Ontology type: schema:ScholarlyArticle Open Access: True
2010-09-15
AUTHORSJoseph S Butler, Joseph M Queally, Brian M Devitt, David W Murray, Peter P Doran, John M O'Byrne
ABSTRACTBackgroundThe Wnt/β-catenin pathway is a major signaling cascade in bone biology, playing a key role in bone development and remodeling. The objectives of this study were firstly, to determine the effects of dexamethasone exposure on Wnt/β-catenin signaling at an intracellular and transcriptional level, and secondly, to assess the phenotypic effects of silencing the Wnt antagonist, Dickkopf-1 (Dkk1) in the setting of dexamethasone exposure.MethodsPrimary human osteoblasts were exposed in vitro to 10-8 M dexamethasone over a 72 h time course. The phenotypic marker of osteoblast differentiation was analyzed was alkaline phosphatase activity. Intracellular β-catenin trafficking was assessed using immunoflourescence staining and TCF/LEF mediated transcription was analyzed using a Wnt luciferase reporter assay. Dkk1 expression was silenced using small interfering RNA (siRNA).ResultsPrimary human osteoblasts exposed to dexamethasone displayed a significant reductions in alkaline phosphatase activity over a 72 h time course. Immunoflourescence analaysis of β-catenin localization demonstrated a significant reduction in intracytosolic and intranuclear β-catenin in response to dexamethasone exposure. These changes were associated with a reduction of TCF/LEF mediated transcription. Silencing Dkk1 expression in primary human osteoblasts exposed to dexamethasone resulted in an increase in alkaline phosphatase activity when compared to scrambled control.ConclusionsWnt/β-catenin signaling plays a key role in regulating glucocorticoid-induced osteoporosis in vitro. Silencing Dkk1 expression rescues dexamethasone-induced suppression of primary human osteoblast differentiation. Targeting of the Wnt/β-catenin signaling pathway offers an exciting opportunity to develop novel anabolic bone agents to treat osteoporosis and disorders of bone mass. More... »
PAGES210
http://scigraph.springernature.com/pub.10.1186/1471-2474-11-210
DOIhttp://dx.doi.org/10.1186/1471-2474-11-210
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1050432768
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/20843343
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Clinical Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Differentiation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cells, Cultured",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Dexamethasone",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Gene Expression Regulation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Gene Silencing",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Growth Inhibitors",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Intercellular Signaling Peptides and Proteins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Osteoblasts",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Trauma & Orthopaedic Surgery, Royal College of Surgeons in Ireland, Cappagh National Orthopaedic Hospital, Dublin, Ireland",
"id": "http://www.grid.ac/institutes/grid.4912.e",
"name": [
"Clinical Research Centre, UCD School of Medicine & Medical Science, Mater Misericordiae University Hospital, Dublin, Ireland",
"Department of Trauma & Orthopaedic Surgery, Royal College of Surgeons in Ireland, Cappagh National Orthopaedic Hospital, Dublin, Ireland"
],
"type": "Organization"
},
"familyName": "Butler",
"givenName": "Joseph S",
"id": "sg:person.01144445361.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144445361.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Trauma & Orthopaedic Surgery, Royal College of Surgeons in Ireland, Cappagh National Orthopaedic Hospital, Dublin, Ireland",
"id": "http://www.grid.ac/institutes/grid.4912.e",
"name": [
"Clinical Research Centre, UCD School of Medicine & Medical Science, Mater Misericordiae University Hospital, Dublin, Ireland",
"Department of Trauma & Orthopaedic Surgery, Royal College of Surgeons in Ireland, Cappagh National Orthopaedic Hospital, Dublin, Ireland"
],
"type": "Organization"
},
"familyName": "Queally",
"givenName": "Joseph M",
"id": "sg:person.01353606463.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353606463.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Trauma & Orthopaedic Surgery, Royal College of Surgeons in Ireland, Cappagh National Orthopaedic Hospital, Dublin, Ireland",
"id": "http://www.grid.ac/institutes/grid.4912.e",
"name": [
"Clinical Research Centre, UCD School of Medicine & Medical Science, Mater Misericordiae University Hospital, Dublin, Ireland",
"Department of Trauma & Orthopaedic Surgery, Royal College of Surgeons in Ireland, Cappagh National Orthopaedic Hospital, Dublin, Ireland"
],
"type": "Organization"
},
"familyName": "Devitt",
"givenName": "Brian M",
"id": "sg:person.0773274054.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773274054.26"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Clinical Research Centre, UCD School of Medicine & Medical Science, Mater Misericordiae University Hospital, Dublin, Ireland",
"id": "http://www.grid.ac/institutes/grid.411596.e",
"name": [
"Clinical Research Centre, UCD School of Medicine & Medical Science, Mater Misericordiae University Hospital, Dublin, Ireland"
],
"type": "Organization"
},
"familyName": "Murray",
"givenName": "David W",
"id": "sg:person.01212560561.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212560561.44"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Clinical Research Centre, UCD School of Medicine & Medical Science, Mater Misericordiae University Hospital, Dublin, Ireland",
"id": "http://www.grid.ac/institutes/grid.411596.e",
"name": [
"Clinical Research Centre, UCD School of Medicine & Medical Science, Mater Misericordiae University Hospital, Dublin, Ireland"
],
"type": "Organization"
},
"familyName": "Doran",
"givenName": "Peter P",
"id": "sg:person.0600201671.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600201671.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Trauma & Orthopaedic Surgery, Royal College of Surgeons in Ireland, Cappagh National Orthopaedic Hospital, Dublin, Ireland",
"id": "http://www.grid.ac/institutes/grid.4912.e",
"name": [
"Department of Trauma & Orthopaedic Surgery, Royal College of Surgeons in Ireland, Cappagh National Orthopaedic Hospital, Dublin, Ireland"
],
"type": "Organization"
},
"familyName": "O'Byrne",
"givenName": "John M",
"id": "sg:person.0664315403.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664315403.24"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nrg1427",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033736546",
"https://doi.org/10.1038/nrg1427"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2001-3-1-reviews3001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025489174",
"https://doi.org/10.1186/gb-2001-3-1-reviews3001"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2474-8-12",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000419902",
"https://doi.org/10.1186/1471-2474-8-12"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng1614",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030994620",
"https://doi.org/10.1038/ng1614"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/35083081",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003017162",
"https://doi.org/10.1038/35083081"
],
"type": "CreativeWork"
}
],
"datePublished": "2010-09-15",
"datePublishedReg": "2010-09-15",
"description": "BackgroundThe Wnt/\u03b2-catenin pathway is a major signaling cascade in bone biology, playing a key role in bone development and remodeling. The objectives of this study were firstly, to determine the effects of dexamethasone exposure on Wnt/\u03b2-catenin signaling at an intracellular and transcriptional level, and secondly, to assess the phenotypic effects of silencing the Wnt antagonist, Dickkopf-1 (Dkk1) in the setting of dexamethasone exposure.MethodsPrimary human osteoblasts were exposed in vitro to 10-8 M dexamethasone over a 72 h time course. The phenotypic marker of osteoblast differentiation was analyzed was alkaline phosphatase activity. Intracellular \u03b2-catenin trafficking was assessed using immunoflourescence staining and TCF/LEF mediated transcription was analyzed using a Wnt luciferase reporter assay. Dkk1 expression was silenced using small interfering RNA (siRNA).ResultsPrimary human osteoblasts exposed to dexamethasone displayed a significant reductions in alkaline phosphatase activity over a 72 h time course. Immunoflourescence analaysis of \u03b2-catenin localization demonstrated a significant reduction in intracytosolic and intranuclear \u03b2-catenin in response to dexamethasone exposure. These changes were associated with a reduction of TCF/LEF mediated transcription. Silencing Dkk1 expression in primary human osteoblasts exposed to dexamethasone resulted in an increase in alkaline phosphatase activity when compared to scrambled control.ConclusionsWnt/\u03b2-catenin signaling plays a key role in regulating glucocorticoid-induced osteoporosis in vitro. Silencing Dkk1 expression rescues dexamethasone-induced suppression of primary human osteoblast differentiation. Targeting of the Wnt/\u03b2-catenin signaling pathway offers an exciting opportunity to develop novel anabolic bone agents to treat osteoporosis and disorders of bone mass.",
"genre": "article",
"id": "sg:pub.10.1186/1471-2474-11-210",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1024957",
"issn": [
"1471-2474"
],
"name": "BMC Musculoskeletal Disorders",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "11"
}
],
"keywords": [
"primary human osteoblast differentiation",
"dexamethasone-induced suppression",
"Wnt/\u03b2-catenin",
"DKK1 expression",
"dexamethasone exposure",
"\u03b2-catenin",
"human osteoblast differentiation",
"anabolic bone agents",
"glucocorticoid-induced osteoporosis",
"Wnt/\u03b2-catenin pathway",
"h time course",
"alkaline phosphatase activity",
"time course",
"significant reduction",
"\u03b2-catenin pathway",
"osteoblast differentiation",
"human osteoblasts",
"\u03b2-catenin signaling",
"TCF/LEF",
"Wnt luciferase reporter",
"bone mass",
"Dickkopf-1",
"bone agents",
"\u03b2-catenin localization",
"Wnt antagonists",
"immunoflourescence staining",
"luciferase reporter",
"bone biology",
"phenotypic markers",
"bone development",
"osteoporosis",
"primary human osteoblasts",
"major signaling cascades",
"signaling cascades",
"phosphatase activity",
"key role",
"exposure",
"osteoblasts",
"expression",
"transcriptional level",
"differentiation",
"antagonist",
"dexamethasone",
"suppression",
"pathway",
"activity",
"course",
"disorders",
"staining",
"LEF",
"remodeling",
"intracytosolic",
"reduction",
"markers",
"role",
"signaling",
"effect",
"transcription",
"agents",
"setting",
"response",
"RNA",
"reporter",
"phenotypic effects",
"levels",
"control",
"cascade",
"study",
"trafficking",
"increase",
"localization",
"objective",
"changes",
"exciting opportunities",
"mass",
"biology",
"development",
"opportunities",
"analaysis"
],
"name": "Silencing Dkk1 expression rescues dexamethasone-induced suppression of primary human osteoblast differentiation",
"pagination": "210",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1050432768"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/1471-2474-11-210"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"20843343"
]
}
],
"sameAs": [
"https://doi.org/10.1186/1471-2474-11-210",
"https://app.dimensions.ai/details/publication/pub.1050432768"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:26",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_516.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/1471-2474-11-210"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2474-11-210'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2474-11-210'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2474-11-210'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2474-11-210'
This table displays all metadata directly associated to this object as RDF triples.
235 TRIPLES
22 PREDICATES
119 URIs
106 LITERALS
16 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1186/1471-2474-11-210 | schema:about | N04eeb7670bf54bd18f8138efd6687572 |
2 | ″ | ″ | N2b710918e2804113924ed4c17b95ac34 |
3 | ″ | ″ | N4cf9e47bd87549b292fddebb2f91ddb2 |
4 | ″ | ″ | N612b09d3425844799186d7f359cf426c |
5 | ″ | ″ | N696dede273b442039c024bfd9c148866 |
6 | ″ | ″ | N9f16a067027047ff86f12d058bd40d77 |
7 | ″ | ″ | Nb5cf411ad7314416854a715b295b3a76 |
8 | ″ | ″ | Ncecff25caff14a3f8e410eeea82cff45 |
9 | ″ | ″ | Nf90379d1c2b9436abaa9cf78750ed2c8 |
10 | ″ | ″ | anzsrc-for:11 |
11 | ″ | ″ | anzsrc-for:1103 |
12 | ″ | schema:author | Nbc72718547694f80bc912a09624fc2a8 |
13 | ″ | schema:citation | sg:pub.10.1038/35083081 |
14 | ″ | ″ | sg:pub.10.1038/ng1614 |
15 | ″ | ″ | sg:pub.10.1038/nrg1427 |
16 | ″ | ″ | sg:pub.10.1186/1471-2474-8-12 |
17 | ″ | ″ | sg:pub.10.1186/gb-2001-3-1-reviews3001 |
18 | ″ | schema:datePublished | 2010-09-15 |
19 | ″ | schema:datePublishedReg | 2010-09-15 |
20 | ″ | schema:description | BackgroundThe Wnt/β-catenin pathway is a major signaling cascade in bone biology, playing a key role in bone development and remodeling. The objectives of this study were firstly, to determine the effects of dexamethasone exposure on Wnt/β-catenin signaling at an intracellular and transcriptional level, and secondly, to assess the phenotypic effects of silencing the Wnt antagonist, Dickkopf-1 (Dkk1) in the setting of dexamethasone exposure.MethodsPrimary human osteoblasts were exposed in vitro to 10-8 M dexamethasone over a 72 h time course. The phenotypic marker of osteoblast differentiation was analyzed was alkaline phosphatase activity. Intracellular β-catenin trafficking was assessed using immunoflourescence staining and TCF/LEF mediated transcription was analyzed using a Wnt luciferase reporter assay. Dkk1 expression was silenced using small interfering RNA (siRNA).ResultsPrimary human osteoblasts exposed to dexamethasone displayed a significant reductions in alkaline phosphatase activity over a 72 h time course. Immunoflourescence analaysis of β-catenin localization demonstrated a significant reduction in intracytosolic and intranuclear β-catenin in response to dexamethasone exposure. These changes were associated with a reduction of TCF/LEF mediated transcription. Silencing Dkk1 expression in primary human osteoblasts exposed to dexamethasone resulted in an increase in alkaline phosphatase activity when compared to scrambled control.ConclusionsWnt/β-catenin signaling plays a key role in regulating glucocorticoid-induced osteoporosis in vitro. Silencing Dkk1 expression rescues dexamethasone-induced suppression of primary human osteoblast differentiation. Targeting of the Wnt/β-catenin signaling pathway offers an exciting opportunity to develop novel anabolic bone agents to treat osteoporosis and disorders of bone mass. |
21 | ″ | schema:genre | article |
22 | ″ | schema:inLanguage | en |
23 | ″ | schema:isAccessibleForFree | true |
24 | ″ | schema:isPartOf | N0dc94b70b5cf48648f04bc7ce7c40dea |
25 | ″ | ″ | Nb51a3bebd2cd4b2d9652487c97c638f3 |
26 | ″ | ″ | sg:journal.1024957 |
27 | ″ | schema:keywords | DKK1 expression |
28 | ″ | ″ | Dickkopf-1 |
29 | ″ | ″ | LEF |
30 | ″ | ″ | RNA |
31 | ″ | ″ | TCF/LEF |
32 | ″ | ″ | Wnt antagonists |
33 | ″ | ″ | Wnt luciferase reporter |
34 | ″ | ″ | Wnt/β-catenin |
35 | ″ | ″ | Wnt/β-catenin pathway |
36 | ″ | ″ | activity |
37 | ″ | ″ | agents |
38 | ″ | ″ | alkaline phosphatase activity |
39 | ″ | ″ | anabolic bone agents |
40 | ″ | ″ | analaysis |
41 | ″ | ″ | antagonist |
42 | ″ | ″ | biology |
43 | ″ | ″ | bone agents |
44 | ″ | ″ | bone biology |
45 | ″ | ″ | bone development |
46 | ″ | ″ | bone mass |
47 | ″ | ″ | cascade |
48 | ″ | ″ | changes |
49 | ″ | ″ | control |
50 | ″ | ″ | course |
51 | ″ | ″ | development |
52 | ″ | ″ | dexamethasone |
53 | ″ | ″ | dexamethasone exposure |
54 | ″ | ″ | dexamethasone-induced suppression |
55 | ″ | ″ | differentiation |
56 | ″ | ″ | disorders |
57 | ″ | ″ | effect |
58 | ″ | ″ | exciting opportunities |
59 | ″ | ″ | exposure |
60 | ″ | ″ | expression |
61 | ″ | ″ | glucocorticoid-induced osteoporosis |
62 | ″ | ″ | h time course |
63 | ″ | ″ | human osteoblast differentiation |
64 | ″ | ″ | human osteoblasts |
65 | ″ | ″ | immunoflourescence staining |
66 | ″ | ″ | increase |
67 | ″ | ″ | intracytosolic |
68 | ″ | ″ | key role |
69 | ″ | ″ | levels |
70 | ″ | ″ | localization |
71 | ″ | ″ | luciferase reporter |
72 | ″ | ″ | major signaling cascades |
73 | ″ | ″ | markers |
74 | ″ | ″ | mass |
75 | ″ | ″ | objective |
76 | ″ | ″ | opportunities |
77 | ″ | ″ | osteoblast differentiation |
78 | ″ | ″ | osteoblasts |
79 | ″ | ″ | osteoporosis |
80 | ″ | ″ | pathway |
81 | ″ | ″ | phenotypic effects |
82 | ″ | ″ | phenotypic markers |
83 | ″ | ″ | phosphatase activity |
84 | ″ | ″ | primary human osteoblast differentiation |
85 | ″ | ″ | primary human osteoblasts |
86 | ″ | ″ | reduction |
87 | ″ | ″ | remodeling |
88 | ″ | ″ | reporter |
89 | ″ | ″ | response |
90 | ″ | ″ | role |
91 | ″ | ″ | setting |
92 | ″ | ″ | signaling |
93 | ″ | ″ | signaling cascades |
94 | ″ | ″ | significant reduction |
95 | ″ | ″ | staining |
96 | ″ | ″ | study |
97 | ″ | ″ | suppression |
98 | ″ | ″ | time course |
99 | ″ | ″ | trafficking |
100 | ″ | ″ | transcription |
101 | ″ | ″ | transcriptional level |
102 | ″ | ″ | β-catenin |
103 | ″ | ″ | β-catenin localization |
104 | ″ | ″ | β-catenin pathway |
105 | ″ | ″ | β-catenin signaling |
106 | ″ | schema:name | Silencing Dkk1 expression rescues dexamethasone-induced suppression of primary human osteoblast differentiation |
107 | ″ | schema:pagination | 210 |
108 | ″ | schema:productId | N82665096b9ad4bd6acaeee423b61265a |
109 | ″ | ″ | Nb981a8048bad4381920196bd9614eef4 |
110 | ″ | ″ | Nddc06141cabf4988bdca3bdd571e8770 |
111 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050432768 |
112 | ″ | ″ | https://doi.org/10.1186/1471-2474-11-210 |
113 | ″ | schema:sdDatePublished | 2022-05-20T07:26 |
114 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
115 | ″ | schema:sdPublisher | Ne217e337dcea438ea0d345665ff978ec |
116 | ″ | schema:url | https://doi.org/10.1186/1471-2474-11-210 |
117 | ″ | sgo:license | sg:explorer/license/ |
118 | ″ | sgo:sdDataset | articles |
119 | ″ | rdf:type | schema:ScholarlyArticle |
120 | N04eeb7670bf54bd18f8138efd6687572 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
121 | ″ | schema:name | Intercellular Signaling Peptides and Proteins |
122 | ″ | rdf:type | schema:DefinedTerm |
123 | N0ac6b506b76c4cd78cb4f3306e5b24b9 | rdf:first | sg:person.0664315403.24 |
124 | ″ | rdf:rest | rdf:nil |
125 | N0dc94b70b5cf48648f04bc7ce7c40dea | schema:issueNumber | 1 |
126 | ″ | rdf:type | schema:PublicationIssue |
127 | N1944c04c44ec4c3eaca6ac2405563f5a | rdf:first | sg:person.01353606463.50 |
128 | ″ | rdf:rest | Nfd41215e4768464f99b422f494e0b0f0 |
129 | N2b710918e2804113924ed4c17b95ac34 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
130 | ″ | schema:name | Humans |
131 | ″ | rdf:type | schema:DefinedTerm |
132 | N3bc41fe789ed4f6c9d7bf758e99fb436 | rdf:first | sg:person.0600201671.22 |
133 | ″ | rdf:rest | N0ac6b506b76c4cd78cb4f3306e5b24b9 |
134 | N4cf9e47bd87549b292fddebb2f91ddb2 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
135 | ″ | schema:name | Cell Differentiation |
136 | ″ | rdf:type | schema:DefinedTerm |
137 | N612b09d3425844799186d7f359cf426c | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
138 | ″ | schema:name | Gene Silencing |
139 | ″ | rdf:type | schema:DefinedTerm |
140 | N696dede273b442039c024bfd9c148866 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
141 | ″ | schema:name | Gene Expression Regulation |
142 | ″ | rdf:type | schema:DefinedTerm |
143 | N82665096b9ad4bd6acaeee423b61265a | schema:name | doi |
144 | ″ | schema:value | 10.1186/1471-2474-11-210 |
145 | ″ | rdf:type | schema:PropertyValue |
146 | N9f16a067027047ff86f12d058bd40d77 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
147 | ″ | schema:name | Dexamethasone |
148 | ″ | rdf:type | schema:DefinedTerm |
149 | Nb51a3bebd2cd4b2d9652487c97c638f3 | schema:volumeNumber | 11 |
150 | ″ | rdf:type | schema:PublicationVolume |
151 | Nb5cf411ad7314416854a715b295b3a76 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
152 | ″ | schema:name | Osteoblasts |
153 | ″ | rdf:type | schema:DefinedTerm |
154 | Nb981a8048bad4381920196bd9614eef4 | schema:name | dimensions_id |
155 | ″ | schema:value | pub.1050432768 |
156 | ″ | rdf:type | schema:PropertyValue |
157 | Nbc72718547694f80bc912a09624fc2a8 | rdf:first | sg:person.01144445361.98 |
158 | ″ | rdf:rest | N1944c04c44ec4c3eaca6ac2405563f5a |
159 | Ncecff25caff14a3f8e410eeea82cff45 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
160 | ″ | schema:name | Cells, Cultured |
161 | ″ | rdf:type | schema:DefinedTerm |
162 | Nddc06141cabf4988bdca3bdd571e8770 | schema:name | pubmed_id |
163 | ″ | schema:value | 20843343 |
164 | ″ | rdf:type | schema:PropertyValue |
165 | Ne217e337dcea438ea0d345665ff978ec | schema:name | Springer Nature - SN SciGraph project |
166 | ″ | rdf:type | schema:Organization |
167 | Nf90379d1c2b9436abaa9cf78750ed2c8 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
168 | ″ | schema:name | Growth Inhibitors |
169 | ″ | rdf:type | schema:DefinedTerm |
170 | Nfa105ef7a580458998ecfadc24d2c3b9 | rdf:first | sg:person.01212560561.44 |
171 | ″ | rdf:rest | N3bc41fe789ed4f6c9d7bf758e99fb436 |
172 | Nfd41215e4768464f99b422f494e0b0f0 | rdf:first | sg:person.0773274054.26 |
173 | ″ | rdf:rest | Nfa105ef7a580458998ecfadc24d2c3b9 |
174 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
175 | ″ | schema:name | Medical and Health Sciences |
176 | ″ | rdf:type | schema:DefinedTerm |
177 | anzsrc-for:1103 | schema:inDefinedTermSet | anzsrc-for: |
178 | ″ | schema:name | Clinical Sciences |
179 | ″ | rdf:type | schema:DefinedTerm |
180 | sg:journal.1024957 | schema:issn | 1471-2474 |
181 | ″ | schema:name | BMC Musculoskeletal Disorders |
182 | ″ | schema:publisher | Springer Nature |
183 | ″ | rdf:type | schema:Periodical |
184 | sg:person.01144445361.98 | schema:affiliation | grid-institutes:grid.4912.e |
185 | ″ | schema:familyName | Butler |
186 | ″ | schema:givenName | Joseph S |
187 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144445361.98 |
188 | ″ | rdf:type | schema:Person |
189 | sg:person.01212560561.44 | schema:affiliation | grid-institutes:grid.411596.e |
190 | ″ | schema:familyName | Murray |
191 | ″ | schema:givenName | David W |
192 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212560561.44 |
193 | ″ | rdf:type | schema:Person |
194 | sg:person.01353606463.50 | schema:affiliation | grid-institutes:grid.4912.e |
195 | ″ | schema:familyName | Queally |
196 | ″ | schema:givenName | Joseph M |
197 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353606463.50 |
198 | ″ | rdf:type | schema:Person |
199 | sg:person.0600201671.22 | schema:affiliation | grid-institutes:grid.411596.e |
200 | ″ | schema:familyName | Doran |
201 | ″ | schema:givenName | Peter P |
202 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600201671.22 |
203 | ″ | rdf:type | schema:Person |
204 | sg:person.0664315403.24 | schema:affiliation | grid-institutes:grid.4912.e |
205 | ″ | schema:familyName | O'Byrne |
206 | ″ | schema:givenName | John M |
207 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664315403.24 |
208 | ″ | rdf:type | schema:Person |
209 | sg:person.0773274054.26 | schema:affiliation | grid-institutes:grid.4912.e |
210 | ″ | schema:familyName | Devitt |
211 | ″ | schema:givenName | Brian M |
212 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773274054.26 |
213 | ″ | rdf:type | schema:Person |
214 | sg:pub.10.1038/35083081 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003017162 |
215 | ″ | ″ | https://doi.org/10.1038/35083081 |
216 | ″ | rdf:type | schema:CreativeWork |
217 | sg:pub.10.1038/ng1614 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030994620 |
218 | ″ | ″ | https://doi.org/10.1038/ng1614 |
219 | ″ | rdf:type | schema:CreativeWork |
220 | sg:pub.10.1038/nrg1427 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033736546 |
221 | ″ | ″ | https://doi.org/10.1038/nrg1427 |
222 | ″ | rdf:type | schema:CreativeWork |
223 | sg:pub.10.1186/1471-2474-8-12 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000419902 |
224 | ″ | ″ | https://doi.org/10.1186/1471-2474-8-12 |
225 | ″ | rdf:type | schema:CreativeWork |
226 | sg:pub.10.1186/gb-2001-3-1-reviews3001 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1025489174 |
227 | ″ | ″ | https://doi.org/10.1186/gb-2001-3-1-reviews3001 |
228 | ″ | rdf:type | schema:CreativeWork |
229 | grid-institutes:grid.411596.e | schema:alternateName | Clinical Research Centre, UCD School of Medicine & Medical Science, Mater Misericordiae University Hospital, Dublin, Ireland |
230 | ″ | schema:name | Clinical Research Centre, UCD School of Medicine & Medical Science, Mater Misericordiae University Hospital, Dublin, Ireland |
231 | ″ | rdf:type | schema:Organization |
232 | grid-institutes:grid.4912.e | schema:alternateName | Department of Trauma & Orthopaedic Surgery, Royal College of Surgeons in Ireland, Cappagh National Orthopaedic Hospital, Dublin, Ireland |
233 | ″ | schema:name | Clinical Research Centre, UCD School of Medicine & Medical Science, Mater Misericordiae University Hospital, Dublin, Ireland |
234 | ″ | ″ | Department of Trauma & Orthopaedic Surgery, Royal College of Surgeons in Ireland, Cappagh National Orthopaedic Hospital, Dublin, Ireland |
235 | ″ | rdf:type | schema:Organization |