema:value pub.1045991976
105 rdf:type schema:PropertyValue
106 N7f4173618719454daa938203702d6fee rdf:first sg:person.01346414074.32
107 rdf:rest N021d086e736a4bb3991ed6544a861a4a
108 N808a2adb393649ae8d70f4d4d800e2df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Quality-Adjusted Life Years
110 rdf:type schema:DefinedTerm
111 N8e99e9b2a20746bc9d4c75ad35275242 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Renal Insufficiency, Chronic
113 rdf:type schema:DefinedTerm
114 N995dc4a90d094f5583581865c6b7044c rdf:first sg:person.01047233414.00
115 rdf:rest rdf:nil
116 Na7ed1c6bf96d4574aac198e6458a8e5a rdf:first sg:person.01270554032.16
117 rdf:rest N7f4173618719454daa938203702d6fee
118 Na8112509ceed4c2b91ba954cc5eb5070 schema:issueNumber 1
119 rdf:type schema:PublicationIssue
120 Nac8089cb8fe8474b80ec11a1f89a2b33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Disease Progression
122 rdf:type schema:DefinedTerm
123 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
124 schema:name Medical and Health Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
127 schema:name Public Health and Health Services
128 rdf:type schema:DefinedTerm
129 sg:journal.1028432 schema:issn 1472-6947
130 schema:name BMC Medical Informatics and Decision Making
131 rdf:type schema:Periodical
132 sg:person.01047233414.00 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
133 schema:familyName Matchar
134 schema:givenName David B
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047233414.00
136 rdf:type schema:Person
137 sg:person.01071327570.86 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
138 schema:familyName Patel
139 schema:givenName Uptal D
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071327570.86
141 rdf:type schema:Person
142 sg:person.01270554032.16 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
143 schema:familyName Orlando
144 schema:givenName Lori A
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270554032.16
146 rdf:type schema:Person
147 sg:person.01346414074.32 schema:affiliation https://www.grid.ac/institutes/grid.264784.b
148 schema:familyName Belasco
149 schema:givenName Eric J
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346414074.32
151 rdf:type schema:Person
152 sg:pub.10.1038/sj.ki.5002009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007756777
153 https://doi.org/10.1038/sj.ki.5002009
154 rdf:type schema:CreativeWork
155 https://app.dimensions.ai/details/publication/pub.1074590289 schema:CreativeWork
156 https://app.dimensions.ai/details/publication/pub.1077417960 schema:CreativeWork
157 https://app.dimensions.ai/details/publication/pub.1077439364 schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1082931427 schema:CreativeWork
159 https://doi.org/10.1001/archinte.164.6.659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046965982
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1001/jama.1993.03500100070030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036722941
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1001/jama.288.19.2421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027820125
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1001/jama.296.24.2939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038844748
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1001/jama.298.17.2038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022327258
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.juro.2007.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013127609
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0167-5273(98)00062-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042823760
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0735-1097(02)02663-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050699787
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0749-3797(01)00399-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015373173
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s1052-3057(03)00042-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042800981
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1053/ajkd.2003.50007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033735392
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1053/j.ajkd.2003.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006565107
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1053/j.ajkd.2008.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037362160
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1053/j.ajkd.2008.07.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026036576
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1056/nejmoa041031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005610447
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1080/00365510802144870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002119538
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1097/00008483-199801000-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060286826
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1111/j.1440-1797.2008.01073.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048777814
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1161/01.cir.0000143892.84582.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021742077
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1161/01.cir.100.20.2054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024318962
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1161/01.cir.98.24.2659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034450352
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1161/01.str.32.6.1425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052068469
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1185/030079904x1980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005280433
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1681/asn.2004050355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024606970
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1681/asn.2005121337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010875438
208 rdf:type schema:CreativeWork
209 https://doi.org/10.2337/diacare.27.6.1330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007275742
210 rdf:type schema:CreativeWork
211 https://doi.org/10.3109/10641969909061027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028651516
212 rdf:type schema:CreativeWork
213 https://doi.org/10.7326/0003-4819-139-2-200307150-00013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073706427
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.26009.3d schema:alternateName Duke University
216 schema:name Assistant Professor of Medicine, Duke University, 3475 Erwin Rd, Wallace Clinic Ste #204, 27705, Durham, NC, USA
217 Duke University, DUMC 364627710, Durham, NC, USA
218 Duke University, DUMC 3896, 27710, Durham, NC, USA
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.264784.b schema:alternateName Texas Tech University
221 schema:name Texas Tech University, AAEC, MS 42132, 79409, Lubbock, TX, USA
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...