A simple method for statistical analysis of intensity differences in microarray-derived gene expression data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-10-02

AUTHORS

Alexander Kamb, Mani Ramaswami

ABSTRACT

BACKGROUND: Microarray experiments offer a potent solution to the problem of making and comparing large numbers of gene expression measurements either in different cell types or in the same cell type under different conditions. Inferences about the biological relevance of observed changes in expression depend on the statistical significance of the changes. In lieu of many replicates with which to determine accurate intensity means and variances, reliable estimates of statistical significance remain problematic. Without such estimates, overly conservative choices for significance must be enforced. RESULTS: A simple statistical method for estimating variances from microarray control data which does not require multiple replicates is presented. Comparison of datasets from two commercial entities using this difference-averaging method demonstrates that the standard deviation of the signal scales at a level intermediate between the signal intensity and its square root. Application of the method to a dataset related to the beta-catenin pathway yields a larger number of biologically reasonable genes whose expression is altered than the ratio method. CONCLUSIONS: The difference-averaging method enables determination of variances as a function of signal intensities by averaging over the entire dataset. The method also provides a platform-independent view of important statistical properties of microarray data. More... »

PAGES

8-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1472-6750-1-8

DOI

http://dx.doi.org/10.1186/1472-6750-1-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028779203

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11690545


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytoskeletal Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila melanogaster", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Trans-Activators", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "beta Catenin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Arcaris, Inc. (Currently Deltagen Proteomics, Inc.) Salt Lake City, UT USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Arcaris, Inc. (Currently Deltagen Proteomics, Inc.) Salt Lake City, UT USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamb", 
        "givenName": "Alexander", 
        "id": "sg:person.01144363373.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144363373.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept of Molecular and Cell Biology and ARL Division of Neurobiology University of Arizona Tucson, AZ USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Dept of Molecular and Cell Biology and ARL Division of Neurobiology University of Arizona Tucson, AZ USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramaswami", 
        "givenName": "Mani", 
        "id": "sg:person.01360062603.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360062603.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/382638a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002681668", 
          "https://doi.org/10.1038/382638a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/18884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037595361", 
          "https://doi.org/10.1038/18884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040686717", 
          "https://doi.org/10.1038/4447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/89022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015403319", 
          "https://doi.org/10.1038/89022"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-10-02", 
    "datePublishedReg": "2001-10-02", 
    "description": "BACKGROUND: Microarray experiments offer a potent solution to the problem of making and comparing large numbers of gene expression measurements either in different cell types or in the same cell type under different conditions. Inferences about the biological relevance of observed changes in expression depend on the statistical significance of the changes. In lieu of many replicates with which to determine accurate intensity means and variances, reliable estimates of statistical significance remain problematic. Without such estimates, overly conservative choices for significance must be enforced.\nRESULTS: A simple statistical method for estimating variances from microarray control data which does not require multiple replicates is presented. Comparison of datasets from two commercial entities using this difference-averaging method demonstrates that the standard deviation of the signal scales at a level intermediate between the signal intensity and its square root. Application of the method to a dataset related to the beta-catenin pathway yields a larger number of biologically reasonable genes whose expression is altered than the ratio method.\nCONCLUSIONS: The difference-averaging method enables determination of variances as a function of signal intensities by averaging over the entire dataset. The method also provides a platform-independent view of important statistical properties of microarray data.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1472-6750-1-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2484994", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028420", 
        "issn": [
          "1472-6750"
        ], 
        "name": "BMC Biotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "keywords": [
      "important statistical properties", 
      "simple statistical methods", 
      "statistical properties", 
      "determination of variances", 
      "statistical methods", 
      "signal scales", 
      "square root", 
      "large number", 
      "such estimates", 
      "conservative choice", 
      "gene expression data", 
      "gene expression measurements", 
      "microarray experiments", 
      "reliable estimates", 
      "statistical analysis", 
      "ratio method", 
      "estimates", 
      "intensity means", 
      "expression measurements", 
      "microarray data", 
      "simple method", 
      "expression data", 
      "inference", 
      "variance", 
      "entire dataset", 
      "multiple replicates", 
      "problem", 
      "comparison of datasets", 
      "solution", 
      "potent solution", 
      "standard deviation", 
      "number", 
      "dataset", 
      "statistical significance", 
      "control data", 
      "properties", 
      "applications", 
      "function", 
      "deviation", 
      "data", 
      "different conditions", 
      "means", 
      "measurements", 
      "intensity", 
      "types", 
      "experiments", 
      "conditions", 
      "choice", 
      "comparison", 
      "intensity differences", 
      "analysis", 
      "scale", 
      "lieu", 
      "determination", 
      "view", 
      "level intermediate", 
      "cell types", 
      "expression", 
      "roots", 
      "beta-catenin pathway", 
      "different cell types", 
      "signal intensity", 
      "same cell type", 
      "observed changes", 
      "biological relevance", 
      "significance", 
      "relevance", 
      "changes", 
      "replicates", 
      "genes", 
      "entities", 
      "differences", 
      "commercial entities", 
      "pathway", 
      "intermediates", 
      "method", 
      "accurate intensity means", 
      "microarray control data", 
      "difference-averaging method", 
      "reasonable genes", 
      "platform-independent view", 
      "microarray-derived gene expression data"
    ], 
    "name": "A simple method for statistical analysis of intensity differences in microarray-derived gene expression data", 
    "pagination": "8-8", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028779203"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1472-6750-1-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11690545"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1472-6750-1-8", 
      "https://app.dimensions.ai/details/publication/pub.1028779203"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_322.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1472-6750-1-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1472-6750-1-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1472-6750-1-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1472-6750-1-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1472-6750-1-8'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      22 PREDICATES      126 URIs      113 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1472-6750-1-8 schema:about N3fd61c6dde6b469d8018f11d6091dfba
2 N43334a3879cf42c8ac834b2624435a4a
3 N5ff96c6ddaed40bd9ab961f0bdbef43a
4 N77460d4ef1544d24b790d6be9d826d59
5 Na86d624a0cf74ecf93987759daa76d03
6 Na9dbf5cf7bf249e98f0d4af2a911c4a3
7 Nb10929d4c52b4576a725255a61793b3d
8 Nb972dea0af6344beac12772a3778fa5b
9 Nd5a2f0bba6eb4d558974eeee95107642
10 Nd9afb152bce04bc0ac42adc0ae76f92d
11 Ne32c10a974ea4739b74e2e4799a46d63
12 Nedc901add7b345cb83d248f5941257ed
13 Nf844deb6ddd84b9db56173556612d81d
14 anzsrc-for:06
15 anzsrc-for:0604
16 schema:author N7623de6fdf6f48d5b96a5ca81623d13e
17 schema:citation sg:pub.10.1038/18884
18 sg:pub.10.1038/382638a0
19 sg:pub.10.1038/4447
20 sg:pub.10.1038/4462
21 sg:pub.10.1038/89022
22 schema:datePublished 2001-10-02
23 schema:datePublishedReg 2001-10-02
24 schema:description BACKGROUND: Microarray experiments offer a potent solution to the problem of making and comparing large numbers of gene expression measurements either in different cell types or in the same cell type under different conditions. Inferences about the biological relevance of observed changes in expression depend on the statistical significance of the changes. In lieu of many replicates with which to determine accurate intensity means and variances, reliable estimates of statistical significance remain problematic. Without such estimates, overly conservative choices for significance must be enforced. RESULTS: A simple statistical method for estimating variances from microarray control data which does not require multiple replicates is presented. Comparison of datasets from two commercial entities using this difference-averaging method demonstrates that the standard deviation of the signal scales at a level intermediate between the signal intensity and its square root. Application of the method to a dataset related to the beta-catenin pathway yields a larger number of biologically reasonable genes whose expression is altered than the ratio method. CONCLUSIONS: The difference-averaging method enables determination of variances as a function of signal intensities by averaging over the entire dataset. The method also provides a platform-independent view of important statistical properties of microarray data.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N247c1cac4c254c1aaad7c4263deb60bb
29 Nbf8c204a5e0d4b09a369988091a6629e
30 sg:journal.1028420
31 schema:keywords accurate intensity means
32 analysis
33 applications
34 beta-catenin pathway
35 biological relevance
36 cell types
37 changes
38 choice
39 commercial entities
40 comparison
41 comparison of datasets
42 conditions
43 conservative choice
44 control data
45 data
46 dataset
47 determination
48 determination of variances
49 deviation
50 difference-averaging method
51 differences
52 different cell types
53 different conditions
54 entire dataset
55 entities
56 estimates
57 experiments
58 expression
59 expression data
60 expression measurements
61 function
62 gene expression data
63 gene expression measurements
64 genes
65 important statistical properties
66 inference
67 intensity
68 intensity differences
69 intensity means
70 intermediates
71 large number
72 level intermediate
73 lieu
74 means
75 measurements
76 method
77 microarray control data
78 microarray data
79 microarray experiments
80 microarray-derived gene expression data
81 multiple replicates
82 number
83 observed changes
84 pathway
85 platform-independent view
86 potent solution
87 problem
88 properties
89 ratio method
90 reasonable genes
91 relevance
92 reliable estimates
93 replicates
94 roots
95 same cell type
96 scale
97 signal intensity
98 signal scales
99 significance
100 simple method
101 simple statistical methods
102 solution
103 square root
104 standard deviation
105 statistical analysis
106 statistical methods
107 statistical properties
108 statistical significance
109 such estimates
110 types
111 variance
112 view
113 schema:name A simple method for statistical analysis of intensity differences in microarray-derived gene expression data
114 schema:pagination 8-8
115 schema:productId N00895659c6b643e9a484660a0f3b67c1
116 N8fd3f3ee345e45f7a196945d5f63f3bd
117 Nde5b95c3d0ab4345a30d84cb4dfc8cbc
118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028779203
119 https://doi.org/10.1186/1472-6750-1-8
120 schema:sdDatePublished 2021-12-01T19:12
121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
122 schema:sdPublisher Nd50df151647f4059b022d4a5fc4a8e98
123 schema:url https://doi.org/10.1186/1472-6750-1-8
124 sgo:license sg:explorer/license/
125 sgo:sdDataset articles
126 rdf:type schema:ScholarlyArticle
127 N00895659c6b643e9a484660a0f3b67c1 schema:name pubmed_id
128 schema:value 11690545
129 rdf:type schema:PropertyValue
130 N166e48ce5f0944ddafb9c107e9bf43b6 rdf:first sg:person.01360062603.52
131 rdf:rest rdf:nil
132 N247c1cac4c254c1aaad7c4263deb60bb schema:volumeNumber 1
133 rdf:type schema:PublicationVolume
134 N3fd61c6dde6b469d8018f11d6091dfba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Animals
136 rdf:type schema:DefinedTerm
137 N43334a3879cf42c8ac834b2624435a4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Algorithms
139 rdf:type schema:DefinedTerm
140 N5ff96c6ddaed40bd9ab961f0bdbef43a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Oligonucleotide Array Sequence Analysis
142 rdf:type schema:DefinedTerm
143 N7623de6fdf6f48d5b96a5ca81623d13e rdf:first sg:person.01144363373.94
144 rdf:rest N166e48ce5f0944ddafb9c107e9bf43b6
145 N77460d4ef1544d24b790d6be9d826d59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Trans-Activators
147 rdf:type schema:DefinedTerm
148 N8fd3f3ee345e45f7a196945d5f63f3bd schema:name doi
149 schema:value 10.1186/1472-6750-1-8
150 rdf:type schema:PropertyValue
151 Na86d624a0cf74ecf93987759daa76d03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Reproducibility of Results
153 rdf:type schema:DefinedTerm
154 Na9dbf5cf7bf249e98f0d4af2a911c4a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name RNA, Messenger
156 rdf:type schema:DefinedTerm
157 Nb10929d4c52b4576a725255a61793b3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Cell Line
159 rdf:type schema:DefinedTerm
160 Nb972dea0af6344beac12772a3778fa5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Cytoskeletal Proteins
162 rdf:type schema:DefinedTerm
163 Nbf8c204a5e0d4b09a369988091a6629e schema:issueNumber 1
164 rdf:type schema:PublicationIssue
165 Nd50df151647f4059b022d4a5fc4a8e98 schema:name Springer Nature - SN SciGraph project
166 rdf:type schema:Organization
167 Nd5a2f0bba6eb4d558974eeee95107642 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name beta Catenin
169 rdf:type schema:DefinedTerm
170 Nd9afb152bce04bc0ac42adc0ae76f92d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Drosophila melanogaster
172 rdf:type schema:DefinedTerm
173 Nde5b95c3d0ab4345a30d84cb4dfc8cbc schema:name dimensions_id
174 schema:value pub.1028779203
175 rdf:type schema:PropertyValue
176 Ne32c10a974ea4739b74e2e4799a46d63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Statistics as Topic
178 rdf:type schema:DefinedTerm
179 Nedc901add7b345cb83d248f5941257ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Humans
181 rdf:type schema:DefinedTerm
182 Nf844deb6ddd84b9db56173556612d81d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Gene Expression Profiling
184 rdf:type schema:DefinedTerm
185 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
186 schema:name Biological Sciences
187 rdf:type schema:DefinedTerm
188 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
189 schema:name Genetics
190 rdf:type schema:DefinedTerm
191 sg:grant.2484994 http://pending.schema.org/fundedItem sg:pub.10.1186/1472-6750-1-8
192 rdf:type schema:MonetaryGrant
193 sg:journal.1028420 schema:issn 1472-6750
194 schema:name BMC Biotechnology
195 schema:publisher Springer Nature
196 rdf:type schema:Periodical
197 sg:person.01144363373.94 schema:affiliation grid-institutes:None
198 schema:familyName Kamb
199 schema:givenName Alexander
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144363373.94
201 rdf:type schema:Person
202 sg:person.01360062603.52 schema:affiliation grid-institutes:grid.134563.6
203 schema:familyName Ramaswami
204 schema:givenName Mani
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360062603.52
206 rdf:type schema:Person
207 sg:pub.10.1038/18884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037595361
208 https://doi.org/10.1038/18884
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/382638a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002681668
211 https://doi.org/10.1038/382638a0
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/4447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040686717
214 https://doi.org/10.1038/4447
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/4462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017284394
217 https://doi.org/10.1038/4462
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/89022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015403319
220 https://doi.org/10.1038/89022
221 rdf:type schema:CreativeWork
222 grid-institutes:None schema:alternateName Arcaris, Inc. (Currently Deltagen Proteomics, Inc.) Salt Lake City, UT USA
223 schema:name Arcaris, Inc. (Currently Deltagen Proteomics, Inc.) Salt Lake City, UT USA
224 rdf:type schema:Organization
225 grid-institutes:grid.134563.6 schema:alternateName Dept of Molecular and Cell Biology and ARL Division of Neurobiology University of Arizona Tucson, AZ USA
226 schema:name Dept of Molecular and Cell Biology and ARL Division of Neurobiology University of Arizona Tucson, AZ USA
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...