Error analysis in the determination of the electron microscopical contrast transfer function parameters from experimental power Spectra View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-03-26

AUTHORS

Carlos Oscar S Sorzano, Abraham Otero, Estefanía M Olmos, José María Carazo

ABSTRACT

BackgroundThe transmission electron microscope is used to acquire structural information of macromolecular complexes. However, as any other imaging device, it introduces optical aberrations that must be corrected if high-resolution structural information is to be obtained. The set of all aberrations are usually modeled in Fourier space by the so-called Contrast Transfer Function (CTF). Before correcting for the CTF, we must first estimate it from the electron micrographs. This is usually done by estimating a number of parameters specifying a theoretical model of the CTF. This estimation is performed by minimizing some error measure between the theoretical Power Spectrum Density (PSD) and the experimentally observed PSD. The high noise present in the micrographs, the possible local minima of the error function for estimating the CTF parameters, and the cross-talking between CTF parameters may cause errors in the estimated CTF parameters.ResultsIn this paper, we explore the effect of these estimation errors on the theoretical CTF. For the CTF model proposed in [1] we show which are the most sensitive CTF parameters as well as the most sensitive background parameters. Moreover, we provide a methodology to reveal the internal structure of the CTF model (which parameters influence in which parameters) and to estimate the accuracy of each model parameter. Finally, we explore the effect of the variability in the detection of the CTF for CTF phase and amplitude correction.ConclusionWe show that the estimation errors for the CTF detection methodology proposed in [1] does not show a significant deterioration of the CTF correction capabilities of subsequent algorithms. All together, the methodology described in this paper constitutes a powerful tool for the quantitative analysis of CTF models that can be applied to other models different from the one analyzed here. More... »

PAGES

18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1472-6807-9-18

DOI

http://dx.doi.org/10.1186/1472-6807-9-18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002721912

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19321015


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fourier Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Electron, Transmission", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Phase-Contrast", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.428469.5", 
          "name": [
            "Escuela Polit\u00e9cnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepr\u00edncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain", 
            "Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sorzano", 
        "givenName": "Carlos Oscar S", 
        "id": "sg:person.07601134107.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601134107.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Escuela Polit\u00e9cnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepr\u00edncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.8461.b", 
          "name": [
            "Escuela Polit\u00e9cnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepr\u00edncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otero", 
        "givenName": "Abraham", 
        "id": "sg:person.01215705757.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215705757.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Escuela Polit\u00e9cnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepr\u00edncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.8461.b", 
          "name": [
            "Escuela Polit\u00e9cnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepr\u00edncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olmos", 
        "givenName": "Estefan\u00eda M", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.428469.5", 
          "name": [
            "Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carazo", 
        "givenName": "Jos\u00e9 Mar\u00eda", 
        "id": "sg:person.011633344357.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011633344357.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nsb1295-1083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003523499", 
          "https://doi.org/10.1038/nsb1295-1083"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-03-26", 
    "datePublishedReg": "2009-03-26", 
    "description": "BackgroundThe transmission electron microscope is used to acquire structural information of macromolecular complexes. However, as any other imaging device, it introduces optical aberrations that must be corrected if high-resolution structural information is to be obtained. The set of all aberrations are usually modeled in Fourier space by the so-called Contrast Transfer Function (CTF). Before correcting for the CTF, we must first estimate it from the electron micrographs. This is usually done by estimating a number of parameters specifying a theoretical model of the CTF. This estimation is performed by minimizing some error measure between the theoretical Power Spectrum Density (PSD) and the experimentally observed PSD. The high noise present in the micrographs, the possible local minima of the error function for estimating the CTF parameters, and the cross-talking between CTF parameters may cause errors in the estimated CTF parameters.ResultsIn this paper, we explore the effect of these estimation errors on the theoretical CTF. For the CTF model proposed in [1] we show which are the most sensitive CTF parameters as well as the most sensitive background parameters. Moreover, we provide a methodology to reveal the internal structure of the CTF model (which parameters influence in which parameters) and to estimate the accuracy of each model parameter. Finally, we explore the effect of the variability in the detection of the CTF for CTF phase and amplitude correction.ConclusionWe show that the estimation errors for the CTF detection methodology proposed in [1] does not show a significant deterioration of the CTF correction capabilities of subsequent algorithms. All together, the methodology described in this paper constitutes a powerful tool for the quantitative analysis of CTF models that can be applied to other models different from the one analyzed here.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1472-6807-9-18", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3770159", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3762436", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2538683", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9664785", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024246", 
        "issn": [
          "2314-4343", 
          "2661-8850"
        ], 
        "name": "BMC Molecular and Cell Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "contrast transfer function", 
      "CTF parameters", 
      "CTF model", 
      "experimental power spectra", 
      "contrast transfer function (CTF) parameters", 
      "transmission electron microscope", 
      "optical aberrations", 
      "imaging devices", 
      "estimation error", 
      "power spectrum density", 
      "power spectrum", 
      "high-resolution structural information", 
      "possible local minima", 
      "structural information", 
      "Fourier space", 
      "electron microscope", 
      "transfer function parameters", 
      "number of parameters", 
      "theoretical model", 
      "background parameters", 
      "internal structure", 
      "model parameters", 
      "local minima", 
      "error analysis", 
      "error function", 
      "transfer function", 
      "error measures", 
      "spectrum density", 
      "electron micrographs", 
      "subsequent algorithms", 
      "spectra", 
      "powerful tool", 
      "microscope", 
      "micrographs", 
      "aberrations", 
      "noise present", 
      "error", 
      "parameters", 
      "devices", 
      "density", 
      "model", 
      "correction", 
      "macromolecular complexes", 
      "methodology", 
      "correction capability", 
      "estimation", 
      "space", 
      "structure", 
      "algorithm", 
      "phase", 
      "quantitative analysis", 
      "minimum", 
      "function", 
      "function parameters", 
      "set", 
      "accuracy", 
      "effect", 
      "determination", 
      "detection", 
      "capability", 
      "one", 
      "number", 
      "detection methodology", 
      "analysis", 
      "complexes", 
      "information", 
      "tool", 
      "paper", 
      "measures", 
      "significant deterioration", 
      "present", 
      "variability", 
      "deterioration", 
      "ConclusionWe", 
      "ResultsIn"
    ], 
    "name": "Error analysis in the determination of the electron microscopical contrast transfer function parameters from experimental power Spectra", 
    "pagination": "18", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002721912"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1472-6807-9-18"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19321015"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1472-6807-9-18", 
      "https://app.dimensions.ai/details/publication/pub.1002721912"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1472-6807-9-18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-9-18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-9-18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-9-18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-9-18'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      22 PREDICATES      112 URIs      103 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1472-6807-9-18 schema:about N124a636c085e4ed59fc11c3a90d67719
2 N1653284b71064e698c24023b125aecfb
3 N1ab03149af4e46f89922cd58ea33c1c5
4 N204a3102c8ef47adbceca8ac4b966814
5 N3deaa2520af44632aaa766777c41e5b5
6 N656d2589f73a489ca5bfa1f0009c2eaa
7 Na64b580c01544373b31acd1bfa5ad62b
8 Nbdb20e80619e4403b7526b7216aae620
9 Ne5296a6223194ff78c99f8f5d2c565bc
10 Nf89ff6c92af54d3bb05e7b103f2423cf
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author Nff3c99c1fa264825be26199b33d58b22
14 schema:citation sg:pub.10.1038/nsb1295-1083
15 schema:datePublished 2009-03-26
16 schema:datePublishedReg 2009-03-26
17 schema:description BackgroundThe transmission electron microscope is used to acquire structural information of macromolecular complexes. However, as any other imaging device, it introduces optical aberrations that must be corrected if high-resolution structural information is to be obtained. The set of all aberrations are usually modeled in Fourier space by the so-called Contrast Transfer Function (CTF). Before correcting for the CTF, we must first estimate it from the electron micrographs. This is usually done by estimating a number of parameters specifying a theoretical model of the CTF. This estimation is performed by minimizing some error measure between the theoretical Power Spectrum Density (PSD) and the experimentally observed PSD. The high noise present in the micrographs, the possible local minima of the error function for estimating the CTF parameters, and the cross-talking between CTF parameters may cause errors in the estimated CTF parameters.ResultsIn this paper, we explore the effect of these estimation errors on the theoretical CTF. For the CTF model proposed in [1] we show which are the most sensitive CTF parameters as well as the most sensitive background parameters. Moreover, we provide a methodology to reveal the internal structure of the CTF model (which parameters influence in which parameters) and to estimate the accuracy of each model parameter. Finally, we explore the effect of the variability in the detection of the CTF for CTF phase and amplitude correction.ConclusionWe show that the estimation errors for the CTF detection methodology proposed in [1] does not show a significant deterioration of the CTF correction capabilities of subsequent algorithms. All together, the methodology described in this paper constitutes a powerful tool for the quantitative analysis of CTF models that can be applied to other models different from the one analyzed here.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N5e8cfcf7c5a14a4bbe043fcb8d1f6341
22 N5f95318cae1c46f684a768da917c35f3
23 sg:journal.1024246
24 schema:keywords CTF model
25 CTF parameters
26 ConclusionWe
27 Fourier space
28 ResultsIn
29 aberrations
30 accuracy
31 algorithm
32 analysis
33 background parameters
34 capability
35 complexes
36 contrast transfer function
37 contrast transfer function (CTF) parameters
38 correction
39 correction capability
40 density
41 detection
42 detection methodology
43 deterioration
44 determination
45 devices
46 effect
47 electron micrographs
48 electron microscope
49 error
50 error analysis
51 error function
52 error measures
53 estimation
54 estimation error
55 experimental power spectra
56 function
57 function parameters
58 high-resolution structural information
59 imaging devices
60 information
61 internal structure
62 local minima
63 macromolecular complexes
64 measures
65 methodology
66 micrographs
67 microscope
68 minimum
69 model
70 model parameters
71 noise present
72 number
73 number of parameters
74 one
75 optical aberrations
76 paper
77 parameters
78 phase
79 possible local minima
80 power spectrum
81 power spectrum density
82 powerful tool
83 present
84 quantitative analysis
85 set
86 significant deterioration
87 space
88 spectra
89 spectrum density
90 structural information
91 structure
92 subsequent algorithms
93 theoretical model
94 tool
95 transfer function
96 transfer function parameters
97 transmission electron microscope
98 variability
99 schema:name Error analysis in the determination of the electron microscopical contrast transfer function parameters from experimental power Spectra
100 schema:pagination 18
101 schema:productId N876fc34d0b1f4ea4b30cf0876325169e
102 Nb20954b1846a419d99b3f55f87664e19
103 Nd1d1a9f739af4020929115fc3f7e1478
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002721912
105 https://doi.org/10.1186/1472-6807-9-18
106 schema:sdDatePublished 2022-06-01T22:07
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher Nd7feb85a38d3436daf116e3b325e45f7
109 schema:url https://doi.org/10.1186/1472-6807-9-18
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N124a636c085e4ed59fc11c3a90d67719 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Algorithms
115 rdf:type schema:DefinedTerm
116 N1653284b71064e698c24023b125aecfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Imaging, Three-Dimensional
118 rdf:type schema:DefinedTerm
119 N1ab03149af4e46f89922cd58ea33c1c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Image Processing, Computer-Assisted
121 rdf:type schema:DefinedTerm
122 N1bc7c50bef544ca38b2bf79fd8e2338f rdf:first sg:person.011633344357.83
123 rdf:rest rdf:nil
124 N204a3102c8ef47adbceca8ac4b966814 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Microscopy, Electron, Transmission
126 rdf:type schema:DefinedTerm
127 N3d02c8370203487f8f219e0f0d80479b schema:affiliation grid-institutes:grid.8461.b
128 schema:familyName Olmos
129 schema:givenName Estefanía M
130 rdf:type schema:Person
131 N3deaa2520af44632aaa766777c41e5b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Microscopy, Phase-Contrast
133 rdf:type schema:DefinedTerm
134 N5e8cfcf7c5a14a4bbe043fcb8d1f6341 schema:issueNumber 1
135 rdf:type schema:PublicationIssue
136 N5f95318cae1c46f684a768da917c35f3 schema:volumeNumber 9
137 rdf:type schema:PublicationVolume
138 N656948902bd34919a9ea9e77520daa02 rdf:first sg:person.01215705757.38
139 rdf:rest N7c5d9d603c234d899b0863756bb3a0e1
140 N656d2589f73a489ca5bfa1f0009c2eaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Reproducibility of Results
142 rdf:type schema:DefinedTerm
143 N7c5d9d603c234d899b0863756bb3a0e1 rdf:first N3d02c8370203487f8f219e0f0d80479b
144 rdf:rest N1bc7c50bef544ca38b2bf79fd8e2338f
145 N876fc34d0b1f4ea4b30cf0876325169e schema:name pubmed_id
146 schema:value 19321015
147 rdf:type schema:PropertyValue
148 Na64b580c01544373b31acd1bfa5ad62b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Fourier Analysis
150 rdf:type schema:DefinedTerm
151 Nb20954b1846a419d99b3f55f87664e19 schema:name dimensions_id
152 schema:value pub.1002721912
153 rdf:type schema:PropertyValue
154 Nbdb20e80619e4403b7526b7216aae620 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Sensitivity and Specificity
156 rdf:type schema:DefinedTerm
157 Nd1d1a9f739af4020929115fc3f7e1478 schema:name doi
158 schema:value 10.1186/1472-6807-9-18
159 rdf:type schema:PropertyValue
160 Nd7feb85a38d3436daf116e3b325e45f7 schema:name Springer Nature - SN SciGraph project
161 rdf:type schema:Organization
162 Ne5296a6223194ff78c99f8f5d2c565bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Research Design
164 rdf:type schema:DefinedTerm
165 Nf89ff6c92af54d3bb05e7b103f2423cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Models, Theoretical
167 rdf:type schema:DefinedTerm
168 Nff3c99c1fa264825be26199b33d58b22 rdf:first sg:person.07601134107.57
169 rdf:rest N656948902bd34919a9ea9e77520daa02
170 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
171 schema:name Biological Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
174 schema:name Biochemistry and Cell Biology
175 rdf:type schema:DefinedTerm
176 sg:grant.2538683 http://pending.schema.org/fundedItem sg:pub.10.1186/1472-6807-9-18
177 rdf:type schema:MonetaryGrant
178 sg:grant.3762436 http://pending.schema.org/fundedItem sg:pub.10.1186/1472-6807-9-18
179 rdf:type schema:MonetaryGrant
180 sg:grant.3770159 http://pending.schema.org/fundedItem sg:pub.10.1186/1472-6807-9-18
181 rdf:type schema:MonetaryGrant
182 sg:grant.9664785 http://pending.schema.org/fundedItem sg:pub.10.1186/1472-6807-9-18
183 rdf:type schema:MonetaryGrant
184 sg:journal.1024246 schema:issn 2314-4343
185 2661-8850
186 schema:name BMC Molecular and Cell Biology
187 schema:publisher Springer Nature
188 rdf:type schema:Periodical
189 sg:person.011633344357.83 schema:affiliation grid-institutes:grid.428469.5
190 schema:familyName Carazo
191 schema:givenName José María
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011633344357.83
193 rdf:type schema:Person
194 sg:person.01215705757.38 schema:affiliation grid-institutes:grid.8461.b
195 schema:familyName Otero
196 schema:givenName Abraham
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215705757.38
198 rdf:type schema:Person
199 sg:person.07601134107.57 schema:affiliation grid-institutes:grid.428469.5
200 schema:familyName Sorzano
201 schema:givenName Carlos Oscar S
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601134107.57
203 rdf:type schema:Person
204 sg:pub.10.1038/nsb1295-1083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003523499
205 https://doi.org/10.1038/nsb1295-1083
206 rdf:type schema:CreativeWork
207 grid-institutes:grid.428469.5 schema:alternateName Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain
208 schema:name Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain
209 Escuela Politécnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepríncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain
210 rdf:type schema:Organization
211 grid-institutes:grid.8461.b schema:alternateName Escuela Politécnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepríncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain
212 schema:name Escuela Politécnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepríncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...