A predictive model relating daily fluctuations in summer temperatures and mortality rates View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Anne Fouillet, Grégoire Rey, Eric Jougla, Philippe Frayssinet, Pierre Bessemoulin, Denis Hémon

ABSTRACT

BACKGROUND: In the context of climate change, an efficient alert system to prevent the risk associated with summer heat is necessary. The authors' objective was to describe the temperature-mortality relationship in France over a 29-year period and to define and validate a combination of temperature factors enabling optimum prediction of the daily fluctuations in summer mortality. METHODS: The study addressed the daily mortality rates of subjects aged over 55 years, in France as a whole, from 1975 to 2003. The daily minimum and maximum temperatures consisted in the average values recorded by 97 meteorological stations. For each day, a cumulative variable for the maximum temperature over the preceding 10 days was defined. The mortality rate was modelled using a Poisson regression with over-dispersion and a first-order autoregressive structure and with control for long-term and within-summer seasonal trends. The lag effects of temperature were accounted for by including the preceding 5 days. A "backward" method was used to select the most significant climatic variables. The predictive performance of the model was assessed by comparing the observed and predicted daily mortality rates on a validation period (summer 2003), which was distinct from the calibration period (1975-2002) used to estimate the model. RESULTS: The temperature indicators explained 76% of the total over-dispersion. The greater part of the daily fluctuations in mortality was explained by the interaction between minimum and maximum temperatures, for a day t and the day preceding it. The prediction of mortality during extreme events was greatly improved by including the cumulative variables for maximum temperature, in interaction with the maximum temperatures. The correlation between the observed and estimated mortality ratios was 0.88 in the final model. CONCLUSION: Although France is a large country with geographic heterogeneity in both mortality and temperatures, a strong correlation between the daily fluctuations in mortality and the temperatures in summer on a national scale was observed. The model provided a satisfactory quantitative prediction of the daily mortality both for the days with usual temperatures and for the days during intense heat episodes. The results may contribute to enhancing the alert system for intense heat waves. More... »

PAGES

114

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2458-7-114

DOI

http://dx.doi.org/10.1186/1471-2458-7-114

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033395142

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17578564


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Climate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Forecasting", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "France", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hot Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mortality", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Poisson Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seasons", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "INSERM, U754, Villejuif, France", 
            "Universit\u00e9 Paris-Sud, IFR69, Epid\u00e9miologie Environnementale des Cancers, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fouillet", 
        "givenName": "Anne", 
        "id": "sg:person.0606224560.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606224560.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "INSERM, U754, Villejuif, France", 
            "Universit\u00e9 Paris-Sud, IFR69, Epid\u00e9miologie Environnementale des Cancers, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rey", 
        "givenName": "Gr\u00e9goire", 
        "id": "sg:person.0747747300.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747747300.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "INSERM, C\u00e9piDc, Le V\u00e9sinet, France", 
            "Universit\u00e9 Paris-Sud, IFR69, Centre d'Epid\u00e9miologie sur les Causes M\u00e9dicales de D\u00e9c\u00e8s, Le V\u00e9sinet, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jougla", 
        "givenName": "Eric", 
        "id": "sg:person.01321050604.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321050604.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "M\u00e9t\u00e9o-France", 
          "id": "https://www.grid.ac/institutes/grid.30390.39", 
          "name": [
            "M\u00e9t\u00e9o-France, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frayssinet", 
        "givenName": "Philippe", 
        "id": "sg:person.01132311100.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132311100.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "M\u00e9t\u00e9o-France", 
          "id": "https://www.grid.ac/institutes/grid.30390.39", 
          "name": [
            "M\u00e9t\u00e9o-France, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bessemoulin", 
        "givenName": "Pierre", 
        "id": "sg:person.01064175700.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064175700.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "INSERM, U754, Villejuif, France", 
            "Universit\u00e9 Paris-Sud, IFR69, Epid\u00e9miologie Environnementale des Cancers, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e9mon", 
        "givenName": "Denis", 
        "id": "sg:person.01204334072.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204334072.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2001.00120.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001190289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2001.00120.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001190289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-002-0143-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003888467", 
          "https://doi.org/10.1007/s00484-002-0143-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00420-001-0290-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004116998", 
          "https://doi.org/10.1007/s00420-001-0290-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00420-007-0173-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007929735", 
          "https://doi.org/10.1007/s00420-007-0173-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00420-007-0173-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007929735", 
          "https://doi.org/10.1007/s00420-007-0173-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1532-5415.1981.tb01238.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010637992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00039896.1993.9940365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014243716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001648-200111000-00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017163145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001648-200111000-00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017163145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001648-200111000-00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017163145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-005-0005-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018762382", 
          "https://doi.org/10.1007/s00484-005-0005-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-005-0005-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018762382", 
          "https://doi.org/10.1007/s00484-005-0005-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-002-0129-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020690043", 
          "https://doi.org/10.1007/s00484-002-0129-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00420-006-0089-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021343793", 
          "https://doi.org/10.1007/s00420-006-0089-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00420-006-0089-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021343793", 
          "https://doi.org/10.1007/s00420-006-0089-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jech.52.8.482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023670885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jech.56.5.367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027835334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/epirev/mxf007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037071303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0749-3797(02)00421-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042657206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/enrs.1995.1054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046026729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jech.57.8.628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046037820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/26.3.551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046236050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8306.1989.tb00249.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047120951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-005-0003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049023265", 
          "https://doi.org/10.1007/s00484-005-0003-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-005-0003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049023265", 
          "https://doi.org/10.1007/s00484-005-0003-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2004.02.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049622300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-9351(78)90129-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051386052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003gl018857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052885067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/24.3.576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059675649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.02110859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064737724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.9196145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064744756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2105/ajph.59.12.2232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068865541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2105/ajph.87.9.1515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068876461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4267/2042/34912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072416247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4267/2042/36057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072416448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077055683", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2807/esm.10.07.00556-en", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077095141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082351659", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a116680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082812405"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: In the context of climate change, an efficient alert system to prevent the risk associated with summer heat is necessary. The authors' objective was to describe the temperature-mortality relationship in France over a 29-year period and to define and validate a combination of temperature factors enabling optimum prediction of the daily fluctuations in summer mortality.\nMETHODS: The study addressed the daily mortality rates of subjects aged over 55 years, in France as a whole, from 1975 to 2003. The daily minimum and maximum temperatures consisted in the average values recorded by 97 meteorological stations. For each day, a cumulative variable for the maximum temperature over the preceding 10 days was defined. The mortality rate was modelled using a Poisson regression with over-dispersion and a first-order autoregressive structure and with control for long-term and within-summer seasonal trends. The lag effects of temperature were accounted for by including the preceding 5 days. A \"backward\" method was used to select the most significant climatic variables. The predictive performance of the model was assessed by comparing the observed and predicted daily mortality rates on a validation period (summer 2003), which was distinct from the calibration period (1975-2002) used to estimate the model.\nRESULTS: The temperature indicators explained 76% of the total over-dispersion. The greater part of the daily fluctuations in mortality was explained by the interaction between minimum and maximum temperatures, for a day t and the day preceding it. The prediction of mortality during extreme events was greatly improved by including the cumulative variables for maximum temperature, in interaction with the maximum temperatures. The correlation between the observed and estimated mortality ratios was 0.88 in the final model.\nCONCLUSION: Although France is a large country with geographic heterogeneity in both mortality and temperatures, a strong correlation between the daily fluctuations in mortality and the temperatures in summer on a national scale was observed. The model provided a satisfactory quantitative prediction of the daily mortality both for the days with usual temperatures and for the days during intense heat episodes. The results may contribute to enhancing the alert system for intense heat waves.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2458-7-114", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024954", 
        "issn": [
          "1471-2458"
        ], 
        "name": "BMC Public Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "A predictive model relating daily fluctuations in summer temperatures and mortality rates", 
    "pagination": "114", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9f16676e19803dc96e50ff62da9f926a8250bd6e2d797549722c65e20c655c6a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17578564"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968562"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2458-7-114"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033395142"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2458-7-114", 
      "https://app.dimensions.ai/details/publication/pub.1033395142"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2458-7-114"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-7-114'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-7-114'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-7-114'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-7-114'


 

This table displays all metadata directly associated to this object as RDF triples.

265 TRIPLES      21 PREDICATES      75 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2458-7-114 schema:about N0af96442e2cd4a549dc0af4b8fcb79fb
2 N31a2df9c46d640bebc1239c8d4088b4a
3 N39436055d9df48778cc5e77d8108899a
4 N40ddfd52b53c40b2a0749a35994a3dd1
5 N6bee014f018c42a8878c3413b11e7a15
6 N6e29ac1728a746ec907c80dc24bf8731
7 N8a03a3903d334889bf18ee3b70aa6fd4
8 N9a3e02dfafd1491188e497843d75f194
9 N9aa681a34cfd4d9683059835d8dd0547
10 Nb92b534e56444824b46cfdbdbcd410f4
11 Nb96abdad6bde4a43ad44f4775b6becb4
12 Ndae094adf7c54256a8bd33cb4c826862
13 Nfc6a74d9b4b44eb483eefdcedd9f467b
14 anzsrc-for:01
15 anzsrc-for:0104
16 schema:author Ncb2c7bd16a4b40859dd9b48fe6b8ddae
17 schema:citation sg:pub.10.1007/s00420-001-0290-4
18 sg:pub.10.1007/s00420-006-0089-4
19 sg:pub.10.1007/s00420-007-0173-4
20 sg:pub.10.1007/s00484-002-0129-z
21 sg:pub.10.1007/s00484-002-0143-1
22 sg:pub.10.1007/s00484-005-0003-x
23 sg:pub.10.1007/s00484-005-0005-8
24 https://app.dimensions.ai/details/publication/pub.1077055683
25 https://app.dimensions.ai/details/publication/pub.1082351659
26 https://doi.org/10.1006/enrs.1995.1054
27 https://doi.org/10.1016/0013-9351(78)90129-9
28 https://doi.org/10.1016/j.scitotenv.2004.02.027
29 https://doi.org/10.1016/s0749-3797(02)00421-x
30 https://doi.org/10.1029/2003gl018857
31 https://doi.org/10.1080/00039896.1993.9940365
32 https://doi.org/10.1093/epirev/mxf007
33 https://doi.org/10.1093/ije/24.3.576
34 https://doi.org/10.1093/ije/26.3.551
35 https://doi.org/10.1093/oxfordjournals.aje.a116680
36 https://doi.org/10.1097/00001648-200111000-00014
37 https://doi.org/10.1111/j.0006-341x.2001.00120.x
38 https://doi.org/10.1111/j.1467-8306.1989.tb00249.x
39 https://doi.org/10.1111/j.1532-5415.1981.tb01238.x
40 https://doi.org/10.1136/jech.52.8.482
41 https://doi.org/10.1136/jech.56.5.367
42 https://doi.org/10.1136/jech.57.8.628
43 https://doi.org/10.1289/ehp.02110859
44 https://doi.org/10.1289/ehp.9196145
45 https://doi.org/10.2105/ajph.59.12.2232
46 https://doi.org/10.2105/ajph.87.9.1515
47 https://doi.org/10.2807/esm.10.07.00556-en
48 https://doi.org/10.4267/2042/34912
49 https://doi.org/10.4267/2042/36057
50 schema:datePublished 2007-12
51 schema:datePublishedReg 2007-12-01
52 schema:description BACKGROUND: In the context of climate change, an efficient alert system to prevent the risk associated with summer heat is necessary. The authors' objective was to describe the temperature-mortality relationship in France over a 29-year period and to define and validate a combination of temperature factors enabling optimum prediction of the daily fluctuations in summer mortality. METHODS: The study addressed the daily mortality rates of subjects aged over 55 years, in France as a whole, from 1975 to 2003. The daily minimum and maximum temperatures consisted in the average values recorded by 97 meteorological stations. For each day, a cumulative variable for the maximum temperature over the preceding 10 days was defined. The mortality rate was modelled using a Poisson regression with over-dispersion and a first-order autoregressive structure and with control for long-term and within-summer seasonal trends. The lag effects of temperature were accounted for by including the preceding 5 days. A "backward" method was used to select the most significant climatic variables. The predictive performance of the model was assessed by comparing the observed and predicted daily mortality rates on a validation period (summer 2003), which was distinct from the calibration period (1975-2002) used to estimate the model. RESULTS: The temperature indicators explained 76% of the total over-dispersion. The greater part of the daily fluctuations in mortality was explained by the interaction between minimum and maximum temperatures, for a day t and the day preceding it. The prediction of mortality during extreme events was greatly improved by including the cumulative variables for maximum temperature, in interaction with the maximum temperatures. The correlation between the observed and estimated mortality ratios was 0.88 in the final model. CONCLUSION: Although France is a large country with geographic heterogeneity in both mortality and temperatures, a strong correlation between the daily fluctuations in mortality and the temperatures in summer on a national scale was observed. The model provided a satisfactory quantitative prediction of the daily mortality both for the days with usual temperatures and for the days during intense heat episodes. The results may contribute to enhancing the alert system for intense heat waves.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N091d945f6d5f4c0ca90589a32592d01d
57 N56abec71f3c24bbdb41d6cda7ae3730a
58 sg:journal.1024954
59 schema:name A predictive model relating daily fluctuations in summer temperatures and mortality rates
60 schema:pagination 114
61 schema:productId N016bc229b92d46b4abc166cc854df4e9
62 N53d5e97a7cdf471da6fc2ea2949df909
63 Na04bffa79e4a47e6bea14dce2684ed22
64 Ncc4a22b504df49a986882ec3a357a02e
65 Nef1bd212694c4e2c883fc79f40374037
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033395142
67 https://doi.org/10.1186/1471-2458-7-114
68 schema:sdDatePublished 2019-04-10T22:32
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N750d899c10734692a5616592824bf347
71 schema:url http://link.springer.com/10.1186%2F1471-2458-7-114
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N016bc229b92d46b4abc166cc854df4e9 schema:name doi
76 schema:value 10.1186/1471-2458-7-114
77 rdf:type schema:PropertyValue
78 N091d945f6d5f4c0ca90589a32592d01d schema:volumeNumber 7
79 rdf:type schema:PublicationVolume
80 N0af96442e2cd4a549dc0af4b8fcb79fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Poisson Distribution
82 rdf:type schema:DefinedTerm
83 N27a29144fe6b44a481235f85dcf87bb9 rdf:first sg:person.01132311100.79
84 rdf:rest N85b034b9434242dda7f0bfce58021738
85 N2892b7ded24b4de1b73408f14d4e3724 rdf:first sg:person.01204334072.81
86 rdf:rest rdf:nil
87 N31a2df9c46d640bebc1239c8d4088b4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Middle Aged
89 rdf:type schema:DefinedTerm
90 N39436055d9df48778cc5e77d8108899a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Forecasting
92 rdf:type schema:DefinedTerm
93 N40ddfd52b53c40b2a0749a35994a3dd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Male
95 rdf:type schema:DefinedTerm
96 N53d5e97a7cdf471da6fc2ea2949df909 schema:name nlm_unique_id
97 schema:value 100968562
98 rdf:type schema:PropertyValue
99 N56abec71f3c24bbdb41d6cda7ae3730a schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N58d5f692a9c64973881e8586f1c1834c rdf:first sg:person.0747747300.37
102 rdf:rest Nb10d97d5d1354ab9b9853b750995c5c0
103 N6bee014f018c42a8878c3413b11e7a15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Female
105 rdf:type schema:DefinedTerm
106 N6e29ac1728a746ec907c80dc24bf8731 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Mortality
108 rdf:type schema:DefinedTerm
109 N750d899c10734692a5616592824bf347 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N85b034b9434242dda7f0bfce58021738 rdf:first sg:person.01064175700.28
112 rdf:rest N2892b7ded24b4de1b73408f14d4e3724
113 N8a03a3903d334889bf18ee3b70aa6fd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name France
115 rdf:type schema:DefinedTerm
116 N9a3e02dfafd1491188e497843d75f194 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Seasons
118 rdf:type schema:DefinedTerm
119 N9aa681a34cfd4d9683059835d8dd0547 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Aged, 80 and over
121 rdf:type schema:DefinedTerm
122 Na04bffa79e4a47e6bea14dce2684ed22 schema:name dimensions_id
123 schema:value pub.1033395142
124 rdf:type schema:PropertyValue
125 Nb10d97d5d1354ab9b9853b750995c5c0 rdf:first sg:person.01321050604.59
126 rdf:rest N27a29144fe6b44a481235f85dcf87bb9
127 Nb92b534e56444824b46cfdbdbcd410f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Hot Temperature
129 rdf:type schema:DefinedTerm
130 Nb96abdad6bde4a43ad44f4775b6becb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Humans
132 rdf:type schema:DefinedTerm
133 Ncb2c7bd16a4b40859dd9b48fe6b8ddae rdf:first sg:person.0606224560.40
134 rdf:rest N58d5f692a9c64973881e8586f1c1834c
135 Ncc4a22b504df49a986882ec3a357a02e schema:name readcube_id
136 schema:value 9f16676e19803dc96e50ff62da9f926a8250bd6e2d797549722c65e20c655c6a
137 rdf:type schema:PropertyValue
138 Ndae094adf7c54256a8bd33cb4c826862 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Aged
140 rdf:type schema:DefinedTerm
141 Nef1bd212694c4e2c883fc79f40374037 schema:name pubmed_id
142 schema:value 17578564
143 rdf:type schema:PropertyValue
144 Nfc6a74d9b4b44eb483eefdcedd9f467b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Climate
146 rdf:type schema:DefinedTerm
147 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
148 schema:name Mathematical Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
151 schema:name Statistics
152 rdf:type schema:DefinedTerm
153 sg:journal.1024954 schema:issn 1471-2458
154 schema:name BMC Public Health
155 rdf:type schema:Periodical
156 sg:person.01064175700.28 schema:affiliation https://www.grid.ac/institutes/grid.30390.39
157 schema:familyName Bessemoulin
158 schema:givenName Pierre
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064175700.28
160 rdf:type schema:Person
161 sg:person.01132311100.79 schema:affiliation https://www.grid.ac/institutes/grid.30390.39
162 schema:familyName Frayssinet
163 schema:givenName Philippe
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132311100.79
165 rdf:type schema:Person
166 sg:person.01204334072.81 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
167 schema:familyName Hémon
168 schema:givenName Denis
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204334072.81
170 rdf:type schema:Person
171 sg:person.01321050604.59 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
172 schema:familyName Jougla
173 schema:givenName Eric
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321050604.59
175 rdf:type schema:Person
176 sg:person.0606224560.40 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
177 schema:familyName Fouillet
178 schema:givenName Anne
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606224560.40
180 rdf:type schema:Person
181 sg:person.0747747300.37 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
182 schema:familyName Rey
183 schema:givenName Grégoire
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747747300.37
185 rdf:type schema:Person
186 sg:pub.10.1007/s00420-001-0290-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004116998
187 https://doi.org/10.1007/s00420-001-0290-4
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s00420-006-0089-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021343793
190 https://doi.org/10.1007/s00420-006-0089-4
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s00420-007-0173-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007929735
193 https://doi.org/10.1007/s00420-007-0173-4
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s00484-002-0129-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020690043
196 https://doi.org/10.1007/s00484-002-0129-z
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s00484-002-0143-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003888467
199 https://doi.org/10.1007/s00484-002-0143-1
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s00484-005-0003-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049023265
202 https://doi.org/10.1007/s00484-005-0003-x
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s00484-005-0005-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018762382
205 https://doi.org/10.1007/s00484-005-0005-8
206 rdf:type schema:CreativeWork
207 https://app.dimensions.ai/details/publication/pub.1077055683 schema:CreativeWork
208 https://app.dimensions.ai/details/publication/pub.1082351659 schema:CreativeWork
209 https://doi.org/10.1006/enrs.1995.1054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046026729
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/0013-9351(78)90129-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051386052
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.scitotenv.2004.02.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049622300
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0749-3797(02)00421-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042657206
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1029/2003gl018857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052885067
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1080/00039896.1993.9940365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014243716
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/epirev/mxf007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037071303
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/ije/24.3.576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059675649
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/ije/26.3.551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046236050
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/oxfordjournals.aje.a116680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082812405
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1097/00001648-200111000-00014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017163145
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1111/j.0006-341x.2001.00120.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001190289
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1111/j.1467-8306.1989.tb00249.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047120951
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1111/j.1532-5415.1981.tb01238.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010637992
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1136/jech.52.8.482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023670885
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1136/jech.56.5.367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027835334
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1136/jech.57.8.628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046037820
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1289/ehp.02110859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064737724
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1289/ehp.9196145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064744756
246 rdf:type schema:CreativeWork
247 https://doi.org/10.2105/ajph.59.12.2232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068865541
248 rdf:type schema:CreativeWork
249 https://doi.org/10.2105/ajph.87.9.1515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068876461
250 rdf:type schema:CreativeWork
251 https://doi.org/10.2807/esm.10.07.00556-en schema:sameAs https://app.dimensions.ai/details/publication/pub.1077095141
252 rdf:type schema:CreativeWork
253 https://doi.org/10.4267/2042/34912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072416247
254 rdf:type schema:CreativeWork
255 https://doi.org/10.4267/2042/36057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072416448
256 rdf:type schema:CreativeWork
257 https://www.grid.ac/institutes/grid.30390.39 schema:alternateName Météo-France
258 schema:name Météo-France, Toulouse, France
259 rdf:type schema:Organization
260 https://www.grid.ac/institutes/grid.5842.b schema:alternateName University of Paris-Sud
261 schema:name INSERM, CépiDc, Le Vésinet, France
262 INSERM, U754, Villejuif, France
263 Université Paris-Sud, IFR69, Centre d'Epidémiologie sur les Causes Médicales de Décès, Le Vésinet, France
264 Université Paris-Sud, IFR69, Epidémiologie Environnementale des Cancers, Villejuif, France
265 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...