Error analysis in the determination of the electron microscopical contrast transfer function parameters from experimental power Spectra View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-03-26

AUTHORS

Carlos Oscar S Sorzano, Abraham Otero, Estefanía M Olmos, José María Carazo

ABSTRACT

BackgroundThe transmission electron microscope is used to acquire structural information of macromolecular complexes. However, as any other imaging device, it introduces optical aberrations that must be corrected if high-resolution structural information is to be obtained. The set of all aberrations are usually modeled in Fourier space by the so-called Contrast Transfer Function (CTF). Before correcting for the CTF, we must first estimate it from the electron micrographs. This is usually done by estimating a number of parameters specifying a theoretical model of the CTF. This estimation is performed by minimizing some error measure between the theoretical Power Spectrum Density (PSD) and the experimentally observed PSD. The high noise present in the micrographs, the possible local minima of the error function for estimating the CTF parameters, and the cross-talking between CTF parameters may cause errors in the estimated CTF parameters.ResultsIn this paper, we explore the effect of these estimation errors on the theoretical CTF. For the CTF model proposed in [1] we show which are the most sensitive CTF parameters as well as the most sensitive background parameters. Moreover, we provide a methodology to reveal the internal structure of the CTF model (which parameters influence in which parameters) and to estimate the accuracy of each model parameter. Finally, we explore the effect of the variability in the detection of the CTF for CTF phase and amplitude correction.ConclusionWe show that the estimation errors for the CTF detection methodology proposed in [1] does not show a significant deterioration of the CTF correction capabilities of subsequent algorithms. All together, the methodology described in this paper constitutes a powerful tool for the quantitative analysis of CTF models that can be applied to other models different from the one analyzed here. More... »

PAGES

18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1472-6807-9-18

DOI

http://dx.doi.org/10.1186/1472-6807-9-18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002721912

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19321015


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fourier Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Electron, Transmission", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Phase-Contrast", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.428469.5", 
          "name": [
            "Escuela Polit\u00e9cnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepr\u00edncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain", 
            "Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sorzano", 
        "givenName": "Carlos Oscar S", 
        "id": "sg:person.07601134107.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601134107.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Escuela Polit\u00e9cnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepr\u00edncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.8461.b", 
          "name": [
            "Escuela Polit\u00e9cnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepr\u00edncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otero", 
        "givenName": "Abraham", 
        "id": "sg:person.01215705757.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215705757.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Escuela Polit\u00e9cnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepr\u00edncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.8461.b", 
          "name": [
            "Escuela Polit\u00e9cnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepr\u00edncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olmos", 
        "givenName": "Estefan\u00eda M", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.428469.5", 
          "name": [
            "Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carazo", 
        "givenName": "Jos\u00e9 Mar\u00eda", 
        "id": "sg:person.011633344357.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011633344357.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nsb1295-1083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003523499", 
          "https://doi.org/10.1038/nsb1295-1083"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-03-26", 
    "datePublishedReg": "2009-03-26", 
    "description": "BackgroundThe transmission electron microscope is used to acquire structural information of macromolecular complexes. However, as any other imaging device, it introduces optical aberrations that must be corrected if high-resolution structural information is to be obtained. The set of all aberrations are usually modeled in Fourier space by the so-called Contrast Transfer Function (CTF). Before correcting for the CTF, we must first estimate it from the electron micrographs. This is usually done by estimating a number of parameters specifying a theoretical model of the CTF. This estimation is performed by minimizing some error measure between the theoretical Power Spectrum Density (PSD) and the experimentally observed PSD. The high noise present in the micrographs, the possible local minima of the error function for estimating the CTF parameters, and the cross-talking between CTF parameters may cause errors in the estimated CTF parameters.ResultsIn this paper, we explore the effect of these estimation errors on the theoretical CTF. For the CTF model proposed in [1] we show which are the most sensitive CTF parameters as well as the most sensitive background parameters. Moreover, we provide a methodology to reveal the internal structure of the CTF model (which parameters influence in which parameters) and to estimate the accuracy of each model parameter. Finally, we explore the effect of the variability in the detection of the CTF for CTF phase and amplitude correction.ConclusionWe show that the estimation errors for the CTF detection methodology proposed in [1] does not show a significant deterioration of the CTF correction capabilities of subsequent algorithms. All together, the methodology described in this paper constitutes a powerful tool for the quantitative analysis of CTF models that can be applied to other models different from the one analyzed here.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1472-6807-9-18", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3770159", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3762436", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2538683", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9664785", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024246", 
        "issn": [
          "2314-4343", 
          "2661-8850"
        ], 
        "name": "BMC Molecular and Cell Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "contrast transfer function", 
      "CTF parameters", 
      "CTF model", 
      "experimental power spectra", 
      "contrast transfer function (CTF) parameters", 
      "transmission electron microscope", 
      "optical aberrations", 
      "imaging devices", 
      "estimation error", 
      "power spectrum density", 
      "power spectrum", 
      "high-resolution structural information", 
      "possible local minima", 
      "structural information", 
      "Fourier space", 
      "electron microscope", 
      "transfer function parameters", 
      "number of parameters", 
      "theoretical model", 
      "background parameters", 
      "internal structure", 
      "model parameters", 
      "local minima", 
      "error analysis", 
      "error function", 
      "transfer function", 
      "error measures", 
      "spectrum density", 
      "electron micrographs", 
      "subsequent algorithms", 
      "spectra", 
      "powerful tool", 
      "microscope", 
      "micrographs", 
      "aberrations", 
      "noise present", 
      "error", 
      "parameters", 
      "devices", 
      "density", 
      "model", 
      "correction", 
      "macromolecular complexes", 
      "methodology", 
      "correction capability", 
      "estimation", 
      "space", 
      "structure", 
      "algorithm", 
      "phase", 
      "quantitative analysis", 
      "minimum", 
      "function", 
      "function parameters", 
      "set", 
      "accuracy", 
      "effect", 
      "determination", 
      "detection", 
      "capability", 
      "one", 
      "number", 
      "detection methodology", 
      "analysis", 
      "complexes", 
      "information", 
      "tool", 
      "paper", 
      "measures", 
      "significant deterioration", 
      "present", 
      "variability", 
      "deterioration", 
      "ConclusionWe", 
      "ResultsIn"
    ], 
    "name": "Error analysis in the determination of the electron microscopical contrast transfer function parameters from experimental power Spectra", 
    "pagination": "18", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002721912"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1472-6807-9-18"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19321015"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1472-6807-9-18", 
      "https://app.dimensions.ai/details/publication/pub.1002721912"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1472-6807-9-18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-9-18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-9-18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-9-18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-9-18'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      22 PREDICATES      112 URIs      103 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1472-6807-9-18 schema:about N075b16132d924e48bb4886515a670cd8
2 N0d8a8ac4ae1640728032583448e85478
3 N26495f0fcff44864a7c2747e114c18bc
4 N30906b45e6c94b3d83cf4c895e3af8c4
5 N3297f308a1a542c3966083099fd72558
6 N52c489f5883d4100bff35938b517e0fc
7 N5de85dc3e6314680990b2163dc33bda3
8 Nd4f10cd125fe4d6bae12d1f884208840
9 Ndb9701b2de4143f384a3538bb41708b9
10 Nec1a4f9a44224ac5bc5a7952216c3dfb
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author N52c3a66053f5410191f3724a5da00672
14 schema:citation sg:pub.10.1038/nsb1295-1083
15 schema:datePublished 2009-03-26
16 schema:datePublishedReg 2009-03-26
17 schema:description BackgroundThe transmission electron microscope is used to acquire structural information of macromolecular complexes. However, as any other imaging device, it introduces optical aberrations that must be corrected if high-resolution structural information is to be obtained. The set of all aberrations are usually modeled in Fourier space by the so-called Contrast Transfer Function (CTF). Before correcting for the CTF, we must first estimate it from the electron micrographs. This is usually done by estimating a number of parameters specifying a theoretical model of the CTF. This estimation is performed by minimizing some error measure between the theoretical Power Spectrum Density (PSD) and the experimentally observed PSD. The high noise present in the micrographs, the possible local minima of the error function for estimating the CTF parameters, and the cross-talking between CTF parameters may cause errors in the estimated CTF parameters.ResultsIn this paper, we explore the effect of these estimation errors on the theoretical CTF. For the CTF model proposed in [1] we show which are the most sensitive CTF parameters as well as the most sensitive background parameters. Moreover, we provide a methodology to reveal the internal structure of the CTF model (which parameters influence in which parameters) and to estimate the accuracy of each model parameter. Finally, we explore the effect of the variability in the detection of the CTF for CTF phase and amplitude correction.ConclusionWe show that the estimation errors for the CTF detection methodology proposed in [1] does not show a significant deterioration of the CTF correction capabilities of subsequent algorithms. All together, the methodology described in this paper constitutes a powerful tool for the quantitative analysis of CTF models that can be applied to other models different from the one analyzed here.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N2353ca09482d417888a389f0f60d20a2
22 Nbdfb9a8588b84be8aaa42fcfffaa436e
23 sg:journal.1024246
24 schema:keywords CTF model
25 CTF parameters
26 ConclusionWe
27 Fourier space
28 ResultsIn
29 aberrations
30 accuracy
31 algorithm
32 analysis
33 background parameters
34 capability
35 complexes
36 contrast transfer function
37 contrast transfer function (CTF) parameters
38 correction
39 correction capability
40 density
41 detection
42 detection methodology
43 deterioration
44 determination
45 devices
46 effect
47 electron micrographs
48 electron microscope
49 error
50 error analysis
51 error function
52 error measures
53 estimation
54 estimation error
55 experimental power spectra
56 function
57 function parameters
58 high-resolution structural information
59 imaging devices
60 information
61 internal structure
62 local minima
63 macromolecular complexes
64 measures
65 methodology
66 micrographs
67 microscope
68 minimum
69 model
70 model parameters
71 noise present
72 number
73 number of parameters
74 one
75 optical aberrations
76 paper
77 parameters
78 phase
79 possible local minima
80 power spectrum
81 power spectrum density
82 powerful tool
83 present
84 quantitative analysis
85 set
86 significant deterioration
87 space
88 spectra
89 spectrum density
90 structural information
91 structure
92 subsequent algorithms
93 theoretical model
94 tool
95 transfer function
96 transfer function parameters
97 transmission electron microscope
98 variability
99 schema:name Error analysis in the determination of the electron microscopical contrast transfer function parameters from experimental power Spectra
100 schema:pagination 18
101 schema:productId Nadc16c9d8b3a4fdea499e0fa989b8edd
102 Nb18b69bd64a54435af7477439c0c0f1d
103 Ne53859b1e2fb47fc9981dd4380ee365b
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002721912
105 https://doi.org/10.1186/1472-6807-9-18
106 schema:sdDatePublished 2022-06-01T22:07
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher N70cef85d96ce40678edf8c57260c2302
109 schema:url https://doi.org/10.1186/1472-6807-9-18
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N075b16132d924e48bb4886515a670cd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Microscopy, Phase-Contrast
115 rdf:type schema:DefinedTerm
116 N0d8a8ac4ae1640728032583448e85478 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Imaging, Three-Dimensional
118 rdf:type schema:DefinedTerm
119 N2353ca09482d417888a389f0f60d20a2 schema:volumeNumber 9
120 rdf:type schema:PublicationVolume
121 N26495f0fcff44864a7c2747e114c18bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Fourier Analysis
123 rdf:type schema:DefinedTerm
124 N30906b45e6c94b3d83cf4c895e3af8c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Microscopy, Electron, Transmission
126 rdf:type schema:DefinedTerm
127 N3297f308a1a542c3966083099fd72558 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Models, Theoretical
129 rdf:type schema:DefinedTerm
130 N407acd89ed6044d9a207f8ffd1331a42 rdf:first sg:person.01215705757.38
131 rdf:rest Ndc4295f317ff4af5b4a8b84a2e7f64ad
132 N45ef2f9487a543c4971fb3178ec41ea2 rdf:first sg:person.011633344357.83
133 rdf:rest rdf:nil
134 N52c3a66053f5410191f3724a5da00672 rdf:first sg:person.07601134107.57
135 rdf:rest N407acd89ed6044d9a207f8ffd1331a42
136 N52c489f5883d4100bff35938b517e0fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Research Design
138 rdf:type schema:DefinedTerm
139 N5de85dc3e6314680990b2163dc33bda3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Algorithms
141 rdf:type schema:DefinedTerm
142 N70cef85d96ce40678edf8c57260c2302 schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 Nadc16c9d8b3a4fdea499e0fa989b8edd schema:name doi
145 schema:value 10.1186/1472-6807-9-18
146 rdf:type schema:PropertyValue
147 Nb18b69bd64a54435af7477439c0c0f1d schema:name dimensions_id
148 schema:value pub.1002721912
149 rdf:type schema:PropertyValue
150 Nbdfb9a8588b84be8aaa42fcfffaa436e schema:issueNumber 1
151 rdf:type schema:PublicationIssue
152 Nd4f10cd125fe4d6bae12d1f884208840 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Sensitivity and Specificity
154 rdf:type schema:DefinedTerm
155 Ndb9701b2de4143f384a3538bb41708b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Reproducibility of Results
157 rdf:type schema:DefinedTerm
158 Ndc4295f317ff4af5b4a8b84a2e7f64ad rdf:first Nf1553a54303e44b083e9e7bcba4f528d
159 rdf:rest N45ef2f9487a543c4971fb3178ec41ea2
160 Ne53859b1e2fb47fc9981dd4380ee365b schema:name pubmed_id
161 schema:value 19321015
162 rdf:type schema:PropertyValue
163 Nec1a4f9a44224ac5bc5a7952216c3dfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Image Processing, Computer-Assisted
165 rdf:type schema:DefinedTerm
166 Nf1553a54303e44b083e9e7bcba4f528d schema:affiliation grid-institutes:grid.8461.b
167 schema:familyName Olmos
168 schema:givenName Estefanía M
169 rdf:type schema:Person
170 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
171 schema:name Biological Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
174 schema:name Biochemistry and Cell Biology
175 rdf:type schema:DefinedTerm
176 sg:grant.2538683 http://pending.schema.org/fundedItem sg:pub.10.1186/1472-6807-9-18
177 rdf:type schema:MonetaryGrant
178 sg:grant.3762436 http://pending.schema.org/fundedItem sg:pub.10.1186/1472-6807-9-18
179 rdf:type schema:MonetaryGrant
180 sg:grant.3770159 http://pending.schema.org/fundedItem sg:pub.10.1186/1472-6807-9-18
181 rdf:type schema:MonetaryGrant
182 sg:grant.9664785 http://pending.schema.org/fundedItem sg:pub.10.1186/1472-6807-9-18
183 rdf:type schema:MonetaryGrant
184 sg:journal.1024246 schema:issn 2314-4343
185 2661-8850
186 schema:name BMC Molecular and Cell Biology
187 schema:publisher Springer Nature
188 rdf:type schema:Periodical
189 sg:person.011633344357.83 schema:affiliation grid-institutes:grid.428469.5
190 schema:familyName Carazo
191 schema:givenName José María
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011633344357.83
193 rdf:type schema:Person
194 sg:person.01215705757.38 schema:affiliation grid-institutes:grid.8461.b
195 schema:familyName Otero
196 schema:givenName Abraham
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215705757.38
198 rdf:type schema:Person
199 sg:person.07601134107.57 schema:affiliation grid-institutes:grid.428469.5
200 schema:familyName Sorzano
201 schema:givenName Carlos Oscar S
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601134107.57
203 rdf:type schema:Person
204 sg:pub.10.1038/nsb1295-1083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003523499
205 https://doi.org/10.1038/nsb1295-1083
206 rdf:type schema:CreativeWork
207 grid-institutes:grid.428469.5 schema:alternateName Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain
208 schema:name Biocomputig Unit of the National Center of Biotechnology (CSIC), Madrid, Spain
209 Escuela Politécnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepríncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain
210 rdf:type schema:Organization
211 grid-institutes:grid.8461.b schema:alternateName Escuela Politécnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepríncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain
212 schema:name Escuela Politécnica Superior, Universidad San Pablo-CEU, Campus Urb. Montepríncipe s/n, E-28668, Boadilla del Monte, Madrid, Spain
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...