Distributed data processing for public health surveillance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Ross Lazarus, Katherine Yih, Richard Platt

ABSTRACT

BACKGROUND: Many systems for routine public health surveillance rely on centralized collection of potentially identifiable, individual, identifiable personal health information (PHI) records. Although individual, identifiable patient records are essential for conditions for which there is mandated reporting, such as tuberculosis or sexually transmitted diseases, they are not routinely required for effective syndromic surveillance. Public concern about the routine collection of large quantities of PHI to support non-traditional public health functions may make alternative surveillance methods that do not rely on centralized identifiable PHI databases increasingly desirable. METHODS: The National Bioterrorism Syndromic Surveillance Demonstration Program (NDP) is an example of one alternative model. All PHI in this system is initially processed within the secured infrastructure of the health care provider that collects and holds the data, using uniform software distributed and supported by the NDP. Only highly aggregated count data is transferred to the datacenter for statistical processing and display. RESULTS: Detailed, patient level information is readily available to the health care provider to elucidate signals observed in the aggregated data, or for ad hoc queries. We briefly describe the benefits and disadvantages associated with this distributed processing model for routine automated syndromic surveillance. CONCLUSION: For well-defined surveillance requirements, the model can be successfully deployed with very low risk of inadvertent disclosure of PHI--a feature that may make participation in surveillance systems more feasible for organizations and more appealing to the individuals whose PHI they hold. It is possible to design and implement distributed systems to support non-routine public health needs if required. More... »

PAGES

235

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2458-6-235

DOI

http://dx.doi.org/10.1186/1471-2458-6-235

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046165733

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16984658


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automatic Data Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bioterrorism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Security", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Confidentiality", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Database Management Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Notification", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Outbreaks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Information Dissemination", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Medical Records", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pilot Projects", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Surveillance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Public Health Informatics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lazarus", 
        "givenName": "Ross", 
        "id": "sg:person.0766744011.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766744011.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Ambulatory Care and Prevention, Harvard Medical School, Harvard Pilgrim Health Care; Harvard Vanguard Medical Associates, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yih", 
        "givenName": "Katherine", 
        "id": "sg:person.0620704577.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620704577.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA", 
            "Department of Ambulatory Care and Prevention, Harvard Medical School, Harvard Pilgrim Health Care; Harvard Vanguard Medical Associates, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Platt", 
        "givenName": "Richard", 
        "id": "sg:person.01126117364.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126117364.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/pl00022312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002517851", 
          "https://doi.org/10.1007/pl00022312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-1-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006883768", 
          "https://doi.org/10.1186/1471-2458-1-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid0808.020239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011625286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwh029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031737454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-1-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049162460", 
          "https://doi.org/10.1186/1471-2458-1-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077008768", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4135/9781412952644.n199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088018569"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: Many systems for routine public health surveillance rely on centralized collection of potentially identifiable, individual, identifiable personal health information (PHI) records. Although individual, identifiable patient records are essential for conditions for which there is mandated reporting, such as tuberculosis or sexually transmitted diseases, they are not routinely required for effective syndromic surveillance. Public concern about the routine collection of large quantities of PHI to support non-traditional public health functions may make alternative surveillance methods that do not rely on centralized identifiable PHI databases increasingly desirable.\nMETHODS: The National Bioterrorism Syndromic Surveillance Demonstration Program (NDP) is an example of one alternative model. All PHI in this system is initially processed within the secured infrastructure of the health care provider that collects and holds the data, using uniform software distributed and supported by the NDP. Only highly aggregated count data is transferred to the datacenter for statistical processing and display.\nRESULTS: Detailed, patient level information is readily available to the health care provider to elucidate signals observed in the aggregated data, or for ad hoc queries. We briefly describe the benefits and disadvantages associated with this distributed processing model for routine automated syndromic surveillance.\nCONCLUSION: For well-defined surveillance requirements, the model can be successfully deployed with very low risk of inadvertent disclosure of PHI--a feature that may make participation in surveillance systems more feasible for organizations and more appealing to the individuals whose PHI they hold. It is possible to design and implement distributed systems to support non-routine public health needs if required.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2458-6-235", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024954", 
        "issn": [
          "1471-2458"
        ], 
        "name": "BMC Public Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Distributed data processing for public health surveillance", 
    "pagination": "235", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dbe8c0768717be3580ea140438c3859185f7a63c351d50d6b2ef61dc87a75699"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16984658"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968562"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2458-6-235"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046165733"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2458-6-235", 
      "https://app.dimensions.ai/details/publication/pub.1046165733"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2458-6-235"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-6-235'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-6-235'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-6-235'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-6-235'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      53 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2458-6-235 schema:about N015479fa7d7a49ae9c49ab0d76115217
2 N0346f4e95a3f436b9678a86db0ddb6fc
3 N0c94adde502f42e1b7dbf0ab7492d3de
4 N0e4572649ced44e785142a2071f4b94c
5 N1d7fd9b70c984b92aaa004814fc9b632
6 N28823419827b4ba2ade007458e127538
7 N3e221b9ae80b49638cb2dd5e4d790759
8 N4ddecde1c00546fc86757ff5fded622a
9 N67cff03f3384458887fcd7eb61e49bc6
10 N68ca9637858941c286f55b2660106482
11 N714741d27dee4086b953bc3b172386bc
12 N8671497f62c1455eb14ca3d87880cf68
13 N8c368451146743468047fcc42f90578f
14 N9ded29b3bb7744c789bf0519038a0589
15 Na48c364ef9d14b648a29329ab1b79453
16 Nb236a147282a48b2a7cad06f8cf4fbe4
17 Ne7e75c57b74244daa61b872e74e7c396
18 anzsrc-for:11
19 anzsrc-for:1117
20 schema:author Ncde47bced7174fa1ae1147048af0f134
21 schema:citation sg:pub.10.1007/pl00022312
22 sg:pub.10.1186/1471-2458-1-1
23 sg:pub.10.1186/1471-2458-1-9
24 https://app.dimensions.ai/details/publication/pub.1077008768
25 https://doi.org/10.1093/aje/kwh029
26 https://doi.org/10.3201/eid0808.020239
27 https://doi.org/10.4135/9781412952644.n199
28 schema:datePublished 2006-12
29 schema:datePublishedReg 2006-12-01
30 schema:description BACKGROUND: Many systems for routine public health surveillance rely on centralized collection of potentially identifiable, individual, identifiable personal health information (PHI) records. Although individual, identifiable patient records are essential for conditions for which there is mandated reporting, such as tuberculosis or sexually transmitted diseases, they are not routinely required for effective syndromic surveillance. Public concern about the routine collection of large quantities of PHI to support non-traditional public health functions may make alternative surveillance methods that do not rely on centralized identifiable PHI databases increasingly desirable. METHODS: The National Bioterrorism Syndromic Surveillance Demonstration Program (NDP) is an example of one alternative model. All PHI in this system is initially processed within the secured infrastructure of the health care provider that collects and holds the data, using uniform software distributed and supported by the NDP. Only highly aggregated count data is transferred to the datacenter for statistical processing and display. RESULTS: Detailed, patient level information is readily available to the health care provider to elucidate signals observed in the aggregated data, or for ad hoc queries. We briefly describe the benefits and disadvantages associated with this distributed processing model for routine automated syndromic surveillance. CONCLUSION: For well-defined surveillance requirements, the model can be successfully deployed with very low risk of inadvertent disclosure of PHI--a feature that may make participation in surveillance systems more feasible for organizations and more appealing to the individuals whose PHI they hold. It is possible to design and implement distributed systems to support non-routine public health needs if required.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N2ec1e213e5a34c0ea887bab8dc2a7c2d
35 N391efbfda90a4e8d9833045dd68e9f02
36 sg:journal.1024954
37 schema:name Distributed data processing for public health surveillance
38 schema:pagination 235
39 schema:productId N1aeaf03dee0d4a97a73bb338ed115b17
40 N82658e710a0c4637abe07d7d2eae02a2
41 N9fa7166bda1746c195b59e68c8cb9d2f
42 Na558babcc0924453bc62bb7276a0c37d
43 Nf9ab04afd82f43c09488c12f0ca9b706
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046165733
45 https://doi.org/10.1186/1471-2458-6-235
46 schema:sdDatePublished 2019-04-10T23:32
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Neb7d6c1ee4644d1ab1ef8d659c381e54
49 schema:url http://link.springer.com/10.1186%2F1471-2458-6-235
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N015479fa7d7a49ae9c49ab0d76115217 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Population Surveillance
55 rdf:type schema:DefinedTerm
56 N0346f4e95a3f436b9678a86db0ddb6fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Automatic Data Processing
58 rdf:type schema:DefinedTerm
59 N0c94adde502f42e1b7dbf0ab7492d3de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Bioterrorism
61 rdf:type schema:DefinedTerm
62 N0e4572649ced44e785142a2071f4b94c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Pilot Projects
64 rdf:type schema:DefinedTerm
65 N1aeaf03dee0d4a97a73bb338ed115b17 schema:name dimensions_id
66 schema:value pub.1046165733
67 rdf:type schema:PropertyValue
68 N1d7fd9b70c984b92aaa004814fc9b632 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Disease Notification
70 rdf:type schema:DefinedTerm
71 N28823419827b4ba2ade007458e127538 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Information Dissemination
73 rdf:type schema:DefinedTerm
74 N2ec1e213e5a34c0ea887bab8dc2a7c2d schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 N391efbfda90a4e8d9833045dd68e9f02 schema:volumeNumber 6
77 rdf:type schema:PublicationVolume
78 N3e221b9ae80b49638cb2dd5e4d790759 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Cluster Analysis
80 rdf:type schema:DefinedTerm
81 N4ddecde1c00546fc86757ff5fded622a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Confidentiality
83 rdf:type schema:DefinedTerm
84 N67cff03f3384458887fcd7eb61e49bc6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Computer Security
86 rdf:type schema:DefinedTerm
87 N68ca9637858941c286f55b2660106482 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Computer Systems
89 rdf:type schema:DefinedTerm
90 N714741d27dee4086b953bc3b172386bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Humans
92 rdf:type schema:DefinedTerm
93 N82658e710a0c4637abe07d7d2eae02a2 schema:name readcube_id
94 schema:value dbe8c0768717be3580ea140438c3859185f7a63c351d50d6b2ef61dc87a75699
95 rdf:type schema:PropertyValue
96 N8671497f62c1455eb14ca3d87880cf68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Public Health Informatics
98 rdf:type schema:DefinedTerm
99 N8c368451146743468047fcc42f90578f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name United States
101 rdf:type schema:DefinedTerm
102 N9ded29b3bb7744c789bf0519038a0589 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Syndrome
104 rdf:type schema:DefinedTerm
105 N9fa7166bda1746c195b59e68c8cb9d2f schema:name pubmed_id
106 schema:value 16984658
107 rdf:type schema:PropertyValue
108 Na48c364ef9d14b648a29329ab1b79453 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Database Management Systems
110 rdf:type schema:DefinedTerm
111 Na558babcc0924453bc62bb7276a0c37d schema:name nlm_unique_id
112 schema:value 100968562
113 rdf:type schema:PropertyValue
114 Na95bc4cd45b6440193ae98b24b1dfdc8 rdf:first sg:person.0620704577.01
115 rdf:rest Nc0c2219488654579b67214ca3e9a6e72
116 Nb236a147282a48b2a7cad06f8cf4fbe4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Disease Outbreaks
118 rdf:type schema:DefinedTerm
119 Nc0c2219488654579b67214ca3e9a6e72 rdf:first sg:person.01126117364.45
120 rdf:rest rdf:nil
121 Ncde47bced7174fa1ae1147048af0f134 rdf:first sg:person.0766744011.63
122 rdf:rest Na95bc4cd45b6440193ae98b24b1dfdc8
123 Ne7e75c57b74244daa61b872e74e7c396 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Medical Records
125 rdf:type schema:DefinedTerm
126 Neb7d6c1ee4644d1ab1ef8d659c381e54 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 Nf9ab04afd82f43c09488c12f0ca9b706 schema:name doi
129 schema:value 10.1186/1471-2458-6-235
130 rdf:type schema:PropertyValue
131 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
132 schema:name Medical and Health Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
135 schema:name Public Health and Health Services
136 rdf:type schema:DefinedTerm
137 sg:journal.1024954 schema:issn 1471-2458
138 schema:name BMC Public Health
139 rdf:type schema:Periodical
140 sg:person.01126117364.45 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
141 schema:familyName Platt
142 schema:givenName Richard
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126117364.45
144 rdf:type schema:Person
145 sg:person.0620704577.01 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
146 schema:familyName Yih
147 schema:givenName Katherine
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620704577.01
149 rdf:type schema:Person
150 sg:person.0766744011.63 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
151 schema:familyName Lazarus
152 schema:givenName Ross
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766744011.63
154 rdf:type schema:Person
155 sg:pub.10.1007/pl00022312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002517851
156 https://doi.org/10.1007/pl00022312
157 rdf:type schema:CreativeWork
158 sg:pub.10.1186/1471-2458-1-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006883768
159 https://doi.org/10.1186/1471-2458-1-1
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/1471-2458-1-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049162460
162 https://doi.org/10.1186/1471-2458-1-9
163 rdf:type schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1077008768 schema:CreativeWork
165 https://doi.org/10.1093/aje/kwh029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031737454
166 rdf:type schema:CreativeWork
167 https://doi.org/10.3201/eid0808.020239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011625286
168 rdf:type schema:CreativeWork
169 https://doi.org/10.4135/9781412952644.n199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088018569
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
172 schema:name Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
173 Department of Ambulatory Care and Prevention, Harvard Medical School, Harvard Pilgrim Health Care; Harvard Vanguard Medical Associates, Boston, MA, USA
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...