Pervasive influence of large-scale climate in the dynamics of a terrestrial vertebrate community View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-12

AUTHORS

Eric Post, Mads C Forchhammer

ABSTRACT

BACKGROUND: Large-scale climatic variability has been implicated in the population dynamics of many vertebrates throughout the Northern Hemisphere, but has not been demonstrated to directly influence dynamics at multiple trophic levels of any single system. Using data from Isle Royale, USA, comprising time series on the long-term dynamics at three trophic levels (wolves, moose, and balsam fir), we analyzed the relative contributions of density dependence, inter-specific interactions, and climate to the dynamics of each level of the community. RESULTS: Despite differences in dynamic complexity among the predator, herbivore, and vegetation levels, large-scale climatic variability influenced dynamics directly at all three levels. The strength of the climatic influence on dynamics was, however, strongest at the top and bottom trophic levels, where density dependence was weakest. CONCLUSIONS: Because of the conflicting influences of environmental variability and intrinsic processes on population stability, a direct influence of climate on the dynamics at all three levels suggests that climate change may alter stability of this community. Theoretical considerations suggest that if it does, such alteration is most likely to result from changes in stability at the top or bottom trophic levels, where the influence of climate was strongest. More... »

PAGES

5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1472-6785-1-5

DOI

http://dx.doi.org/10.1186/1472-6785-1-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001170064

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11782292


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Abies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Climate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Deer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecosystem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Michigan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Wolves", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Biology, The Pennsylvania State University, 208 Mueller Lab, 16802, University Park, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Post", 
        "givenName": "Eric", 
        "id": "sg:person.01141223243.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141223243.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Department of Population Ecology, Zoological Institute, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forchhammer", 
        "givenName": "Mads C", 
        "id": "sg:person.01270400177.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270400177.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35059003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003950560", 
          "https://doi.org/10.1038/35059003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35059003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003950560", 
          "https://doi.org/10.1038/35059003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.26.15430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005466376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/344660a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009057310", 
          "https://doi.org/10.1038/344660a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/z91-044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010974508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1523-1739.1997.95366.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011391748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004420100655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028078805", 
          "https://doi.org/10.1007/s004420100655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1995.0186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028682349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9658(1999)080[1322:cvppan]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028993047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1999.0770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030355539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1996.0208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037105304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1998.0301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038587333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.10.5147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042736470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/44814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043186794", 
          "https://doi.org/10.1038/44814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/44814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043186794", 
          "https://doi.org/10.1038/44814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00317805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044144798", 
          "https://doi.org/10.1007/bf00317805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00317805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044144798", 
          "https://doi.org/10.1007/bf00317805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2000.1324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047289877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2000.1071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048793338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2656.1998.00216.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049336280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2656.1998.00216.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049336280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2265614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053085321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2656.2001.00478.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056736262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/282863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058592986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/76.2.297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.224.4655.1350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062528820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.266.5190.1555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062549272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.269.5224.676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062550625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5430.1071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062566239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1383091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069463436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1938740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069662634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1939357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069663215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2259399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069852614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3801108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070457765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/5072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070627436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/5285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070632154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070703063"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-12", 
    "datePublishedReg": "2001-12-01", 
    "description": "BACKGROUND: Large-scale climatic variability has been implicated in the population dynamics of many vertebrates throughout the Northern Hemisphere, but has not been demonstrated to directly influence dynamics at multiple trophic levels of any single system. Using data from Isle Royale, USA, comprising time series on the long-term dynamics at three trophic levels (wolves, moose, and balsam fir), we analyzed the relative contributions of density dependence, inter-specific interactions, and climate to the dynamics of each level of the community.\nRESULTS: Despite differences in dynamic complexity among the predator, herbivore, and vegetation levels, large-scale climatic variability influenced dynamics directly at all three levels. The strength of the climatic influence on dynamics was, however, strongest at the top and bottom trophic levels, where density dependence was weakest.\nCONCLUSIONS: Because of the conflicting influences of environmental variability and intrinsic processes on population stability, a direct influence of climate on the dynamics at all three levels suggests that climate change may alter stability of this community. Theoretical considerations suggest that if it does, such alteration is most likely to result from changes in stability at the top or bottom trophic levels, where the influence of climate was strongest.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1472-6785-1-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3021556", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028425", 
        "issn": [
          "1472-6785"
        ], 
        "name": "BMC Ecology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Pervasive influence of large-scale climate in the dynamics of a terrestrial vertebrate community", 
    "pagination": "5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "059315a4a3f95ce6db2623d9773ee4d36bd5766ca08034c2d304cf45ede8b8a5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11782292"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101088674"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1472-6785-1-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001170064"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1472-6785-1-5", 
      "https://app.dimensions.ai/details/publication/pub.1001170064"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1472-6785-1-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1472-6785-1-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1472-6785-1-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1472-6785-1-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1472-6785-1-5'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      21 PREDICATES      72 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1472-6785-1-5 schema:about N0e06280393184f5b88daa0c917be8428
2 N106d0c5114d948529ed6b0b402219fa6
3 N12f917728fb6441fa6526a47bfc2855d
4 N2844736ba12b4d24b21a1dbc55252f79
5 N857346445387495ebe4c678a3bf7f9b0
6 N8fd5a9a8856a42619bde84be906d377f
7 N999cb12da1c14d158cfefedbc0804043
8 Na6b980f9a637413581d5a3785fca3204
9 Nab2653f125b146afa539552ed2db31ef
10 Nfec82c9c69da4b9ea83e57ba4791b5f4
11 anzsrc-for:06
12 anzsrc-for:0602
13 schema:author N023f0cff6a204beeb38c8cd30ba88365
14 schema:citation sg:pub.10.1007/bf00317805
15 sg:pub.10.1007/s004420100655
16 sg:pub.10.1038/344660a0
17 sg:pub.10.1038/35059003
18 sg:pub.10.1038/44814
19 https://doi.org/10.1046/j.1365-2656.1998.00216.x
20 https://doi.org/10.1046/j.1365-2656.2001.00478.x
21 https://doi.org/10.1046/j.1523-1739.1997.95366.x
22 https://doi.org/10.1073/pnas.94.10.5147
23 https://doi.org/10.1073/pnas.95.26.15430
24 https://doi.org/10.1086/282863
25 https://doi.org/10.1093/biomet/76.2.297
26 https://doi.org/10.1098/rspb.1995.0186
27 https://doi.org/10.1098/rspb.1996.0208
28 https://doi.org/10.1098/rspb.1998.0301
29 https://doi.org/10.1098/rspb.1999.0770
30 https://doi.org/10.1098/rspb.2000.1071
31 https://doi.org/10.1098/rspb.2000.1324
32 https://doi.org/10.1126/science.224.4655.1350
33 https://doi.org/10.1126/science.266.5190.1555
34 https://doi.org/10.1126/science.269.5224.676
35 https://doi.org/10.1126/science.285.5430.1071
36 https://doi.org/10.1139/z91-044
37 https://doi.org/10.1890/0012-9658(1999)080[1322:cvppan]2.0.co;2
38 https://doi.org/10.2307/1383091
39 https://doi.org/10.2307/1938740
40 https://doi.org/10.2307/1939357
41 https://doi.org/10.2307/2259399
42 https://doi.org/10.2307/2265614
43 https://doi.org/10.2307/3801108
44 https://doi.org/10.2307/5072
45 https://doi.org/10.2307/5285
46 https://doi.org/10.2307/954
47 schema:datePublished 2001-12
48 schema:datePublishedReg 2001-12-01
49 schema:description BACKGROUND: Large-scale climatic variability has been implicated in the population dynamics of many vertebrates throughout the Northern Hemisphere, but has not been demonstrated to directly influence dynamics at multiple trophic levels of any single system. Using data from Isle Royale, USA, comprising time series on the long-term dynamics at three trophic levels (wolves, moose, and balsam fir), we analyzed the relative contributions of density dependence, inter-specific interactions, and climate to the dynamics of each level of the community. RESULTS: Despite differences in dynamic complexity among the predator, herbivore, and vegetation levels, large-scale climatic variability influenced dynamics directly at all three levels. The strength of the climatic influence on dynamics was, however, strongest at the top and bottom trophic levels, where density dependence was weakest. CONCLUSIONS: Because of the conflicting influences of environmental variability and intrinsic processes on population stability, a direct influence of climate on the dynamics at all three levels suggests that climate change may alter stability of this community. Theoretical considerations suggest that if it does, such alteration is most likely to result from changes in stability at the top or bottom trophic levels, where the influence of climate was strongest.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf Ndb80ea531eea485f8c35fe2d297fa25e
54 Nfe969d98c2604ff9abcec293550b968d
55 sg:journal.1028425
56 schema:name Pervasive influence of large-scale climate in the dynamics of a terrestrial vertebrate community
57 schema:pagination 5
58 schema:productId N17b44a50567c41d8a6b8182ca80fda5c
59 N2a3ed29fe8e2468181e6cbd39d22bf5d
60 N2f341c2dc49c460f843be9cf4665a04d
61 Nad46cd8c65c1402eb67f05dd6b2083d3
62 Nf2c366d4893c4ca08399ca2388773ff1
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001170064
64 https://doi.org/10.1186/1472-6785-1-5
65 schema:sdDatePublished 2019-04-10T21:43
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Na2a760661f0a4d5fb68fb96f9dddb132
68 schema:url http://link.springer.com/10.1186%2F1472-6785-1-5
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N023f0cff6a204beeb38c8cd30ba88365 rdf:first sg:person.01141223243.35
73 rdf:rest N232ae41f99eb465abe6040d8a7d4a309
74 N0e06280393184f5b88daa0c917be8428 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Michigan
76 rdf:type schema:DefinedTerm
77 N106d0c5114d948529ed6b0b402219fa6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Abies
79 rdf:type schema:DefinedTerm
80 N12f917728fb6441fa6526a47bfc2855d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Climate
82 rdf:type schema:DefinedTerm
83 N17b44a50567c41d8a6b8182ca80fda5c schema:name dimensions_id
84 schema:value pub.1001170064
85 rdf:type schema:PropertyValue
86 N232ae41f99eb465abe6040d8a7d4a309 rdf:first sg:person.01270400177.28
87 rdf:rest rdf:nil
88 N2844736ba12b4d24b21a1dbc55252f79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Wolves
90 rdf:type schema:DefinedTerm
91 N2a3ed29fe8e2468181e6cbd39d22bf5d schema:name nlm_unique_id
92 schema:value 101088674
93 rdf:type schema:PropertyValue
94 N2f341c2dc49c460f843be9cf4665a04d schema:name readcube_id
95 schema:value 059315a4a3f95ce6db2623d9773ee4d36bd5766ca08034c2d304cf45ede8b8a5
96 rdf:type schema:PropertyValue
97 N857346445387495ebe4c678a3bf7f9b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Models, Biological
99 rdf:type schema:DefinedTerm
100 N8fd5a9a8856a42619bde84be906d377f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Animals
102 rdf:type schema:DefinedTerm
103 N999cb12da1c14d158cfefedbc0804043 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Ecosystem
105 rdf:type schema:DefinedTerm
106 Na2a760661f0a4d5fb68fb96f9dddb132 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Na6b980f9a637413581d5a3785fca3204 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Population Dynamics
110 rdf:type schema:DefinedTerm
111 Nab2653f125b146afa539552ed2db31ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Population Density
113 rdf:type schema:DefinedTerm
114 Nad46cd8c65c1402eb67f05dd6b2083d3 schema:name doi
115 schema:value 10.1186/1472-6785-1-5
116 rdf:type schema:PropertyValue
117 Ndb80ea531eea485f8c35fe2d297fa25e schema:issueNumber 1
118 rdf:type schema:PublicationIssue
119 Nf2c366d4893c4ca08399ca2388773ff1 schema:name pubmed_id
120 schema:value 11782292
121 rdf:type schema:PropertyValue
122 Nfe969d98c2604ff9abcec293550b968d schema:volumeNumber 1
123 rdf:type schema:PublicationVolume
124 Nfec82c9c69da4b9ea83e57ba4791b5f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Deer
126 rdf:type schema:DefinedTerm
127 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
128 schema:name Biological Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
131 schema:name Ecology
132 rdf:type schema:DefinedTerm
133 sg:grant.3021556 http://pending.schema.org/fundedItem sg:pub.10.1186/1472-6785-1-5
134 rdf:type schema:MonetaryGrant
135 sg:journal.1028425 schema:issn 1472-6785
136 schema:name BMC Ecology
137 rdf:type schema:Periodical
138 sg:person.01141223243.35 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
139 schema:familyName Post
140 schema:givenName Eric
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141223243.35
142 rdf:type schema:Person
143 sg:person.01270400177.28 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
144 schema:familyName Forchhammer
145 schema:givenName Mads C
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270400177.28
147 rdf:type schema:Person
148 sg:pub.10.1007/bf00317805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044144798
149 https://doi.org/10.1007/bf00317805
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s004420100655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028078805
152 https://doi.org/10.1007/s004420100655
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/344660a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009057310
155 https://doi.org/10.1038/344660a0
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/35059003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003950560
158 https://doi.org/10.1038/35059003
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/44814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043186794
161 https://doi.org/10.1038/44814
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1046/j.1365-2656.1998.00216.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049336280
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1046/j.1365-2656.2001.00478.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056736262
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1046/j.1523-1739.1997.95366.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011391748
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1073/pnas.94.10.5147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042736470
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1073/pnas.95.26.15430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005466376
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1086/282863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058592986
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/biomet/76.2.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419926
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1098/rspb.1995.0186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028682349
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1098/rspb.1996.0208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037105304
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1098/rspb.1998.0301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038587333
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1098/rspb.1999.0770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030355539
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1098/rspb.2000.1071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048793338
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1098/rspb.2000.1324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047289877
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1126/science.224.4655.1350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062528820
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.266.5190.1555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062549272
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.269.5224.676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062550625
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1126/science.285.5430.1071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566239
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1139/z91-044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010974508
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1890/0012-9658(1999)080[1322:cvppan]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028993047
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2307/1383091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069463436
202 rdf:type schema:CreativeWork
203 https://doi.org/10.2307/1938740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069662634
204 rdf:type schema:CreativeWork
205 https://doi.org/10.2307/1939357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069663215
206 rdf:type schema:CreativeWork
207 https://doi.org/10.2307/2259399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069852614
208 rdf:type schema:CreativeWork
209 https://doi.org/10.2307/2265614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053085321
210 rdf:type schema:CreativeWork
211 https://doi.org/10.2307/3801108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070457765
212 rdf:type schema:CreativeWork
213 https://doi.org/10.2307/5072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070627436
214 rdf:type schema:CreativeWork
215 https://doi.org/10.2307/5285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070632154
216 rdf:type schema:CreativeWork
217 https://doi.org/10.2307/954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070703063
218 rdf:type schema:CreativeWork
219 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
220 schema:name Department of Biology, The Pennsylvania State University, 208 Mueller Lab, 16802, University Park, PA, USA
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
223 schema:name Department of Population Ecology, Zoological Institute, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...