Structural comparison of tRNA m1A58 methyltransferases revealed different molecular strategies to maintain their oligomeric architecture under extreme conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Amandine Guelorget, Pierre Barraud, Carine Tisné, Béatrice Golinelli-Pimpaneau

ABSTRACT

BACKGROUND: tRNA m(1)A58 methyltransferases (TrmI) catalyze the transfer of a methyl group from S-adenosyl-L-methionine to nitrogen 1 of adenine 58 in the T-loop of tRNAs from all three domains of life. The m(1)A58 modification has been shown to be essential for cell growth in yeast and for adaptation to high temperatures in thermophilic organisms. These enzymes were shown to be active as tetramers. The crystal structures of five TrmIs from hyperthermophilic archaea and thermophilic or mesophilic bacteria have previously been determined, the optimal growth temperature of these organisms ranging from 37°C to 100°C. All TrmIs are assembled as tetramers formed by dimers of tightly assembled dimers. RESULTS: In this study, we present a comparative structural analysis of these TrmIs, which highlights factors that allow them to function over a large range of temperature. The monomers of the five enzymes are structurally highly similar, but the inter-monomer contacts differ strongly. Our analysis shows that bacterial enzymes from thermophilic organisms display additional intermolecular ionic interactions across the dimer interfaces, whereas hyperthermophilic enzymes present additional hydrophobic contacts. Moreover, as an alternative to two bidentate ionic interactions that stabilize the tetrameric interface in all other TrmI proteins, the tetramer of the archaeal P. abyssi enzyme is strengthened by four intersubunit disulfide bridges. CONCLUSIONS: The availability of crystal structures of TrmIs from mesophilic, thermophilic or hyperthermophilic organisms allows a detailed analysis of the architecture of this protein family. Our structural comparisons provide insight into the different molecular strategies used to achieve the tetrameric organization in order to maintain the enzyme activity under extreme conditions. More... »

PAGES

48

References to SciGraph publications

  • 2010-05. Discrimination of thermophilic and mesophilic proteins in BMC STRUCTURAL BIOLOGY
  • 2001-08. How do thermophilic proteins deal with heat? in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2011-12. Thermostability in endoglucanases is fold-specific in BMC STRUCTURAL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1472-6807-11-48

    DOI

    http://dx.doi.org/10.1186/1472-6807-11-48

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006989349

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22168821


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Catalytic Domain", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallography, X-Ray", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Enzyme Stability", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hydrogen Bonding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hydrophobic and Hydrophilic Interactions", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Multimerization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Structure, Quaternary", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Subunits", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pyrococcus abyssi", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Alignment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Species Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Temperature", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "tRNA Methyltransferases", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire d'Enzymologie et Biochimie Structurales", 
              "id": "https://www.grid.ac/institutes/grid.420040.2", 
              "name": [
                "Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guelorget", 
            "givenName": "Amandine", 
            "id": "sg:person.0751502470.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751502470.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Swiss Federal Institute of Technology in Zurich", 
              "id": "https://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "CNRS, UMR 8015, Laboratoire de Cristallographie et RMN biologiques, 4 avenue de l'Observatoire, 75006, Paris, France", 
                "Universit\u00e9 Paris Descartes, Sorbonne Paris Cit\u00e9, UMR 8015, Laboratoire de Cristallographie et RMN biologiques, 4 avenue de l'Observatoire, 75006, Paris, France", 
                "Institute of Molecular Biology and Biophysics, ETH Zurich, 8093, Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barraud", 
            "givenName": "Pierre", 
            "id": "sg:person.01301055717.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301055717.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Paris Descartes University", 
              "id": "https://www.grid.ac/institutes/grid.10992.33", 
              "name": [
                "CNRS, UMR 8015, Laboratoire de Cristallographie et RMN biologiques, 4 avenue de l'Observatoire, 75006, Paris, France", 
                "Universit\u00e9 Paris Descartes, Sorbonne Paris Cit\u00e9, UMR 8015, Laboratoire de Cristallographie et RMN biologiques, 4 avenue de l'Observatoire, 75006, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tisn\u00e9", 
            "givenName": "Carine", 
            "id": "sg:person.0747043366.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747043366.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire d'Enzymologie et Biochimie Structurales", 
              "id": "https://www.grid.ac/institutes/grid.420040.2", 
              "name": [
                "Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Golinelli-Pimpaneau", 
            "givenName": "B\u00e9atrice", 
            "id": "sg:person.01316406070.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316406070.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0076-6879(01)34486-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001332337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0014-5793(01)02962-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003108166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c1cs15199a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004165390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/14.7.617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007035890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6807-11-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010116173", 
              "https://doi.org/10.1186/1472-6807-11-10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012486332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1432-1033.2002.03344.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012762124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00000935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012997567", 
              "https://doi.org/10.1007/pl00000935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1994.0117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014973871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016442491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1173755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017825225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1173755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017825225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0968-0004(03)00090-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018046584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0968-0004(03)00090-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018046584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1997.1018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019672238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1432-1327.2001.02220.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019840710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0030309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020096941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0030309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020096941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mmbr.65.1.1-43.2001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020213941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.2000.4433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020475528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1998.2159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025014864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm574", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025232775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1110/ps.8.6.1241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026242216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1742-4658.2007.05956.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026316353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2008.01.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028654845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6807-10-s1-s5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029264317", 
              "https://doi.org/10.1186/1472-6807-10-s1-s5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0969-2126(01)00251-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029296805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.2001.4935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030017699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pro.5560070509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031653110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1261/rna.5040605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032187951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.2000.3970", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032193958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.str.2011.01.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032659416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0014-5793(00)01267-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033253139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbrc.2010.02.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033312435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.7.3578", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033408045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2004.10.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036485118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(02)00050-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036544867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444904026460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036575621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444993011333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037190302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad.12.23.3650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038408324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039538076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1999.2889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040474539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2007.05.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042204379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.c000497200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042731413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046160984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1387-2656(08)70006-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046911641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1999.2709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047795367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pro.5560050604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048749569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pro.5560050604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048749569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0969-2126(94)00118-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049702399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1110/ps.062130306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050596678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470123096.ch2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053674395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi015981m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055195065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi015981m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055195065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.280.5361.279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062560706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1076807532", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-12", 
        "datePublishedReg": "2011-12-01", 
        "description": "BACKGROUND: tRNA m(1)A58 methyltransferases (TrmI) catalyze the transfer of a methyl group from S-adenosyl-L-methionine to nitrogen 1 of adenine 58 in the T-loop of tRNAs from all three domains of life. The m(1)A58 modification has been shown to be essential for cell growth in yeast and for adaptation to high temperatures in thermophilic organisms. These enzymes were shown to be active as tetramers. The crystal structures of five TrmIs from hyperthermophilic archaea and thermophilic or mesophilic bacteria have previously been determined, the optimal growth temperature of these organisms ranging from 37\u00b0C to 100\u00b0C. All TrmIs are assembled as tetramers formed by dimers of tightly assembled dimers.\nRESULTS: In this study, we present a comparative structural analysis of these TrmIs, which highlights factors that allow them to function over a large range of temperature. The monomers of the five enzymes are structurally highly similar, but the inter-monomer contacts differ strongly. Our analysis shows that bacterial enzymes from thermophilic organisms display additional intermolecular ionic interactions across the dimer interfaces, whereas hyperthermophilic enzymes present additional hydrophobic contacts. Moreover, as an alternative to two bidentate ionic interactions that stabilize the tetrameric interface in all other TrmI proteins, the tetramer of the archaeal P. abyssi enzyme is strengthened by four intersubunit disulfide bridges.\nCONCLUSIONS: The availability of crystal structures of TrmIs from mesophilic, thermophilic or hyperthermophilic organisms allows a detailed analysis of the architecture of this protein family. Our structural comparisons provide insight into the different molecular strategies used to achieve the tetrameric organization in order to maintain the enzyme activity under extreme conditions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1472-6807-11-48", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1028437", 
            "issn": [
              "2314-4343", 
              "1472-6807"
            ], 
            "name": "BMC Structural Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "name": "Structural comparison of tRNA m1A58 methyltransferases revealed different molecular strategies to maintain their oligomeric architecture under extreme conditions", 
        "pagination": "48", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "214b642442b47249805ed97618717555e04db4218ec67673755f6bf26d628ac9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22168821"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101088689"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1472-6807-11-48"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006989349"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1472-6807-11-48", 
          "https://app.dimensions.ai/details/publication/pub.1006989349"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:15", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000510.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1472-6807-11-48"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-11-48'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-11-48'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-11-48'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1472-6807-11-48'


     

    This table displays all metadata directly associated to this object as RDF triples.

    330 TRIPLES      21 PREDICATES      99 URIs      40 LITERALS      28 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1472-6807-11-48 schema:about N0a0f516602694e519b2b65f89e0617b8
    2 N3371e9d4a9e84b62a8db25ca9d9d8ae0
    3 N344909d9cd324465ad1167f28d801e65
    4 N375ff08a8f044ccda234158328127fc3
    5 N3e88a2605d7442bb91ff594bb5c4b4b0
    6 N56f9672ff4934235b9179b50453a968f
    7 N5bc768d294c64a60bbfb6d3c3b0aa416
    8 N707d03107af74a94b60e4ffe9a09f06a
    9 N73e349f43037478cbf8c69215ee78123
    10 N7ce000757804489189cf5c47dd2d51b9
    11 N8978f3e14a054745811667fa3d7e995b
    12 N89ae8c4172ef4e7b85550357cad777f0
    13 N8b9486ee03da4c35883c798b6f52b617
    14 N91cf394945c043ee92ad21d9a11af757
    15 Na6027db72dfc4aefa6d80712d0cdf13d
    16 Nb879782c95884a66a7e0bdba64a9fb74
    17 Nf541a4339a134231904256ec30f7d20e
    18 Nfd9168c640b64b2c84d090e5244c6071
    19 Nfefbbc5f4b554f1aa4773ae7cfb4a1b2
    20 anzsrc-for:06
    21 anzsrc-for:0601
    22 schema:author N57a78ec654184531ab3027cde4cc456d
    23 schema:citation sg:pub.10.1007/pl00000935
    24 sg:pub.10.1186/1472-6807-10-s1-s5
    25 sg:pub.10.1186/1472-6807-11-10
    26 https://app.dimensions.ai/details/publication/pub.1076807532
    27 https://doi.org/10.1002/9780470123096.ch2
    28 https://doi.org/10.1002/pro.5560050604
    29 https://doi.org/10.1002/pro.5560070509
    30 https://doi.org/10.1006/jmbi.1994.0117
    31 https://doi.org/10.1006/jmbi.1997.1018
    32 https://doi.org/10.1006/jmbi.1998.2159
    33 https://doi.org/10.1006/jmbi.1999.2709
    34 https://doi.org/10.1006/jmbi.1999.2889
    35 https://doi.org/10.1006/jmbi.2000.3970
    36 https://doi.org/10.1006/jmbi.2000.4433
    37 https://doi.org/10.1006/jmbi.2001.4935
    38 https://doi.org/10.1016/j.bbrc.2010.02.011
    39 https://doi.org/10.1016/j.jmb.2004.10.025
    40 https://doi.org/10.1016/j.jmb.2007.05.022
    41 https://doi.org/10.1016/j.jmb.2008.01.041
    42 https://doi.org/10.1016/j.str.2011.01.005
    43 https://doi.org/10.1016/s0014-5793(00)01267-9
    44 https://doi.org/10.1016/s0014-5793(01)02962-3
    45 https://doi.org/10.1016/s0022-2836(02)00050-5
    46 https://doi.org/10.1016/s0076-6879(01)34486-5
    47 https://doi.org/10.1016/s0968-0004(03)00090-2
    48 https://doi.org/10.1016/s0969-2126(01)00251-9
    49 https://doi.org/10.1016/s0969-2126(94)00118-9
    50 https://doi.org/10.1016/s1387-2656(08)70006-1
    51 https://doi.org/10.1021/bi015981m
    52 https://doi.org/10.1039/c1cs15199a
    53 https://doi.org/10.1046/j.1432-1033.2002.03344.x
    54 https://doi.org/10.1046/j.1432-1327.2001.02220.x
    55 https://doi.org/10.1073/pnas.96.7.3578
    56 https://doi.org/10.1074/jbc.c000497200
    57 https://doi.org/10.1093/bioinformatics/14.7.617
    58 https://doi.org/10.1093/nar/gkg314
    59 https://doi.org/10.1093/nar/gkh191
    60 https://doi.org/10.1093/nar/gkh207
    61 https://doi.org/10.1093/nar/gkm574
    62 https://doi.org/10.1093/nar/gkq381
    63 https://doi.org/10.1101/gad.12.23.3650
    64 https://doi.org/10.1107/s0907444904026460
    65 https://doi.org/10.1107/s0907444993011333
    66 https://doi.org/10.1110/ps.062130306
    67 https://doi.org/10.1110/ps.8.6.1241
    68 https://doi.org/10.1111/j.1742-4658.2007.05956.x
    69 https://doi.org/10.1126/science.1173755
    70 https://doi.org/10.1126/science.280.5361.279
    71 https://doi.org/10.1128/mmbr.65.1.1-43.2001
    72 https://doi.org/10.1261/rna.5040605
    73 https://doi.org/10.1371/journal.pbio.0030309
    74 schema:datePublished 2011-12
    75 schema:datePublishedReg 2011-12-01
    76 schema:description BACKGROUND: tRNA m(1)A58 methyltransferases (TrmI) catalyze the transfer of a methyl group from S-adenosyl-L-methionine to nitrogen 1 of adenine 58 in the T-loop of tRNAs from all three domains of life. The m(1)A58 modification has been shown to be essential for cell growth in yeast and for adaptation to high temperatures in thermophilic organisms. These enzymes were shown to be active as tetramers. The crystal structures of five TrmIs from hyperthermophilic archaea and thermophilic or mesophilic bacteria have previously been determined, the optimal growth temperature of these organisms ranging from 37°C to 100°C. All TrmIs are assembled as tetramers formed by dimers of tightly assembled dimers. RESULTS: In this study, we present a comparative structural analysis of these TrmIs, which highlights factors that allow them to function over a large range of temperature. The monomers of the five enzymes are structurally highly similar, but the inter-monomer contacts differ strongly. Our analysis shows that bacterial enzymes from thermophilic organisms display additional intermolecular ionic interactions across the dimer interfaces, whereas hyperthermophilic enzymes present additional hydrophobic contacts. Moreover, as an alternative to two bidentate ionic interactions that stabilize the tetrameric interface in all other TrmI proteins, the tetramer of the archaeal P. abyssi enzyme is strengthened by four intersubunit disulfide bridges. CONCLUSIONS: The availability of crystal structures of TrmIs from mesophilic, thermophilic or hyperthermophilic organisms allows a detailed analysis of the architecture of this protein family. Our structural comparisons provide insight into the different molecular strategies used to achieve the tetrameric organization in order to maintain the enzyme activity under extreme conditions.
    77 schema:genre research_article
    78 schema:inLanguage en
    79 schema:isAccessibleForFree true
    80 schema:isPartOf N04a12004d89848e8a3f21325b5d77d25
    81 N9d254ec42f634363b91c8752c2989c3f
    82 sg:journal.1028437
    83 schema:name Structural comparison of tRNA m1A58 methyltransferases revealed different molecular strategies to maintain their oligomeric architecture under extreme conditions
    84 schema:pagination 48
    85 schema:productId N1999e8b3b90543b79c5f64dd20f13d99
    86 N8a281bce8af24db6905190a54e91a357
    87 N9260aadfee5f4398affe57d3b5944b89
    88 Na41a96c40f504828a4d948f0cdf12ed5
    89 Na4fc670aa2954e0da368fde059266733
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006989349
    91 https://doi.org/10.1186/1472-6807-11-48
    92 schema:sdDatePublished 2019-04-10T13:15
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher Nf500601eadd14da0993995df963bd8f0
    95 schema:url http://link.springer.com/10.1186%2F1472-6807-11-48
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N04a12004d89848e8a3f21325b5d77d25 schema:issueNumber 1
    100 rdf:type schema:PublicationIssue
    101 N0a0f516602694e519b2b65f89e0617b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Models, Molecular
    103 rdf:type schema:DefinedTerm
    104 N1999e8b3b90543b79c5f64dd20f13d99 schema:name doi
    105 schema:value 10.1186/1472-6807-11-48
    106 rdf:type schema:PropertyValue
    107 N3371e9d4a9e84b62a8db25ca9d9d8ae0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Hydrogen Bonding
    109 rdf:type schema:DefinedTerm
    110 N344909d9cd324465ad1167f28d801e65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Sequence Alignment
    112 rdf:type schema:DefinedTerm
    113 N375ff08a8f044ccda234158328127fc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Enzyme Stability
    115 rdf:type schema:DefinedTerm
    116 N3e88a2605d7442bb91ff594bb5c4b4b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Humans
    118 rdf:type schema:DefinedTerm
    119 N5452bb52c6fb486b97b927e56f0d468e rdf:first sg:person.01316406070.01
    120 rdf:rest rdf:nil
    121 N56f9672ff4934235b9179b50453a968f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Temperature
    123 rdf:type schema:DefinedTerm
    124 N57a78ec654184531ab3027cde4cc456d rdf:first sg:person.0751502470.32
    125 rdf:rest Nde2d85d0e82a463584b89295755c90ce
    126 N5bc768d294c64a60bbfb6d3c3b0aa416 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Species Specificity
    128 rdf:type schema:DefinedTerm
    129 N707d03107af74a94b60e4ffe9a09f06a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Molecular Sequence Data
    131 rdf:type schema:DefinedTerm
    132 N73e349f43037478cbf8c69215ee78123 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Bacteria
    134 rdf:type schema:DefinedTerm
    135 N7ce000757804489189cf5c47dd2d51b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Hydrophobic and Hydrophilic Interactions
    137 rdf:type schema:DefinedTerm
    138 N8978f3e14a054745811667fa3d7e995b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Protein Structure, Quaternary
    140 rdf:type schema:DefinedTerm
    141 N89ae8c4172ef4e7b85550357cad777f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Amino Acid Sequence
    143 rdf:type schema:DefinedTerm
    144 N8a281bce8af24db6905190a54e91a357 schema:name dimensions_id
    145 schema:value pub.1006989349
    146 rdf:type schema:PropertyValue
    147 N8b9486ee03da4c35883c798b6f52b617 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Protein Multimerization
    149 rdf:type schema:DefinedTerm
    150 N91cf394945c043ee92ad21d9a11af757 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Crystallography, X-Ray
    152 rdf:type schema:DefinedTerm
    153 N9260aadfee5f4398affe57d3b5944b89 schema:name readcube_id
    154 schema:value 214b642442b47249805ed97618717555e04db4218ec67673755f6bf26d628ac9
    155 rdf:type schema:PropertyValue
    156 N9d254ec42f634363b91c8752c2989c3f schema:volumeNumber 11
    157 rdf:type schema:PublicationVolume
    158 Na41a96c40f504828a4d948f0cdf12ed5 schema:name pubmed_id
    159 schema:value 22168821
    160 rdf:type schema:PropertyValue
    161 Na4fc670aa2954e0da368fde059266733 schema:name nlm_unique_id
    162 schema:value 101088689
    163 rdf:type schema:PropertyValue
    164 Na6027db72dfc4aefa6d80712d0cdf13d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Computational Biology
    166 rdf:type schema:DefinedTerm
    167 Nb879782c95884a66a7e0bdba64a9fb74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name tRNA Methyltransferases
    169 rdf:type schema:DefinedTerm
    170 Nb8da1bbfd05e4651b80388d12ad34297 rdf:first sg:person.0747043366.18
    171 rdf:rest N5452bb52c6fb486b97b927e56f0d468e
    172 Nde2d85d0e82a463584b89295755c90ce rdf:first sg:person.01301055717.25
    173 rdf:rest Nb8da1bbfd05e4651b80388d12ad34297
    174 Nf500601eadd14da0993995df963bd8f0 schema:name Springer Nature - SN SciGraph project
    175 rdf:type schema:Organization
    176 Nf541a4339a134231904256ec30f7d20e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Catalytic Domain
    178 rdf:type schema:DefinedTerm
    179 Nfd9168c640b64b2c84d090e5244c6071 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Pyrococcus abyssi
    181 rdf:type schema:DefinedTerm
    182 Nfefbbc5f4b554f1aa4773ae7cfb4a1b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Protein Subunits
    184 rdf:type schema:DefinedTerm
    185 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    186 schema:name Biological Sciences
    187 rdf:type schema:DefinedTerm
    188 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    189 schema:name Biochemistry and Cell Biology
    190 rdf:type schema:DefinedTerm
    191 sg:journal.1028437 schema:issn 1472-6807
    192 2314-4343
    193 schema:name BMC Structural Biology
    194 rdf:type schema:Periodical
    195 sg:person.01301055717.25 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
    196 schema:familyName Barraud
    197 schema:givenName Pierre
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301055717.25
    199 rdf:type schema:Person
    200 sg:person.01316406070.01 schema:affiliation https://www.grid.ac/institutes/grid.420040.2
    201 schema:familyName Golinelli-Pimpaneau
    202 schema:givenName Béatrice
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316406070.01
    204 rdf:type schema:Person
    205 sg:person.0747043366.18 schema:affiliation https://www.grid.ac/institutes/grid.10992.33
    206 schema:familyName Tisné
    207 schema:givenName Carine
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747043366.18
    209 rdf:type schema:Person
    210 sg:person.0751502470.32 schema:affiliation https://www.grid.ac/institutes/grid.420040.2
    211 schema:familyName Guelorget
    212 schema:givenName Amandine
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751502470.32
    214 rdf:type schema:Person
    215 sg:pub.10.1007/pl00000935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012997567
    216 https://doi.org/10.1007/pl00000935
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/1472-6807-10-s1-s5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029264317
    219 https://doi.org/10.1186/1472-6807-10-s1-s5
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1186/1472-6807-11-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010116173
    222 https://doi.org/10.1186/1472-6807-11-10
    223 rdf:type schema:CreativeWork
    224 https://app.dimensions.ai/details/publication/pub.1076807532 schema:CreativeWork
    225 https://doi.org/10.1002/9780470123096.ch2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053674395
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1002/pro.5560050604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048749569
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1002/pro.5560070509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031653110
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1006/jmbi.1994.0117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014973871
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1006/jmbi.1997.1018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019672238
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1006/jmbi.1998.2159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025014864
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1006/jmbi.1999.2709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047795367
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1006/jmbi.1999.2889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040474539
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1006/jmbi.2000.3970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032193958
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1006/jmbi.2000.4433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020475528
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1006/jmbi.2001.4935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030017699
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1016/j.bbrc.2010.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033312435
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1016/j.jmb.2004.10.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036485118
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1016/j.jmb.2007.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042204379
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1016/j.jmb.2008.01.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028654845
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1016/j.str.2011.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032659416
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1016/s0014-5793(00)01267-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033253139
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1016/s0014-5793(01)02962-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003108166
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1016/s0022-2836(02)00050-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036544867
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1016/s0076-6879(01)34486-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001332337
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1016/s0968-0004(03)00090-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018046584
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1016/s0969-2126(01)00251-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029296805
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1016/s0969-2126(94)00118-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049702399
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1016/s1387-2656(08)70006-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046911641
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1021/bi015981m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055195065
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1039/c1cs15199a schema:sameAs https://app.dimensions.ai/details/publication/pub.1004165390
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1046/j.1432-1033.2002.03344.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012762124
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1046/j.1432-1327.2001.02220.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019840710
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1073/pnas.96.7.3578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033408045
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1074/jbc.c000497200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042731413
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1093/bioinformatics/14.7.617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007035890
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1093/nar/gkg314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012486332
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1093/nar/gkh191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039538076
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1093/nar/gkh207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016442491
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1093/nar/gkm574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025232775
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1093/nar/gkq381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046160984
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1101/gad.12.23.3650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038408324
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1107/s0907444904026460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036575621
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1107/s0907444993011333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037190302
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1110/ps.062130306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050596678
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1110/ps.8.6.1241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026242216
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1111/j.1742-4658.2007.05956.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026316353
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1126/science.1173755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017825225
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1126/science.280.5361.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062560706
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1128/mmbr.65.1.1-43.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020213941
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1261/rna.5040605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032187951
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1371/journal.pbio.0030309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020096941
    318 rdf:type schema:CreativeWork
    319 https://www.grid.ac/institutes/grid.10992.33 schema:alternateName Paris Descartes University
    320 schema:name CNRS, UMR 8015, Laboratoire de Cristallographie et RMN biologiques, 4 avenue de l'Observatoire, 75006, Paris, France
    321 Université Paris Descartes, Sorbonne Paris Cité, UMR 8015, Laboratoire de Cristallographie et RMN biologiques, 4 avenue de l'Observatoire, 75006, Paris, France
    322 rdf:type schema:Organization
    323 https://www.grid.ac/institutes/grid.420040.2 schema:alternateName Laboratoire d'Enzymologie et Biochimie Structurales
    324 schema:name Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
    325 rdf:type schema:Organization
    326 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
    327 schema:name CNRS, UMR 8015, Laboratoire de Cristallographie et RMN biologiques, 4 avenue de l'Observatoire, 75006, Paris, France
    328 Institute of Molecular Biology and Biophysics, ETH Zurich, 8093, Zürich, Switzerland
    329 Université Paris Descartes, Sorbonne Paris Cité, UMR 8015, Laboratoire de Cristallographie et RMN biologiques, 4 avenue de l'Observatoire, 75006, Paris, France
    330 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...