Predictors of glycemic control among patients with Type 2 diabetes: A longitudinal study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Stephen R Benoit, Regina Fleming, Athena Philis-Tsimikas, Ming Ji

ABSTRACT

BACKGROUND: Diabetes is the sixth leading cause of death and results in significant morbidity. The purpose of this study is to determine what demographic, health status, treatment, access/quality of care, and behavioral factors are associated with poor glycemic control in a Type 2 diabetic, low-income, minority, San Diego population. METHODS: Longitudinal observational data was collected on patients with Type 2 diabetes from Project Dulce, a program in San Diego County designed to care for an underserved diabetic population. The study sample included 573 patients with a racial/ethnic mix of 53% Hispanic, 7% black, 18% Asian, 20% white, and 2% other. We utilized mixed effects models to determine the factors associated with poor glycemic control using hemoglobin A1C (A1C) as the outcome of interest. A multi-step model building process was used resulting in a final parsimonious model with main effects and interaction terms. RESULTS: Patients had a mean age of 55 years, 69% were female, the mean duration of diabetes was 7.1 years, 31% were treated with insulin, and 57% were obese. American Diabetes Association (ADA) recommendations for blood pressure and total cholesterol were met by 71% and 68%, respectively. Results of the mixed effects model showed that patients who were uninsured, had diabetes for a longer period of time, used insulin or multiple oral agents, or had high cholesterol had higher A1C values over time indicating poorer glycemic control. The younger subjects also had poorer control. CONCLUSION: This study provides factors that predict glycemic control in a specific low-income, multiethnic, Type 2 diabetic population. With this information, subgroups with high risk of disease morbidity were identified. Barriers that prevent these patients from meeting their goals must be explored to improve health outcomes. More... »

PAGES

36

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2458-5-36

DOI

http://dx.doi.org/10.1186/1471-2458-5-36

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043781931

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15833140


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "California", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Community Health Nursing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Management", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycated Hemoglobin A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycemic Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Services Accessibility", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Longitudinal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Medically Uninsured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vulnerable Populations", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "University of California, San Diego \u2013 San Diego State University Preventive Medicine Residency, Dept. of Family and Preventive Medicine, MC-0811, 9500 Gilman Drive, 92093-0811, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benoit", 
        "givenName": "Stephen R", 
        "id": "sg:person.0702714246.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702714246.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "University of California, San Diego \u2013 San Diego State University Preventive Medicine Residency, Dept. of Family and Preventive Medicine, MC-0811, 9500 Gilman Drive, 92093-0811, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fleming", 
        "givenName": "Regina", 
        "id": "sg:person.01017142646.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017142646.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scripps Whittier Diabetes Institute", 
          "id": "https://www.grid.ac/institutes/grid.288434.1", 
          "name": [
            "The Whittier Institute for Diabetes, Scripps Health, 9894 Genesee Ave, 92037, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Philis-Tsimikas", 
        "givenName": "Athena", 
        "id": "sg:person.01025507330.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025507330.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "San Diego State Graduate School of Public Health, 5500 Campanile Drive, 92182-4162, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Ming", 
        "id": "sg:person.0751027446.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751027446.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0895-4356(94)90105-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004103141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(98)07019-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018881858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.162086599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023692780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1532-5415.2000.tb02644.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023736452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.26.7.2194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027671378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.24.3.454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033706398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0749-3797(02)00423-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033804942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.23.3.273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041224610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-8227(95)01064-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043400052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.26.2007.s33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047132498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.288.4.475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047472397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004479-200101000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060184559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004479-200101000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060184559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004479-200101000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060184559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.12.2.128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070744852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.20.1.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070747391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.22.3.403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070748670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075262184", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "BACKGROUND: Diabetes is the sixth leading cause of death and results in significant morbidity. The purpose of this study is to determine what demographic, health status, treatment, access/quality of care, and behavioral factors are associated with poor glycemic control in a Type 2 diabetic, low-income, minority, San Diego population.\nMETHODS: Longitudinal observational data was collected on patients with Type 2 diabetes from Project Dulce, a program in San Diego County designed to care for an underserved diabetic population. The study sample included 573 patients with a racial/ethnic mix of 53% Hispanic, 7% black, 18% Asian, 20% white, and 2% other. We utilized mixed effects models to determine the factors associated with poor glycemic control using hemoglobin A1C (A1C) as the outcome of interest. A multi-step model building process was used resulting in a final parsimonious model with main effects and interaction terms.\nRESULTS: Patients had a mean age of 55 years, 69% were female, the mean duration of diabetes was 7.1 years, 31% were treated with insulin, and 57% were obese. American Diabetes Association (ADA) recommendations for blood pressure and total cholesterol were met by 71% and 68%, respectively. Results of the mixed effects model showed that patients who were uninsured, had diabetes for a longer period of time, used insulin or multiple oral agents, or had high cholesterol had higher A1C values over time indicating poorer glycemic control. The younger subjects also had poorer control.\nCONCLUSION: This study provides factors that predict glycemic control in a specific low-income, multiethnic, Type 2 diabetic population. With this information, subgroups with high risk of disease morbidity were identified. Barriers that prevent these patients from meeting their goals must be explored to improve health outcomes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2458-5-36", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024954", 
        "issn": [
          "1471-2458"
        ], 
        "name": "BMC Public Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Predictors of glycemic control among patients with Type 2 diabetes: A longitudinal study", 
    "pagination": "36", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d08ce53191a7107b7721591de2fce6dc72ba0f0bf4c21a935fecac27139e0653"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15833140"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968562"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2458-5-36"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043781931"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2458-5-36", 
      "https://app.dimensions.ai/details/publication/pub.1043781931"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2458-5-36"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-5-36'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-5-36'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-5-36'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-5-36'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      63 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2458-5-36 schema:about N0160e00e0eac4424a4eff85df3c04778
2 N046faf689832492197c699b86e82b678
3 N070033c7a62c4d72896a9781e5111574
4 N17f6096de5564bfa9b8d382796a683c7
5 N1d832c4b72ef413f9f71cac0898f615c
6 N22c4c771fd0148ecb2b4f3e6df17756b
7 N23b28f73000d472abb5b5eba680e59dd
8 N40fa42901eec46dea8437ef164cc5add
9 N4732ade55fbe4b27881bc978386a4954
10 N5839934f82cf4013bb537fa98bdf6e99
11 N6837a3646a904eef8302bbd87e40d62d
12 N68fe403fe508460fa9daedaaee0e6918
13 N76abd9a9b2a94b538b331dc289464f19
14 N83cc1ff4c32d45ec8a0988ae32e124ca
15 N8aea3cc23c164dbca1c065e6b4ce9cf7
16 N8f7a66f35ce54eb8b5953aa3f95e1f79
17 N9b2dcf46630442468ee43d8b35f5cfd5
18 Nc5e8c35f2d59408bb94195cfb93b0b2a
19 anzsrc-for:11
20 anzsrc-for:1117
21 schema:author Nc6eadf1d79a64d9abdfddc67ff36410e
22 schema:citation https://app.dimensions.ai/details/publication/pub.1075262184
23 https://doi.org/10.1001/jama.288.4.475
24 https://doi.org/10.1016/0168-8227(95)01064-k
25 https://doi.org/10.1016/0895-4356(94)90105-8
26 https://doi.org/10.1016/s0140-6736(98)07019-6
27 https://doi.org/10.1016/s0749-3797(02)00423-3
28 https://doi.org/10.1073/pnas.162086599
29 https://doi.org/10.1097/00004479-200101000-00005
30 https://doi.org/10.1111/j.1532-5415.2000.tb02644.x
31 https://doi.org/10.2337/diacare.12.2.128
32 https://doi.org/10.2337/diacare.20.1.7
33 https://doi.org/10.2337/diacare.22.3.403
34 https://doi.org/10.2337/diacare.23.3.273
35 https://doi.org/10.2337/diacare.24.3.454
36 https://doi.org/10.2337/diacare.26.2007.s33
37 https://doi.org/10.2337/diacare.26.7.2194
38 schema:datePublished 2005-12
39 schema:datePublishedReg 2005-12-01
40 schema:description BACKGROUND: Diabetes is the sixth leading cause of death and results in significant morbidity. The purpose of this study is to determine what demographic, health status, treatment, access/quality of care, and behavioral factors are associated with poor glycemic control in a Type 2 diabetic, low-income, minority, San Diego population. METHODS: Longitudinal observational data was collected on patients with Type 2 diabetes from Project Dulce, a program in San Diego County designed to care for an underserved diabetic population. The study sample included 573 patients with a racial/ethnic mix of 53% Hispanic, 7% black, 18% Asian, 20% white, and 2% other. We utilized mixed effects models to determine the factors associated with poor glycemic control using hemoglobin A1C (A1C) as the outcome of interest. A multi-step model building process was used resulting in a final parsimonious model with main effects and interaction terms. RESULTS: Patients had a mean age of 55 years, 69% were female, the mean duration of diabetes was 7.1 years, 31% were treated with insulin, and 57% were obese. American Diabetes Association (ADA) recommendations for blood pressure and total cholesterol were met by 71% and 68%, respectively. Results of the mixed effects model showed that patients who were uninsured, had diabetes for a longer period of time, used insulin or multiple oral agents, or had high cholesterol had higher A1C values over time indicating poorer glycemic control. The younger subjects also had poorer control. CONCLUSION: This study provides factors that predict glycemic control in a specific low-income, multiethnic, Type 2 diabetic population. With this information, subgroups with high risk of disease morbidity were identified. Barriers that prevent these patients from meeting their goals must be explored to improve health outcomes.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N4060537ab00b4b93be728d8eb3fdd2ab
45 Neb073c4c6cee4d0e8d735f31fd12f5ef
46 sg:journal.1024954
47 schema:name Predictors of glycemic control among patients with Type 2 diabetes: A longitudinal study
48 schema:pagination 36
49 schema:productId N0f5001d6e11944cc918a98fa2bc861d7
50 N222ddeae4cf9493981b0ef1558d4c7ef
51 N31b0a6215dc3485fa522d018cc4ef3e2
52 N62216da55e234849bbfd7915c9a15d19
53 N783080019bc64f87a73b055654fa1755
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043781931
55 https://doi.org/10.1186/1471-2458-5-36
56 schema:sdDatePublished 2019-04-10T21:44
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Ne583aa6ccc174fdb8b3dbb4e3f7e6812
59 schema:url http://link.springer.com/10.1186%2F1471-2458-5-36
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N0019e44b08c5401eb42a7a95a1902bd5 rdf:first sg:person.01017142646.10
64 rdf:rest N572ae8eb8b0f47a0a63076d3d89c8cc2
65 N0160e00e0eac4424a4eff85df3c04778 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Glycemic Index
67 rdf:type schema:DefinedTerm
68 N046faf689832492197c699b86e82b678 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Humans
70 rdf:type schema:DefinedTerm
71 N070033c7a62c4d72896a9781e5111574 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Diabetes Mellitus, Type 2
73 rdf:type schema:DefinedTerm
74 N0f5001d6e11944cc918a98fa2bc861d7 schema:name readcube_id
75 schema:value d08ce53191a7107b7721591de2fce6dc72ba0f0bf4c21a935fecac27139e0653
76 rdf:type schema:PropertyValue
77 N1522c1342e4b4fc883341f22efa8f8ea schema:name University of California, San Diego – San Diego State University Preventive Medicine Residency, Dept. of Family and Preventive Medicine, MC-0811, 9500 Gilman Drive, 92093-0811, La Jolla, CA, USA
78 rdf:type schema:Organization
79 N17f6096de5564bfa9b8d382796a683c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Health Services Accessibility
81 rdf:type schema:DefinedTerm
82 N1d832c4b72ef413f9f71cac0898f615c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Middle Aged
84 rdf:type schema:DefinedTerm
85 N222ddeae4cf9493981b0ef1558d4c7ef schema:name dimensions_id
86 schema:value pub.1043781931
87 rdf:type schema:PropertyValue
88 N22c4c771fd0148ecb2b4f3e6df17756b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Glycated Hemoglobin A
90 rdf:type schema:DefinedTerm
91 N23b28f73000d472abb5b5eba680e59dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Disease Management
93 rdf:type schema:DefinedTerm
94 N31b0a6215dc3485fa522d018cc4ef3e2 schema:name doi
95 schema:value 10.1186/1471-2458-5-36
96 rdf:type schema:PropertyValue
97 N4060537ab00b4b93be728d8eb3fdd2ab schema:volumeNumber 5
98 rdf:type schema:PublicationVolume
99 N40fa42901eec46dea8437ef164cc5add schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name California
101 rdf:type schema:DefinedTerm
102 N44b99fb429ac4a4dbb39f9bf7ab331a2 rdf:first sg:person.0751027446.71
103 rdf:rest rdf:nil
104 N4732ade55fbe4b27881bc978386a4954 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Male
106 rdf:type schema:DefinedTerm
107 N572ae8eb8b0f47a0a63076d3d89c8cc2 rdf:first sg:person.01025507330.63
108 rdf:rest N44b99fb429ac4a4dbb39f9bf7ab331a2
109 N5839934f82cf4013bb537fa98bdf6e99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Aged
111 rdf:type schema:DefinedTerm
112 N5a9957f7756b4b7ebc1fa9b86638dcb5 schema:name University of California, San Diego – San Diego State University Preventive Medicine Residency, Dept. of Family and Preventive Medicine, MC-0811, 9500 Gilman Drive, 92093-0811, La Jolla, CA, USA
113 rdf:type schema:Organization
114 N62216da55e234849bbfd7915c9a15d19 schema:name nlm_unique_id
115 schema:value 100968562
116 rdf:type schema:PropertyValue
117 N6837a3646a904eef8302bbd87e40d62d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Medically Uninsured
119 rdf:type schema:DefinedTerm
120 N68fe403fe508460fa9daedaaee0e6918 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Age Factors
122 rdf:type schema:DefinedTerm
123 N76abd9a9b2a94b538b331dc289464f19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Severity of Illness Index
125 rdf:type schema:DefinedTerm
126 N783080019bc64f87a73b055654fa1755 schema:name pubmed_id
127 schema:value 15833140
128 rdf:type schema:PropertyValue
129 N83cc1ff4c32d45ec8a0988ae32e124ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Regression Analysis
131 rdf:type schema:DefinedTerm
132 N8aea3cc23c164dbca1c065e6b4ce9cf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Longitudinal Studies
134 rdf:type schema:DefinedTerm
135 N8f7a66f35ce54eb8b5953aa3f95e1f79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Vulnerable Populations
137 rdf:type schema:DefinedTerm
138 N9015c941d960497da6d949cd3d2c5c75 schema:name San Diego State Graduate School of Public Health, 5500 Campanile Drive, 92182-4162, San Diego, CA, USA
139 rdf:type schema:Organization
140 N9b2dcf46630442468ee43d8b35f5cfd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Female
142 rdf:type schema:DefinedTerm
143 Nc5e8c35f2d59408bb94195cfb93b0b2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Community Health Nursing
145 rdf:type schema:DefinedTerm
146 Nc6eadf1d79a64d9abdfddc67ff36410e rdf:first sg:person.0702714246.24
147 rdf:rest N0019e44b08c5401eb42a7a95a1902bd5
148 Ne583aa6ccc174fdb8b3dbb4e3f7e6812 schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 Neb073c4c6cee4d0e8d735f31fd12f5ef schema:issueNumber 1
151 rdf:type schema:PublicationIssue
152 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
153 schema:name Medical and Health Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
156 schema:name Public Health and Health Services
157 rdf:type schema:DefinedTerm
158 sg:journal.1024954 schema:issn 1471-2458
159 schema:name BMC Public Health
160 rdf:type schema:Periodical
161 sg:person.01017142646.10 schema:affiliation N1522c1342e4b4fc883341f22efa8f8ea
162 schema:familyName Fleming
163 schema:givenName Regina
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017142646.10
165 rdf:type schema:Person
166 sg:person.01025507330.63 schema:affiliation https://www.grid.ac/institutes/grid.288434.1
167 schema:familyName Philis-Tsimikas
168 schema:givenName Athena
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025507330.63
170 rdf:type schema:Person
171 sg:person.0702714246.24 schema:affiliation N5a9957f7756b4b7ebc1fa9b86638dcb5
172 schema:familyName Benoit
173 schema:givenName Stephen R
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702714246.24
175 rdf:type schema:Person
176 sg:person.0751027446.71 schema:affiliation N9015c941d960497da6d949cd3d2c5c75
177 schema:familyName Ji
178 schema:givenName Ming
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751027446.71
180 rdf:type schema:Person
181 https://app.dimensions.ai/details/publication/pub.1075262184 schema:CreativeWork
182 https://doi.org/10.1001/jama.288.4.475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047472397
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/0168-8227(95)01064-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1043400052
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/0895-4356(94)90105-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004103141
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0140-6736(98)07019-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018881858
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0749-3797(02)00423-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033804942
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1073/pnas.162086599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023692780
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1097/00004479-200101000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060184559
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1111/j.1532-5415.2000.tb02644.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023736452
197 rdf:type schema:CreativeWork
198 https://doi.org/10.2337/diacare.12.2.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070744852
199 rdf:type schema:CreativeWork
200 https://doi.org/10.2337/diacare.20.1.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070747391
201 rdf:type schema:CreativeWork
202 https://doi.org/10.2337/diacare.22.3.403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070748670
203 rdf:type schema:CreativeWork
204 https://doi.org/10.2337/diacare.23.3.273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041224610
205 rdf:type schema:CreativeWork
206 https://doi.org/10.2337/diacare.24.3.454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033706398
207 rdf:type schema:CreativeWork
208 https://doi.org/10.2337/diacare.26.2007.s33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047132498
209 rdf:type schema:CreativeWork
210 https://doi.org/10.2337/diacare.26.7.2194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027671378
211 rdf:type schema:CreativeWork
212 https://www.grid.ac/institutes/grid.288434.1 schema:alternateName Scripps Whittier Diabetes Institute
213 schema:name The Whittier Institute for Diabetes, Scripps Health, 9894 Genesee Ave, 92037, La Jolla, CA, USA
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...