Ontology type: schema:ScholarlyArticle Open Access: True
2009-03-26
AUTHORSCarlos Oscar S Sorzano, Abraham Otero, Estefanía M Olmos, José María Carazo
ABSTRACTBackgroundThe transmission electron microscope is used to acquire structural information of macromolecular complexes. However, as any other imaging device, it introduces optical aberrations that must be corrected if high-resolution structural information is to be obtained. The set of all aberrations are usually modeled in Fourier space by the so-called Contrast Transfer Function (CTF). Before correcting for the CTF, we must first estimate it from the electron micrographs. This is usually done by estimating a number of parameters specifying a theoretical model of the CTF. This estimation is performed by minimizing some error measure between the theoretical Power Spectrum Density (PSD) and the experimentally observed PSD. The high noise present in the micrographs, the possible local minima of the error function for estimating the CTF parameters, and the cross-talking between CTF parameters may cause errors in the estimated CTF parameters.ResultsIn this paper, we explore the effect of these estimation errors on the theoretical CTF. For the CTF model proposed in [1] we show which are the most sensitive CTF parameters as well as the most sensitive background parameters. Moreover, we provide a methodology to reveal the internal structure of the CTF model (which parameters influence in which parameters) and to estimate the accuracy of each model parameter. Finally, we explore the effect of the variability in the detection of the CTF for CTF phase and amplitude correction.ConclusionWe show that the estimation errors for the CTF detection methodology proposed in [1] does not show a significant deterioration of the CTF correction capabilities of subsequent algorithms. All together, the methodology described in this paper constitutes a powerful tool for the quantitative analysis of CTF models that can be applied to other models different from the one analyzed here. More... »
PAGES18
http://scigraph.springernature.com/pub.10.1186/1472-6807-9-18
DOIhttp://dx.doi.org/10.1186/1472-6807-9-18
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1002721912
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/19321015
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Algorithms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Fourier Analysis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Image Processing, Computer-Assisted",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Imaging, Three-Dimensional",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Microscopy, Electron, Transmission",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Microscopy, Phase-Contrast",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Theoretical",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Reproducibility of Results",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Research Design",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sensitivity and Specificity",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain",
"id": "http://www.grid.ac/institutes/grid.428469.5",
"name": [
"Escuela Polit\u00e9cnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepr\u00edncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain",
"Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Sorzano",
"givenName": "Carlos Oscar S",
"id": "sg:person.07601134107.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601134107.57"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Escuela Polit\u00e9cnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepr\u00edncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain",
"id": "http://www.grid.ac/institutes/grid.8461.b",
"name": [
"Escuela Polit\u00e9cnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepr\u00edncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Otero",
"givenName": "Abraham",
"id": "sg:person.01215705757.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215705757.38"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Escuela Polit\u00e9cnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepr\u00edncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain",
"id": "http://www.grid.ac/institutes/grid.8461.b",
"name": [
"Escuela Polit\u00e9cnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepr\u00edncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Olmos",
"givenName": "Estefan\u00eda M",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain",
"id": "http://www.grid.ac/institutes/grid.428469.5",
"name": [
"Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Carazo",
"givenName": "Jos\u00e9 Mar\u00eda",
"id": "sg:person.011633344357.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011633344357.83"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nsb1295-1083",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003523499",
"https://doi.org/10.1038/nsb1295-1083"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-03-26",
"datePublishedReg": "2009-03-26",
"description": "BackgroundThe transmission electron microscope is used to acquire structural information of macromolecular complexes. However, as any other imaging device, it introduces optical aberrations that must be corrected if high-resolution structural information is to be obtained. The set of all aberrations are usually modeled in Fourier space by the so-called Contrast Transfer Function (CTF). Before correcting for the CTF, we must first estimate it from the electron micrographs. This is usually done by estimating a number of parameters specifying a theoretical model of the CTF. This estimation is performed by minimizing some error measure between the theoretical Power Spectrum Density (PSD) and the experimentally observed PSD. The high noise present in the micrographs, the possible local minima of the error function for estimating the CTF parameters, and the cross-talking between CTF parameters may cause errors in the estimated CTF parameters.ResultsIn this paper, we explore the effect of these estimation errors on the theoretical CTF. For the CTF model proposed in [1] we show which are the most sensitive CTF parameters as well as the most sensitive background parameters. Moreover, we provide a methodology to reveal the internal structure of the CTF model (which parameters influence in which parameters) and to estimate the accuracy of each model parameter. Finally, we explore the effect of the variability in the detection of the CTF for CTF phase and amplitude correction.ConclusionWe show that the estimation errors for the CTF detection methodology proposed in [1] does not show a significant deterioration of the CTF correction capabilities of subsequent algorithms. All together, the methodology described in this paper constitutes a powerful tool for the quantitative analysis of CTF models that can be applied to other models different from the one analyzed here.",
"genre": "article",
"id": "sg:pub.10.1186/1472-6807-9-18",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.3770159",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.3762436",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2538683",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.9664785",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1024246",
"issn": [
"2314-4343",
"2661-8850"
],
"name": "BMC Molecular and Cell Biology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"keywords": [
"contrast transfer function",
"CTF parameters",
"CTF model",
"experimental power spectra",
"contrast transfer function (CTF) parameters",
"transmission electron microscope",
"optical aberrations",
"imaging devices",
"estimation error",
"power spectrum density",
"power spectrum",
"high-resolution structural information",
"possible local minima",
"structural information",
"Fourier space",
"electron microscope",
"transfer function parameters",
"number of parameters",
"theoretical model",
"background parameters",
"internal structure",
"model parameters",
"local minima",
"error analysis",
"error function",
"transfer function",
"error measures",
"spectrum density",
"electron micrographs",
"subsequent algorithms",
"spectra",
"powerful tool",
"microscope",
"micrographs",
"aberrations",
"noise present",
"error",
"parameters",
"devices",
"density",
"model",
"correction",
"macromolecular complexes",
"methodology",
"correction capability",
"estimation",
"space",
"structure",
"algorithm",
"phase",
"quantitative analysis",
"minimum",
"function",
"function parameters",
"set",
"accuracy",
"effect",
"determination",
"detection",
"capability",
"one",
"number",
"detection methodology",
"analysis",
"complexes",
"information",
"tool",
"paper",
"measures",
"significant deterioration",
"present",
"variability",
"deterioration",
"ConclusionWe",
"ResultsIn"
],
"name": "Error analysis in the determination of the electron microscopical contrast transfer function parameters from experimental power Spectra",
"pagination": "18",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1002721912"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/1472-6807-9-18"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"19321015"
]
}
],
"sameAs": [
"https://doi.org/10.1186/1472-6807-9-18",
"https://app.dimensions.ai/details/publication/pub.1002721912"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:07",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_496.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/1472-6807-9-18"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-9-18'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-9-18'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-9-18'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-9-18'
This table displays all metadata directly associated to this object as RDF triples.
213 TRIPLES
22 PREDICATES
112 URIs
103 LITERALS
17 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1186/1472-6807-9-18 | schema:about | N075b16132d924e48bb4886515a670cd8 |
2 | ″ | ″ | N0d8a8ac4ae1640728032583448e85478 |
3 | ″ | ″ | N26495f0fcff44864a7c2747e114c18bc |
4 | ″ | ″ | N30906b45e6c94b3d83cf4c895e3af8c4 |
5 | ″ | ″ | N3297f308a1a542c3966083099fd72558 |
6 | ″ | ″ | N52c489f5883d4100bff35938b517e0fc |
7 | ″ | ″ | N5de85dc3e6314680990b2163dc33bda3 |
8 | ″ | ″ | Nd4f10cd125fe4d6bae12d1f884208840 |
9 | ″ | ″ | Ndb9701b2de4143f384a3538bb41708b9 |
10 | ″ | ″ | Nec1a4f9a44224ac5bc5a7952216c3dfb |
11 | ″ | ″ | anzsrc-for:06 |
12 | ″ | ″ | anzsrc-for:0601 |
13 | ″ | schema:author | N52c3a66053f5410191f3724a5da00672 |
14 | ″ | schema:citation | sg:pub.10.1038/nsb1295-1083 |
15 | ″ | schema:datePublished | 2009-03-26 |
16 | ″ | schema:datePublishedReg | 2009-03-26 |
17 | ″ | schema:description | BackgroundThe transmission electron microscope is used to acquire structural information of macromolecular complexes. However, as any other imaging device, it introduces optical aberrations that must be corrected if high-resolution structural information is to be obtained. The set of all aberrations are usually modeled in Fourier space by the so-called Contrast Transfer Function (CTF). Before correcting for the CTF, we must first estimate it from the electron micrographs. This is usually done by estimating a number of parameters specifying a theoretical model of the CTF. This estimation is performed by minimizing some error measure between the theoretical Power Spectrum Density (PSD) and the experimentally observed PSD. The high noise present in the micrographs, the possible local minima of the error function for estimating the CTF parameters, and the cross-talking between CTF parameters may cause errors in the estimated CTF parameters.ResultsIn this paper, we explore the effect of these estimation errors on the theoretical CTF. For the CTF model proposed in [1] we show which are the most sensitive CTF parameters as well as the most sensitive background parameters. Moreover, we provide a methodology to reveal the internal structure of the CTF model (which parameters influence in which parameters) and to estimate the accuracy of each model parameter. Finally, we explore the effect of the variability in the detection of the CTF for CTF phase and amplitude correction.ConclusionWe show that the estimation errors for the CTF detection methodology proposed in [1] does not show a significant deterioration of the CTF correction capabilities of subsequent algorithms. All together, the methodology described in this paper constitutes a powerful tool for the quantitative analysis of CTF models that can be applied to other models different from the one analyzed here. |
18 | ″ | schema:genre | article |
19 | ″ | schema:inLanguage | en |
20 | ″ | schema:isAccessibleForFree | true |
21 | ″ | schema:isPartOf | N2353ca09482d417888a389f0f60d20a2 |
22 | ″ | ″ | Nbdfb9a8588b84be8aaa42fcfffaa436e |
23 | ″ | ″ | sg:journal.1024246 |
24 | ″ | schema:keywords | CTF model |
25 | ″ | ″ | CTF parameters |
26 | ″ | ″ | ConclusionWe |
27 | ″ | ″ | Fourier space |
28 | ″ | ″ | ResultsIn |
29 | ″ | ″ | aberrations |
30 | ″ | ″ | accuracy |
31 | ″ | ″ | algorithm |
32 | ″ | ″ | analysis |
33 | ″ | ″ | background parameters |
34 | ″ | ″ | capability |
35 | ″ | ″ | complexes |
36 | ″ | ″ | contrast transfer function |
37 | ″ | ″ | contrast transfer function (CTF) parameters |
38 | ″ | ″ | correction |
39 | ″ | ″ | correction capability |
40 | ″ | ″ | density |
41 | ″ | ″ | detection |
42 | ″ | ″ | detection methodology |
43 | ″ | ″ | deterioration |
44 | ″ | ″ | determination |
45 | ″ | ″ | devices |
46 | ″ | ″ | effect |
47 | ″ | ″ | electron micrographs |
48 | ″ | ″ | electron microscope |
49 | ″ | ″ | error |
50 | ″ | ″ | error analysis |
51 | ″ | ″ | error function |
52 | ″ | ″ | error measures |
53 | ″ | ″ | estimation |
54 | ″ | ″ | estimation error |
55 | ″ | ″ | experimental power spectra |
56 | ″ | ″ | function |
57 | ″ | ″ | function parameters |
58 | ″ | ″ | high-resolution structural information |
59 | ″ | ″ | imaging devices |
60 | ″ | ″ | information |
61 | ″ | ″ | internal structure |
62 | ″ | ″ | local minima |
63 | ″ | ″ | macromolecular complexes |
64 | ″ | ″ | measures |
65 | ″ | ″ | methodology |
66 | ″ | ″ | micrographs |
67 | ″ | ″ | microscope |
68 | ″ | ″ | minimum |
69 | ″ | ″ | model |
70 | ″ | ″ | model parameters |
71 | ″ | ″ | noise present |
72 | ″ | ″ | number |
73 | ″ | ″ | number of parameters |
74 | ″ | ″ | one |
75 | ″ | ″ | optical aberrations |
76 | ″ | ″ | paper |
77 | ″ | ″ | parameters |
78 | ″ | ″ | phase |
79 | ″ | ″ | possible local minima |
80 | ″ | ″ | power spectrum |
81 | ″ | ″ | power spectrum density |
82 | ″ | ″ | powerful tool |
83 | ″ | ″ | present |
84 | ″ | ″ | quantitative analysis |
85 | ″ | ″ | set |
86 | ″ | ″ | significant deterioration |
87 | ″ | ″ | space |
88 | ″ | ″ | spectra |
89 | ″ | ″ | spectrum density |
90 | ″ | ″ | structural information |
91 | ″ | ″ | structure |
92 | ″ | ″ | subsequent algorithms |
93 | ″ | ″ | theoretical model |
94 | ″ | ″ | tool |
95 | ″ | ″ | transfer function |
96 | ″ | ″ | transfer function parameters |
97 | ″ | ″ | transmission electron microscope |
98 | ″ | ″ | variability |
99 | ″ | schema:name | Error analysis in the determination of the electron microscopical contrast transfer function parameters from experimental power Spectra |
100 | ″ | schema:pagination | 18 |
101 | ″ | schema:productId | Nadc16c9d8b3a4fdea499e0fa989b8edd |
102 | ″ | ″ | Nb18b69bd64a54435af7477439c0c0f1d |
103 | ″ | ″ | Ne53859b1e2fb47fc9981dd4380ee365b |
104 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002721912 |
105 | ″ | ″ | https://doi.org/10.1186/1472-6807-9-18 |
106 | ″ | schema:sdDatePublished | 2022-06-01T22:07 |
107 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
108 | ″ | schema:sdPublisher | N70cef85d96ce40678edf8c57260c2302 |
109 | ″ | schema:url | https://doi.org/10.1186/1472-6807-9-18 |
110 | ″ | sgo:license | sg:explorer/license/ |
111 | ″ | sgo:sdDataset | articles |
112 | ″ | rdf:type | schema:ScholarlyArticle |
113 | N075b16132d924e48bb4886515a670cd8 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
114 | ″ | schema:name | Microscopy, Phase-Contrast |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | N0d8a8ac4ae1640728032583448e85478 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
117 | ″ | schema:name | Imaging, Three-Dimensional |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | N2353ca09482d417888a389f0f60d20a2 | schema:volumeNumber | 9 |
120 | ″ | rdf:type | schema:PublicationVolume |
121 | N26495f0fcff44864a7c2747e114c18bc | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
122 | ″ | schema:name | Fourier Analysis |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | N30906b45e6c94b3d83cf4c895e3af8c4 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
125 | ″ | schema:name | Microscopy, Electron, Transmission |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | N3297f308a1a542c3966083099fd72558 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
128 | ″ | schema:name | Models, Theoretical |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | N407acd89ed6044d9a207f8ffd1331a42 | rdf:first | sg:person.01215705757.38 |
131 | ″ | rdf:rest | Ndc4295f317ff4af5b4a8b84a2e7f64ad |
132 | N45ef2f9487a543c4971fb3178ec41ea2 | rdf:first | sg:person.011633344357.83 |
133 | ″ | rdf:rest | rdf:nil |
134 | N52c3a66053f5410191f3724a5da00672 | rdf:first | sg:person.07601134107.57 |
135 | ″ | rdf:rest | N407acd89ed6044d9a207f8ffd1331a42 |
136 | N52c489f5883d4100bff35938b517e0fc | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
137 | ″ | schema:name | Research Design |
138 | ″ | rdf:type | schema:DefinedTerm |
139 | N5de85dc3e6314680990b2163dc33bda3 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
140 | ″ | schema:name | Algorithms |
141 | ″ | rdf:type | schema:DefinedTerm |
142 | N70cef85d96ce40678edf8c57260c2302 | schema:name | Springer Nature - SN SciGraph project |
143 | ″ | rdf:type | schema:Organization |
144 | Nadc16c9d8b3a4fdea499e0fa989b8edd | schema:name | doi |
145 | ″ | schema:value | 10.1186/1472-6807-9-18 |
146 | ″ | rdf:type | schema:PropertyValue |
147 | Nb18b69bd64a54435af7477439c0c0f1d | schema:name | dimensions_id |
148 | ″ | schema:value | pub.1002721912 |
149 | ″ | rdf:type | schema:PropertyValue |
150 | Nbdfb9a8588b84be8aaa42fcfffaa436e | schema:issueNumber | 1 |
151 | ″ | rdf:type | schema:PublicationIssue |
152 | Nd4f10cd125fe4d6bae12d1f884208840 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
153 | ″ | schema:name | Sensitivity and Specificity |
154 | ″ | rdf:type | schema:DefinedTerm |
155 | Ndb9701b2de4143f384a3538bb41708b9 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
156 | ″ | schema:name | Reproducibility of Results |
157 | ″ | rdf:type | schema:DefinedTerm |
158 | Ndc4295f317ff4af5b4a8b84a2e7f64ad | rdf:first | Nf1553a54303e44b083e9e7bcba4f528d |
159 | ″ | rdf:rest | N45ef2f9487a543c4971fb3178ec41ea2 |
160 | Ne53859b1e2fb47fc9981dd4380ee365b | schema:name | pubmed_id |
161 | ″ | schema:value | 19321015 |
162 | ″ | rdf:type | schema:PropertyValue |
163 | Nec1a4f9a44224ac5bc5a7952216c3dfb | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
164 | ″ | schema:name | Image Processing, Computer-Assisted |
165 | ″ | rdf:type | schema:DefinedTerm |
166 | Nf1553a54303e44b083e9e7bcba4f528d | schema:affiliation | grid-institutes:grid.8461.b |
167 | ″ | schema:familyName | Olmos |
168 | ″ | schema:givenName | Estefanía M |
169 | ″ | rdf:type | schema:Person |
170 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
171 | ″ | schema:name | Biological Sciences |
172 | ″ | rdf:type | schema:DefinedTerm |
173 | anzsrc-for:0601 | schema:inDefinedTermSet | anzsrc-for: |
174 | ″ | schema:name | Biochemistry and Cell Biology |
175 | ″ | rdf:type | schema:DefinedTerm |
176 | sg:grant.2538683 | http://pending.schema.org/fundedItem | sg:pub.10.1186/1472-6807-9-18 |
177 | ″ | rdf:type | schema:MonetaryGrant |
178 | sg:grant.3762436 | http://pending.schema.org/fundedItem | sg:pub.10.1186/1472-6807-9-18 |
179 | ″ | rdf:type | schema:MonetaryGrant |
180 | sg:grant.3770159 | http://pending.schema.org/fundedItem | sg:pub.10.1186/1472-6807-9-18 |
181 | ″ | rdf:type | schema:MonetaryGrant |
182 | sg:grant.9664785 | http://pending.schema.org/fundedItem | sg:pub.10.1186/1472-6807-9-18 |
183 | ″ | rdf:type | schema:MonetaryGrant |
184 | sg:journal.1024246 | schema:issn | 2314-4343 |
185 | ″ | ″ | 2661-8850 |
186 | ″ | schema:name | BMC Molecular and Cell Biology |
187 | ″ | schema:publisher | Springer Nature |
188 | ″ | rdf:type | schema:Periodical |
189 | sg:person.011633344357.83 | schema:affiliation | grid-institutes:grid.428469.5 |
190 | ″ | schema:familyName | Carazo |
191 | ″ | schema:givenName | José María |
192 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011633344357.83 |
193 | ″ | rdf:type | schema:Person |
194 | sg:person.01215705757.38 | schema:affiliation | grid-institutes:grid.8461.b |
195 | ″ | schema:familyName | Otero |
196 | ″ | schema:givenName | Abraham |
197 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215705757.38 |
198 | ″ | rdf:type | schema:Person |
199 | sg:person.07601134107.57 | schema:affiliation | grid-institutes:grid.428469.5 |
200 | ″ | schema:familyName | Sorzano |
201 | ″ | schema:givenName | Carlos Oscar S |
202 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601134107.57 |
203 | ″ | rdf:type | schema:Person |
204 | sg:pub.10.1038/nsb1295-1083 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003523499 |
205 | ″ | ″ | https://doi.org/10.1038/nsb1295-1083 |
206 | ″ | rdf:type | schema:CreativeWork |
207 | grid-institutes:grid.428469.5 | schema:alternateName | Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain |
208 | ″ | schema:name | Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain |
209 | ″ | ″ | Escuela Politécnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepríncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain |
210 | ″ | rdf:type | schema:Organization |
211 | grid-institutes:grid.8461.b | schema:alternateName | Escuela Politécnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepríncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain |
212 | ″ | schema:name | Escuela Politécnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepríncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain |
213 | ″ | rdf:type | schema:Organization |