A predictive model relating daily fluctuations in summer temperatures and mortality rates View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Anne Fouillet, Grégoire Rey, Eric Jougla, Philippe Frayssinet, Pierre Bessemoulin, Denis Hémon

ABSTRACT

BACKGROUND: In the context of climate change, an efficient alert system to prevent the risk associated with summer heat is necessary. The authors' objective was to describe the temperature-mortality relationship in France over a 29-year period and to define and validate a combination of temperature factors enabling optimum prediction of the daily fluctuations in summer mortality. METHODS: The study addressed the daily mortality rates of subjects aged over 55 years, in France as a whole, from 1975 to 2003. The daily minimum and maximum temperatures consisted in the average values recorded by 97 meteorological stations. For each day, a cumulative variable for the maximum temperature over the preceding 10 days was defined. The mortality rate was modelled using a Poisson regression with over-dispersion and a first-order autoregressive structure and with control for long-term and within-summer seasonal trends. The lag effects of temperature were accounted for by including the preceding 5 days. A "backward" method was used to select the most significant climatic variables. The predictive performance of the model was assessed by comparing the observed and predicted daily mortality rates on a validation period (summer 2003), which was distinct from the calibration period (1975-2002) used to estimate the model. RESULTS: The temperature indicators explained 76% of the total over-dispersion. The greater part of the daily fluctuations in mortality was explained by the interaction between minimum and maximum temperatures, for a day t and the day preceding it. The prediction of mortality during extreme events was greatly improved by including the cumulative variables for maximum temperature, in interaction with the maximum temperatures. The correlation between the observed and estimated mortality ratios was 0.88 in the final model. CONCLUSION: Although France is a large country with geographic heterogeneity in both mortality and temperatures, a strong correlation between the daily fluctuations in mortality and the temperatures in summer on a national scale was observed. The model provided a satisfactory quantitative prediction of the daily mortality both for the days with usual temperatures and for the days during intense heat episodes. The results may contribute to enhancing the alert system for intense heat waves. More... »

PAGES

114

References to SciGraph publications

  • 2006-10. Excess mortality related to the August 2003 heat wave in France in INTERNATIONAL ARCHIVES OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH
  • 2007-07. The impact of major heat waves on all-cause and cause-specific mortality in France from 1971 to 2003 in INTERNATIONAL ARCHIVES OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH
  • 2002-03. Heat waves in Madrid 1986–1997: effects on the health of the elderly in INTERNATIONAL ARCHIVES OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH
  • 2006-01. The impact of the summer 2003 heat wave in Iberia: how should we measure it? in INTERNATIONAL JOURNAL OF BIOMETEOROLOGY
  • 2006-01. France’s heat health watch warning system in INTERNATIONAL JOURNAL OF BIOMETEOROLOGY
  • 2002-08. Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997 in INTERNATIONAL JOURNAL OF BIOMETEOROLOGY
  • 2002-12. Heat stress and mortality in Lisbon Part I. model construction and validation in INTERNATIONAL JOURNAL OF BIOMETEOROLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2458-7-114

    DOI

    http://dx.doi.org/10.1186/1471-2458-7-114

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033395142

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17578564


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Climate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Forecasting", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "France", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hot Temperature", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mortality", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Poisson Distribution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Seasons", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Paris-Sud", 
              "id": "https://www.grid.ac/institutes/grid.5842.b", 
              "name": [
                "INSERM, U754, Villejuif, France", 
                "Universit\u00e9 Paris-Sud, IFR69, Epid\u00e9miologie Environnementale des Cancers, Villejuif, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fouillet", 
            "givenName": "Anne", 
            "id": "sg:person.0606224560.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606224560.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Paris-Sud", 
              "id": "https://www.grid.ac/institutes/grid.5842.b", 
              "name": [
                "INSERM, U754, Villejuif, France", 
                "Universit\u00e9 Paris-Sud, IFR69, Epid\u00e9miologie Environnementale des Cancers, Villejuif, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rey", 
            "givenName": "Gr\u00e9goire", 
            "id": "sg:person.0747747300.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747747300.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Paris-Sud", 
              "id": "https://www.grid.ac/institutes/grid.5842.b", 
              "name": [
                "INSERM, C\u00e9piDc, Le V\u00e9sinet, France", 
                "Universit\u00e9 Paris-Sud, IFR69, Centre d'Epid\u00e9miologie sur les Causes M\u00e9dicales de D\u00e9c\u00e8s, Le V\u00e9sinet, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jougla", 
            "givenName": "Eric", 
            "id": "sg:person.01321050604.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321050604.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "M\u00e9t\u00e9o-France", 
              "id": "https://www.grid.ac/institutes/grid.30390.39", 
              "name": [
                "M\u00e9t\u00e9o-France, Toulouse, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frayssinet", 
            "givenName": "Philippe", 
            "id": "sg:person.01132311100.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132311100.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "M\u00e9t\u00e9o-France", 
              "id": "https://www.grid.ac/institutes/grid.30390.39", 
              "name": [
                "M\u00e9t\u00e9o-France, Toulouse, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bessemoulin", 
            "givenName": "Pierre", 
            "id": "sg:person.01064175700.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064175700.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Paris-Sud", 
              "id": "https://www.grid.ac/institutes/grid.5842.b", 
              "name": [
                "INSERM, U754, Villejuif, France", 
                "Universit\u00e9 Paris-Sud, IFR69, Epid\u00e9miologie Environnementale des Cancers, Villejuif, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "H\u00e9mon", 
            "givenName": "Denis", 
            "id": "sg:person.01204334072.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204334072.81"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/j.0006-341x.2001.00120.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001190289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.0006-341x.2001.00120.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001190289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00484-002-0143-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003888467", 
              "https://doi.org/10.1007/s00484-002-0143-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00420-001-0290-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004116998", 
              "https://doi.org/10.1007/s00420-001-0290-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00420-007-0173-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007929735", 
              "https://doi.org/10.1007/s00420-007-0173-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00420-007-0173-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007929735", 
              "https://doi.org/10.1007/s00420-007-0173-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1532-5415.1981.tb01238.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010637992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00039896.1993.9940365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014243716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-200111000-00014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017163145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-200111000-00014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017163145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001648-200111000-00014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017163145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00484-005-0005-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018762382", 
              "https://doi.org/10.1007/s00484-005-0005-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00484-005-0005-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018762382", 
              "https://doi.org/10.1007/s00484-005-0005-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00484-002-0129-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020690043", 
              "https://doi.org/10.1007/s00484-002-0129-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00420-006-0089-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021343793", 
              "https://doi.org/10.1007/s00420-006-0089-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00420-006-0089-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021343793", 
              "https://doi.org/10.1007/s00420-006-0089-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/jech.52.8.482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023670885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/jech.56.5.367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027835334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/epirev/mxf007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037071303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0749-3797(02)00421-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042657206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/enrs.1995.1054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046026729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/jech.57.8.628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046037820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ije/26.3.551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046236050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8306.1989.tb00249.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047120951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00484-005-0003-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049023265", 
              "https://doi.org/10.1007/s00484-005-0003-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00484-005-0003-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049023265", 
              "https://doi.org/10.1007/s00484-005-0003-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scitotenv.2004.02.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049622300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0013-9351(78)90129-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051386052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2003gl018857", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052885067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ije/24.3.576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059675649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1289/ehp.02110859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064737724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1289/ehp.9196145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064744756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2105/ajph.59.12.2232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068865541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2105/ajph.87.9.1515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068876461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4267/2042/34912", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072416247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4267/2042/36057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072416448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077055683", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2807/esm.10.07.00556-en", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077095141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082351659", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.aje.a116680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082812405"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-12", 
        "datePublishedReg": "2007-12-01", 
        "description": "BACKGROUND: In the context of climate change, an efficient alert system to prevent the risk associated with summer heat is necessary. The authors' objective was to describe the temperature-mortality relationship in France over a 29-year period and to define and validate a combination of temperature factors enabling optimum prediction of the daily fluctuations in summer mortality.\nMETHODS: The study addressed the daily mortality rates of subjects aged over 55 years, in France as a whole, from 1975 to 2003. The daily minimum and maximum temperatures consisted in the average values recorded by 97 meteorological stations. For each day, a cumulative variable for the maximum temperature over the preceding 10 days was defined. The mortality rate was modelled using a Poisson regression with over-dispersion and a first-order autoregressive structure and with control for long-term and within-summer seasonal trends. The lag effects of temperature were accounted for by including the preceding 5 days. A \"backward\" method was used to select the most significant climatic variables. The predictive performance of the model was assessed by comparing the observed and predicted daily mortality rates on a validation period (summer 2003), which was distinct from the calibration period (1975-2002) used to estimate the model.\nRESULTS: The temperature indicators explained 76% of the total over-dispersion. The greater part of the daily fluctuations in mortality was explained by the interaction between minimum and maximum temperatures, for a day t and the day preceding it. The prediction of mortality during extreme events was greatly improved by including the cumulative variables for maximum temperature, in interaction with the maximum temperatures. The correlation between the observed and estimated mortality ratios was 0.88 in the final model.\nCONCLUSION: Although France is a large country with geographic heterogeneity in both mortality and temperatures, a strong correlation between the daily fluctuations in mortality and the temperatures in summer on a national scale was observed. The model provided a satisfactory quantitative prediction of the daily mortality both for the days with usual temperatures and for the days during intense heat episodes. The results may contribute to enhancing the alert system for intense heat waves.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1471-2458-7-114", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1024954", 
            "issn": [
              "1471-2458"
            ], 
            "name": "BMC Public Health", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "A predictive model relating daily fluctuations in summer temperatures and mortality rates", 
        "pagination": "114", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9f16676e19803dc96e50ff62da9f926a8250bd6e2d797549722c65e20c655c6a"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17578564"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100968562"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2458-7-114"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033395142"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2458-7-114", 
          "https://app.dimensions.ai/details/publication/pub.1033395142"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000514.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1471-2458-7-114"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-7-114'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-7-114'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-7-114'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-7-114'


     

    This table displays all metadata directly associated to this object as RDF triples.

    265 TRIPLES      21 PREDICATES      75 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2458-7-114 schema:about N53197661dc6c4fd28f56cc6f446747ff
    2 N5d8074dd2c5d47c295b7ee0dcad43924
    3 N6bfb9d62aa50445b89da866208f4b4e1
    4 N78d5e6c504e84c5eac85fdfabb9d89b4
    5 N7edd715727f047bf945e4da2bedd25a9
    6 N974ef94aa27f4735bf1f876dce6431d0
    7 Na38da087e00d486d9b479a9c73ca1afd
    8 Nb48ee3b523bd4164a6a41335c5f95cff
    9 Nbd6458cd56b5483382d61dc3a89f8334
    10 Nc2f176f883a44354a5d1bfc7a310a6ea
    11 Nc90663eba4d8483ba4d6c3ecef7f26f7
    12 Nd878ff8fc9ed4605b490e9a05062b6cf
    13 Nf27ff0b1bffc4188bdf5bd02baf2976a
    14 anzsrc-for:01
    15 anzsrc-for:0104
    16 schema:author N854d5ebdd2ca4719812f14c6ce11db5e
    17 schema:citation sg:pub.10.1007/s00420-001-0290-4
    18 sg:pub.10.1007/s00420-006-0089-4
    19 sg:pub.10.1007/s00420-007-0173-4
    20 sg:pub.10.1007/s00484-002-0129-z
    21 sg:pub.10.1007/s00484-002-0143-1
    22 sg:pub.10.1007/s00484-005-0003-x
    23 sg:pub.10.1007/s00484-005-0005-8
    24 https://app.dimensions.ai/details/publication/pub.1077055683
    25 https://app.dimensions.ai/details/publication/pub.1082351659
    26 https://doi.org/10.1006/enrs.1995.1054
    27 https://doi.org/10.1016/0013-9351(78)90129-9
    28 https://doi.org/10.1016/j.scitotenv.2004.02.027
    29 https://doi.org/10.1016/s0749-3797(02)00421-x
    30 https://doi.org/10.1029/2003gl018857
    31 https://doi.org/10.1080/00039896.1993.9940365
    32 https://doi.org/10.1093/epirev/mxf007
    33 https://doi.org/10.1093/ije/24.3.576
    34 https://doi.org/10.1093/ije/26.3.551
    35 https://doi.org/10.1093/oxfordjournals.aje.a116680
    36 https://doi.org/10.1097/00001648-200111000-00014
    37 https://doi.org/10.1111/j.0006-341x.2001.00120.x
    38 https://doi.org/10.1111/j.1467-8306.1989.tb00249.x
    39 https://doi.org/10.1111/j.1532-5415.1981.tb01238.x
    40 https://doi.org/10.1136/jech.52.8.482
    41 https://doi.org/10.1136/jech.56.5.367
    42 https://doi.org/10.1136/jech.57.8.628
    43 https://doi.org/10.1289/ehp.02110859
    44 https://doi.org/10.1289/ehp.9196145
    45 https://doi.org/10.2105/ajph.59.12.2232
    46 https://doi.org/10.2105/ajph.87.9.1515
    47 https://doi.org/10.2807/esm.10.07.00556-en
    48 https://doi.org/10.4267/2042/34912
    49 https://doi.org/10.4267/2042/36057
    50 schema:datePublished 2007-12
    51 schema:datePublishedReg 2007-12-01
    52 schema:description BACKGROUND: In the context of climate change, an efficient alert system to prevent the risk associated with summer heat is necessary. The authors' objective was to describe the temperature-mortality relationship in France over a 29-year period and to define and validate a combination of temperature factors enabling optimum prediction of the daily fluctuations in summer mortality. METHODS: The study addressed the daily mortality rates of subjects aged over 55 years, in France as a whole, from 1975 to 2003. The daily minimum and maximum temperatures consisted in the average values recorded by 97 meteorological stations. For each day, a cumulative variable for the maximum temperature over the preceding 10 days was defined. The mortality rate was modelled using a Poisson regression with over-dispersion and a first-order autoregressive structure and with control for long-term and within-summer seasonal trends. The lag effects of temperature were accounted for by including the preceding 5 days. A "backward" method was used to select the most significant climatic variables. The predictive performance of the model was assessed by comparing the observed and predicted daily mortality rates on a validation period (summer 2003), which was distinct from the calibration period (1975-2002) used to estimate the model. RESULTS: The temperature indicators explained 76% of the total over-dispersion. The greater part of the daily fluctuations in mortality was explained by the interaction between minimum and maximum temperatures, for a day t and the day preceding it. The prediction of mortality during extreme events was greatly improved by including the cumulative variables for maximum temperature, in interaction with the maximum temperatures. The correlation between the observed and estimated mortality ratios was 0.88 in the final model. CONCLUSION: Although France is a large country with geographic heterogeneity in both mortality and temperatures, a strong correlation between the daily fluctuations in mortality and the temperatures in summer on a national scale was observed. The model provided a satisfactory quantitative prediction of the daily mortality both for the days with usual temperatures and for the days during intense heat episodes. The results may contribute to enhancing the alert system for intense heat waves.
    53 schema:genre research_article
    54 schema:inLanguage en
    55 schema:isAccessibleForFree true
    56 schema:isPartOf Nb414140f5f4b4cb9865899b88d09f5ce
    57 Nbc1ecd37535f4ff69626a17eee07a983
    58 sg:journal.1024954
    59 schema:name A predictive model relating daily fluctuations in summer temperatures and mortality rates
    60 schema:pagination 114
    61 schema:productId N7083e1484db3442b87796eee37fa219e
    62 N7dea5526bf1b44d7b6721f9d102e9f91
    63 Nb99f31c2bbc244c7b5db22a85d63b88a
    64 Ncf7d2d846eee416bbac426b66978e6d5
    65 Nf821f8594eb5491bae2e1082ec8b36b5
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033395142
    67 https://doi.org/10.1186/1471-2458-7-114
    68 schema:sdDatePublished 2019-04-10T22:32
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher Ne4f9a9cedc7d4ba3ac339b3030c1454a
    71 schema:url http://link.springer.com/10.1186%2F1471-2458-7-114
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N53197661dc6c4fd28f56cc6f446747ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Middle Aged
    77 rdf:type schema:DefinedTerm
    78 N5d8074dd2c5d47c295b7ee0dcad43924 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Poisson Distribution
    80 rdf:type schema:DefinedTerm
    81 N6616d49b1e4b4fd9af22ca8468b48c21 rdf:first sg:person.0747747300.37
    82 rdf:rest Nc1d241f7e70042d89841c6803c76645d
    83 N6bfb9d62aa50445b89da866208f4b4e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Mortality
    85 rdf:type schema:DefinedTerm
    86 N6fd9cd7eba8c45d18cc7d62e513d1009 rdf:first sg:person.01064175700.28
    87 rdf:rest Nea8ad1b9fb964675b59fa20c2d983a1f
    88 N7083e1484db3442b87796eee37fa219e schema:name doi
    89 schema:value 10.1186/1471-2458-7-114
    90 rdf:type schema:PropertyValue
    91 N78d5e6c504e84c5eac85fdfabb9d89b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Female
    93 rdf:type schema:DefinedTerm
    94 N7a5f4b925ce946298416c288db72a21e rdf:first sg:person.01132311100.79
    95 rdf:rest N6fd9cd7eba8c45d18cc7d62e513d1009
    96 N7dea5526bf1b44d7b6721f9d102e9f91 schema:name nlm_unique_id
    97 schema:value 100968562
    98 rdf:type schema:PropertyValue
    99 N7edd715727f047bf945e4da2bedd25a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Male
    101 rdf:type schema:DefinedTerm
    102 N854d5ebdd2ca4719812f14c6ce11db5e rdf:first sg:person.0606224560.40
    103 rdf:rest N6616d49b1e4b4fd9af22ca8468b48c21
    104 N974ef94aa27f4735bf1f876dce6431d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Hot Temperature
    106 rdf:type schema:DefinedTerm
    107 Na38da087e00d486d9b479a9c73ca1afd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name France
    109 rdf:type schema:DefinedTerm
    110 Nb414140f5f4b4cb9865899b88d09f5ce schema:volumeNumber 7
    111 rdf:type schema:PublicationVolume
    112 Nb48ee3b523bd4164a6a41335c5f95cff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Forecasting
    114 rdf:type schema:DefinedTerm
    115 Nb99f31c2bbc244c7b5db22a85d63b88a schema:name dimensions_id
    116 schema:value pub.1033395142
    117 rdf:type schema:PropertyValue
    118 Nbc1ecd37535f4ff69626a17eee07a983 schema:issueNumber 1
    119 rdf:type schema:PublicationIssue
    120 Nbd6458cd56b5483382d61dc3a89f8334 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Humans
    122 rdf:type schema:DefinedTerm
    123 Nc1d241f7e70042d89841c6803c76645d rdf:first sg:person.01321050604.59
    124 rdf:rest N7a5f4b925ce946298416c288db72a21e
    125 Nc2f176f883a44354a5d1bfc7a310a6ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Climate
    127 rdf:type schema:DefinedTerm
    128 Nc90663eba4d8483ba4d6c3ecef7f26f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Seasons
    130 rdf:type schema:DefinedTerm
    131 Ncf7d2d846eee416bbac426b66978e6d5 schema:name readcube_id
    132 schema:value 9f16676e19803dc96e50ff62da9f926a8250bd6e2d797549722c65e20c655c6a
    133 rdf:type schema:PropertyValue
    134 Nd878ff8fc9ed4605b490e9a05062b6cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Aged, 80 and over
    136 rdf:type schema:DefinedTerm
    137 Ne4f9a9cedc7d4ba3ac339b3030c1454a schema:name Springer Nature - SN SciGraph project
    138 rdf:type schema:Organization
    139 Nea8ad1b9fb964675b59fa20c2d983a1f rdf:first sg:person.01204334072.81
    140 rdf:rest rdf:nil
    141 Nf27ff0b1bffc4188bdf5bd02baf2976a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Aged
    143 rdf:type schema:DefinedTerm
    144 Nf821f8594eb5491bae2e1082ec8b36b5 schema:name pubmed_id
    145 schema:value 17578564
    146 rdf:type schema:PropertyValue
    147 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Mathematical Sciences
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Statistics
    152 rdf:type schema:DefinedTerm
    153 sg:journal.1024954 schema:issn 1471-2458
    154 schema:name BMC Public Health
    155 rdf:type schema:Periodical
    156 sg:person.01064175700.28 schema:affiliation https://www.grid.ac/institutes/grid.30390.39
    157 schema:familyName Bessemoulin
    158 schema:givenName Pierre
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064175700.28
    160 rdf:type schema:Person
    161 sg:person.01132311100.79 schema:affiliation https://www.grid.ac/institutes/grid.30390.39
    162 schema:familyName Frayssinet
    163 schema:givenName Philippe
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132311100.79
    165 rdf:type schema:Person
    166 sg:person.01204334072.81 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
    167 schema:familyName Hémon
    168 schema:givenName Denis
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204334072.81
    170 rdf:type schema:Person
    171 sg:person.01321050604.59 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
    172 schema:familyName Jougla
    173 schema:givenName Eric
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321050604.59
    175 rdf:type schema:Person
    176 sg:person.0606224560.40 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
    177 schema:familyName Fouillet
    178 schema:givenName Anne
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606224560.40
    180 rdf:type schema:Person
    181 sg:person.0747747300.37 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
    182 schema:familyName Rey
    183 schema:givenName Grégoire
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747747300.37
    185 rdf:type schema:Person
    186 sg:pub.10.1007/s00420-001-0290-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004116998
    187 https://doi.org/10.1007/s00420-001-0290-4
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s00420-006-0089-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021343793
    190 https://doi.org/10.1007/s00420-006-0089-4
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s00420-007-0173-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007929735
    193 https://doi.org/10.1007/s00420-007-0173-4
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s00484-002-0129-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020690043
    196 https://doi.org/10.1007/s00484-002-0129-z
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s00484-002-0143-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003888467
    199 https://doi.org/10.1007/s00484-002-0143-1
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s00484-005-0003-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049023265
    202 https://doi.org/10.1007/s00484-005-0003-x
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s00484-005-0005-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018762382
    205 https://doi.org/10.1007/s00484-005-0005-8
    206 rdf:type schema:CreativeWork
    207 https://app.dimensions.ai/details/publication/pub.1077055683 schema:CreativeWork
    208 https://app.dimensions.ai/details/publication/pub.1082351659 schema:CreativeWork
    209 https://doi.org/10.1006/enrs.1995.1054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046026729
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/0013-9351(78)90129-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051386052
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/j.scitotenv.2004.02.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049622300
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/s0749-3797(02)00421-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042657206
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1029/2003gl018857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052885067
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1080/00039896.1993.9940365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014243716
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1093/epirev/mxf007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037071303
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1093/ije/24.3.576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059675649
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1093/ije/26.3.551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046236050
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1093/oxfordjournals.aje.a116680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082812405
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1097/00001648-200111000-00014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017163145
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1111/j.0006-341x.2001.00120.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001190289
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1111/j.1467-8306.1989.tb00249.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047120951
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1111/j.1532-5415.1981.tb01238.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010637992
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1136/jech.52.8.482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023670885
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1136/jech.56.5.367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027835334
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1136/jech.57.8.628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046037820
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1289/ehp.02110859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064737724
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1289/ehp.9196145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064744756
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.2105/ajph.59.12.2232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068865541
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.2105/ajph.87.9.1515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068876461
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.2807/esm.10.07.00556-en schema:sameAs https://app.dimensions.ai/details/publication/pub.1077095141
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.4267/2042/34912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072416247
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.4267/2042/36057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072416448
    256 rdf:type schema:CreativeWork
    257 https://www.grid.ac/institutes/grid.30390.39 schema:alternateName Météo-France
    258 schema:name Météo-France, Toulouse, France
    259 rdf:type schema:Organization
    260 https://www.grid.ac/institutes/grid.5842.b schema:alternateName University of Paris-Sud
    261 schema:name INSERM, CépiDc, Le Vésinet, France
    262 INSERM, U754, Villejuif, France
    263 Université Paris-Sud, IFR69, Centre d'Epidémiologie sur les Causes Médicales de Décès, Le Vésinet, France
    264 Université Paris-Sud, IFR69, Epidémiologie Environnementale des Cancers, Villejuif, France
    265 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...