Per capita sugar consumption and prevalence of diabetes mellitus – global and regional associations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Praveen Weeratunga, Sayumi Jayasinghe, Yashasvi Perera, Ganga Jayasena, Saroj Jayasinghe

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) is a rampant epidemic worldwide. Causative factors and predisposition is postulated to be multi-factorial in origin and include changing life styles and diet. This paper examines the relationship between per capita sugar consumption and diabetes prevalence worldwide and with regard to territorial, economic and geographical regions. METHODS: Data from 165 countries were extracted for analysis. Associations between the population prevalence of diabetes mellitus and per capita sugar consumption (PCSC) were examined using Pearson's correlation coefficient (PCC) and multivariate linear regression analysis with, infant mortality rates (IMR, as an general index maternal and child care), low birth weight (LBW, as an index of biological programming) and obesity prevalence included in the model as confounders. RESULTS: Despite the estimates for PCSC being relatively crude, a strong positive correlation coefficient (0.599 with p < 0.001) was observed between prevalence of diabetes mellitus and per capita sugar consumption using data from all 165 countries. Asia had the highest correlation coefficient with a PCC of 0.660 (p < 0.001) with strongest correlation noted in Central (PCC = 0.968; p < 0.001), South (PCC = 0.684; p = 0.050) and South East Asia (PCC = 0.916; p < 0.001). Per capita sugar consumption (p < 0.001; Beta = 0.360) remained significant at the last stage as associations of DM prevalence (R2 = 0.458) in the multivariate backward linear regression model. The linear regression model was repeated with the data grouped according to the continent. Sugar was noted to be an independent association with DM only with regard to Asia (p < 0.001 Beta = 0.707) and South America (p = 0.010 Beta 0.550). When countries were categorized based on income PCS and DM demonstrated significant association only for upper middle income countries (p < 0.001 Beta 0.656). CONCLUSIONS: These results indicate independent associations between DM prevalence rates and per capita sugar consumption both worldwide and with special regard to the Asian region. Prospective cohort studies are proposed to explore these associations further. More... »

PAGES

186

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2458-14-186

DOI

http://dx.doi.org/10.1186/1471-2458-14-186

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031162847

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24555673


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dietary Sucrose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feeding Behavior", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Food Supply", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Global Health", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Social Class", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "South America", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Hospital of Sri Lanka", 
          "id": "https://www.grid.ac/institutes/grid.415398.2", 
          "name": [
            "University Medical Unit, National Hospital of Sri Lanka, Colombo, Sri Lanka"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weeratunga", 
        "givenName": "Praveen", 
        "id": "sg:person.01256674312.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256674312.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Western Health", 
          "id": "https://www.grid.ac/institutes/grid.417072.7", 
          "name": [
            "Western Health Australia, Footscray, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jayasinghe", 
        "givenName": "Sayumi", 
        "id": "sg:person.0656316674.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656316674.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ministry of Health, Nutrition and Indigenous Medicine", 
          "id": "https://www.grid.ac/institutes/grid.466905.8", 
          "name": [
            "Ministry of Health, Colombo, Sri Lanka"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perera", 
        "givenName": "Yashasvi", 
        "id": "sg:person.01122320074.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122320074.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ministry of Health, Nutrition and Indigenous Medicine", 
          "id": "https://www.grid.ac/institutes/grid.466905.8", 
          "name": [
            "Ministry of Health, Colombo, Sri Lanka"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jayasena", 
        "givenName": "Ganga", 
        "id": "sg:person.01142445712.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142445712.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Colombo", 
          "id": "https://www.grid.ac/institutes/grid.8065.b", 
          "name": [
            "Department of Clinical Medicine, University of Colombo, Colombo, Sri Lanka"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jayasinghe", 
        "givenName": "Saroj", 
        "id": "sg:person.01173112401.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173112401.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s1368980012002881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001278144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diabres.2011.10.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001437964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0057873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006613129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc10-1079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006931838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjopen-2012-000895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007246734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1368980011003144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009284404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.112.050997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018574793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/an.112.002238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018857767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc11-0775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024401829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.metabol.2011.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025229437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/482027a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026388070", 
          "https://doi.org/10.1038/482027a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-9276-11-76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026621955", 
          "https://doi.org/10.1186/1475-9276-11-76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diabet.2012.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027363944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diabres.2009.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028972981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4038/cmj.v51i1.1373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035178640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4038/cmj.v51i1.1373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035178640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2009.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047931484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s000711451100540x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048397708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc11-2052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048666458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/487027a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051243847", 
          "https://doi.org/10.1038/487027a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2008-2192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064291038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4239/wjd.v3.i6.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072397405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077495811", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Diabetes mellitus (DM) is a rampant epidemic worldwide. Causative factors and predisposition is postulated to be multi-factorial in origin and include changing life styles and diet. This paper examines the relationship between per capita sugar consumption and diabetes prevalence worldwide and with regard to territorial, economic and geographical regions.\nMETHODS: Data from 165 countries were extracted for analysis. Associations between the population prevalence of diabetes mellitus and per capita sugar consumption (PCSC) were examined using Pearson's correlation coefficient (PCC) and multivariate linear regression analysis with, infant mortality rates (IMR, as an general index maternal and child care), low birth weight (LBW, as an index of biological programming) and obesity prevalence included in the model as confounders.\nRESULTS: Despite the estimates for PCSC being relatively crude, a strong positive correlation coefficient (0.599 with p\u2009<\u20090.001) was observed between prevalence of diabetes mellitus and per capita sugar consumption using data from all 165 countries. Asia had the highest correlation coefficient with a PCC of 0.660 (p\u2009<\u20090.001) with strongest correlation noted in Central (PCC\u2009=\u20090.968; p\u2009<\u20090.001), South (PCC\u2009=\u20090.684; p\u2009=\u20090.050) and South East Asia (PCC\u2009=\u20090.916; p\u2009<\u20090.001). Per capita sugar consumption (p\u2009<\u20090.001; Beta\u2009=\u20090.360) remained significant at the last stage as associations of DM prevalence (R2\u2009=\u20090.458) in the multivariate backward linear regression model. The linear regression model was repeated with the data grouped according to the continent. Sugar was noted to be an independent association with DM only with regard to Asia (p\u2009<\u20090.001 Beta\u2009=\u20090.707) and South America (p\u2009=\u20090.010 Beta 0.550). When countries were categorized based on income PCS and DM demonstrated significant association only for upper middle income countries (p\u2009<\u20090.001 Beta 0.656).\nCONCLUSIONS: These results indicate independent associations between DM prevalence rates and per capita sugar consumption both worldwide and with special regard to the Asian region. Prospective cohort studies are proposed to explore these associations further.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2458-14-186", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024954", 
        "issn": [
          "1471-2458"
        ], 
        "name": "BMC Public Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Per capita sugar consumption and prevalence of diabetes mellitus \u2013 global and regional associations", 
    "pagination": "186", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9474c08801417a3eddf5f2d942831f6afda07c77ac6a15e5fc2421f4db6adbb3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24555673"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968562"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2458-14-186"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031162847"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2458-14-186", 
      "https://app.dimensions.ai/details/publication/pub.1031162847"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2458-14-186"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-14-186'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-14-186'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-14-186'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-14-186'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      65 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2458-14-186 schema:about N0c43d5b429e3456da25f457d1b9d1e7c
2 N1889a2d5d834458a84ad762fc8661af8
3 N322248bd8f3c417494e0b56a1f78a9f3
4 N3faf95c114be4accbc9a96b29c9deaab
5 N435550f351b54f3f98fce40b4c88b0eb
6 N49507389c1404624abb4a6f32b47d0e8
7 N5718b934625444c6b6f8e9533970d777
8 N9e65eae5702347418a9926281250f0b1
9 Nb796d6d8d5bb473783d850fba265c0ae
10 Nbef31603aefd4b73b41337aacfcbafcf
11 Ndd4df4b1cc8345db8de6f294f0d50236
12 Nde00fda0d50d40708f41eda2920e5567
13 Nea2d6d055eda4a438f2411ddef2782fe
14 Nf319862a95ac4b2ab9fdd77811469944
15 anzsrc-for:11
16 anzsrc-for:1117
17 schema:author Neb831cb13f33482c8df01b9303ad510d
18 schema:citation sg:pub.10.1038/482027a
19 sg:pub.10.1038/487027a
20 sg:pub.10.1186/1475-9276-11-76
21 https://app.dimensions.ai/details/publication/pub.1077495811
22 https://doi.org/10.1016/j.cmet.2009.01.011
23 https://doi.org/10.1016/j.diabet.2012.02.008
24 https://doi.org/10.1016/j.diabres.2009.10.007
25 https://doi.org/10.1016/j.diabres.2011.10.029
26 https://doi.org/10.1016/j.metabol.2011.05.015
27 https://doi.org/10.1017/s000711451100540x
28 https://doi.org/10.1017/s1368980011003144
29 https://doi.org/10.1017/s1368980012002881
30 https://doi.org/10.1136/bmjopen-2012-000895
31 https://doi.org/10.1210/jc.2008-2192
32 https://doi.org/10.1371/journal.pone.0057873
33 https://doi.org/10.2337/dc10-1079
34 https://doi.org/10.2337/dc11-0775
35 https://doi.org/10.2337/dc11-2052
36 https://doi.org/10.3945/ajcn.112.050997
37 https://doi.org/10.3945/an.112.002238
38 https://doi.org/10.4038/cmj.v51i1.1373
39 https://doi.org/10.4239/wjd.v3.i6.110
40 schema:datePublished 2014-12
41 schema:datePublishedReg 2014-12-01
42 schema:description BACKGROUND: Diabetes mellitus (DM) is a rampant epidemic worldwide. Causative factors and predisposition is postulated to be multi-factorial in origin and include changing life styles and diet. This paper examines the relationship between per capita sugar consumption and diabetes prevalence worldwide and with regard to territorial, economic and geographical regions. METHODS: Data from 165 countries were extracted for analysis. Associations between the population prevalence of diabetes mellitus and per capita sugar consumption (PCSC) were examined using Pearson's correlation coefficient (PCC) and multivariate linear regression analysis with, infant mortality rates (IMR, as an general index maternal and child care), low birth weight (LBW, as an index of biological programming) and obesity prevalence included in the model as confounders. RESULTS: Despite the estimates for PCSC being relatively crude, a strong positive correlation coefficient (0.599 with p < 0.001) was observed between prevalence of diabetes mellitus and per capita sugar consumption using data from all 165 countries. Asia had the highest correlation coefficient with a PCC of 0.660 (p < 0.001) with strongest correlation noted in Central (PCC = 0.968; p < 0.001), South (PCC = 0.684; p = 0.050) and South East Asia (PCC = 0.916; p < 0.001). Per capita sugar consumption (p < 0.001; Beta = 0.360) remained significant at the last stage as associations of DM prevalence (R2 = 0.458) in the multivariate backward linear regression model. The linear regression model was repeated with the data grouped according to the continent. Sugar was noted to be an independent association with DM only with regard to Asia (p < 0.001 Beta = 0.707) and South America (p = 0.010 Beta 0.550). When countries were categorized based on income PCS and DM demonstrated significant association only for upper middle income countries (p < 0.001 Beta 0.656). CONCLUSIONS: These results indicate independent associations between DM prevalence rates and per capita sugar consumption both worldwide and with special regard to the Asian region. Prospective cohort studies are proposed to explore these associations further.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N6b73a32d89bd4896bca844eec93fb5f4
47 N97f3fab7f0f8434294227864eb22109e
48 sg:journal.1024954
49 schema:name Per capita sugar consumption and prevalence of diabetes mellitus – global and regional associations
50 schema:pagination 186
51 schema:productId N8f5d0b3a4b654018828ded20afe80418
52 N974963ae59f84215a2ab0241b29bbc9b
53 Na09098c8879b4d7aa1303f7648646401
54 Naafc1593081e41eb987c2e8d142d9dbe
55 Nd2cdd7a55d99427aac971908fd5cc38c
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031162847
57 https://doi.org/10.1186/1471-2458-14-186
58 schema:sdDatePublished 2019-04-10T15:01
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N85be4e774d854d35aaf0a8d4d819abff
61 schema:url http://link.springer.com/10.1186%2F1471-2458-14-186
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N0c43d5b429e3456da25f457d1b9d1e7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Diabetes Mellitus
67 rdf:type schema:DefinedTerm
68 N1889a2d5d834458a84ad762fc8661af8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Prevalence
70 rdf:type schema:DefinedTerm
71 N26d1a60cc010482fae65906c94abae7e rdf:first sg:person.01142445712.51
72 rdf:rest Nede5c41135674bcfa1fb29fc58f47ea3
73 N322248bd8f3c417494e0b56a1f78a9f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name South America
75 rdf:type schema:DefinedTerm
76 N3faf95c114be4accbc9a96b29c9deaab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Global Health
78 rdf:type schema:DefinedTerm
79 N435550f351b54f3f98fce40b4c88b0eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Humans
81 rdf:type schema:DefinedTerm
82 N49507389c1404624abb4a6f32b47d0e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Linear Models
84 rdf:type schema:DefinedTerm
85 N5718b934625444c6b6f8e9533970d777 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Dietary Sucrose
87 rdf:type schema:DefinedTerm
88 N6b73a32d89bd4896bca844eec93fb5f4 schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 N6f6ab6ce57d64d2cb67daf6b2fffb151 rdf:first sg:person.01122320074.12
91 rdf:rest N26d1a60cc010482fae65906c94abae7e
92 N85be4e774d854d35aaf0a8d4d819abff schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N8f5d0b3a4b654018828ded20afe80418 schema:name pubmed_id
95 schema:value 24555673
96 rdf:type schema:PropertyValue
97 N974963ae59f84215a2ab0241b29bbc9b schema:name nlm_unique_id
98 schema:value 100968562
99 rdf:type schema:PropertyValue
100 N97f3fab7f0f8434294227864eb22109e schema:volumeNumber 14
101 rdf:type schema:PublicationVolume
102 N9e65eae5702347418a9926281250f0b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Obesity
104 rdf:type schema:DefinedTerm
105 Na09098c8879b4d7aa1303f7648646401 schema:name dimensions_id
106 schema:value pub.1031162847
107 rdf:type schema:PropertyValue
108 Naafc1593081e41eb987c2e8d142d9dbe schema:name readcube_id
109 schema:value 9474c08801417a3eddf5f2d942831f6afda07c77ac6a15e5fc2421f4db6adbb3
110 rdf:type schema:PropertyValue
111 Nb796d6d8d5bb473783d850fba265c0ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Feeding Behavior
113 rdf:type schema:DefinedTerm
114 Nbef31603aefd4b73b41337aacfcbafcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Food Supply
116 rdf:type schema:DefinedTerm
117 Nd2cdd7a55d99427aac971908fd5cc38c schema:name doi
118 schema:value 10.1186/1471-2458-14-186
119 rdf:type schema:PropertyValue
120 Ndd4df4b1cc8345db8de6f294f0d50236 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Risk Factors
122 rdf:type schema:DefinedTerm
123 Nde00fda0d50d40708f41eda2920e5567 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Asia
125 rdf:type schema:DefinedTerm
126 Nea2d6d055eda4a438f2411ddef2782fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Social Class
128 rdf:type schema:DefinedTerm
129 Neb831cb13f33482c8df01b9303ad510d rdf:first sg:person.01256674312.63
130 rdf:rest Nee6712eaacf640ed9ce2680fcfa034a4
131 Nede5c41135674bcfa1fb29fc58f47ea3 rdf:first sg:person.01173112401.38
132 rdf:rest rdf:nil
133 Nee6712eaacf640ed9ce2680fcfa034a4 rdf:first sg:person.0656316674.49
134 rdf:rest N6f6ab6ce57d64d2cb67daf6b2fffb151
135 Nf319862a95ac4b2ab9fdd77811469944 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Prospective Studies
137 rdf:type schema:DefinedTerm
138 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
139 schema:name Medical and Health Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
142 schema:name Public Health and Health Services
143 rdf:type schema:DefinedTerm
144 sg:journal.1024954 schema:issn 1471-2458
145 schema:name BMC Public Health
146 rdf:type schema:Periodical
147 sg:person.01122320074.12 schema:affiliation https://www.grid.ac/institutes/grid.466905.8
148 schema:familyName Perera
149 schema:givenName Yashasvi
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122320074.12
151 rdf:type schema:Person
152 sg:person.01142445712.51 schema:affiliation https://www.grid.ac/institutes/grid.466905.8
153 schema:familyName Jayasena
154 schema:givenName Ganga
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142445712.51
156 rdf:type schema:Person
157 sg:person.01173112401.38 schema:affiliation https://www.grid.ac/institutes/grid.8065.b
158 schema:familyName Jayasinghe
159 schema:givenName Saroj
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173112401.38
161 rdf:type schema:Person
162 sg:person.01256674312.63 schema:affiliation https://www.grid.ac/institutes/grid.415398.2
163 schema:familyName Weeratunga
164 schema:givenName Praveen
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256674312.63
166 rdf:type schema:Person
167 sg:person.0656316674.49 schema:affiliation https://www.grid.ac/institutes/grid.417072.7
168 schema:familyName Jayasinghe
169 schema:givenName Sayumi
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656316674.49
171 rdf:type schema:Person
172 sg:pub.10.1038/482027a schema:sameAs https://app.dimensions.ai/details/publication/pub.1026388070
173 https://doi.org/10.1038/482027a
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/487027a schema:sameAs https://app.dimensions.ai/details/publication/pub.1051243847
176 https://doi.org/10.1038/487027a
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1475-9276-11-76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026621955
179 https://doi.org/10.1186/1475-9276-11-76
180 rdf:type schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1077495811 schema:CreativeWork
182 https://doi.org/10.1016/j.cmet.2009.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047931484
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.diabet.2012.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027363944
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.diabres.2009.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028972981
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.diabres.2011.10.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001437964
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.metabol.2011.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025229437
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1017/s000711451100540x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048397708
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1017/s1368980011003144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009284404
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1017/s1368980012002881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001278144
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1136/bmjopen-2012-000895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007246734
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1210/jc.2008-2192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064291038
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1371/journal.pone.0057873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006613129
203 rdf:type schema:CreativeWork
204 https://doi.org/10.2337/dc10-1079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006931838
205 rdf:type schema:CreativeWork
206 https://doi.org/10.2337/dc11-0775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024401829
207 rdf:type schema:CreativeWork
208 https://doi.org/10.2337/dc11-2052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048666458
209 rdf:type schema:CreativeWork
210 https://doi.org/10.3945/ajcn.112.050997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018574793
211 rdf:type schema:CreativeWork
212 https://doi.org/10.3945/an.112.002238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018857767
213 rdf:type schema:CreativeWork
214 https://doi.org/10.4038/cmj.v51i1.1373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035178640
215 rdf:type schema:CreativeWork
216 https://doi.org/10.4239/wjd.v3.i6.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072397405
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.415398.2 schema:alternateName National Hospital of Sri Lanka
219 schema:name University Medical Unit, National Hospital of Sri Lanka, Colombo, Sri Lanka
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.417072.7 schema:alternateName Western Health
222 schema:name Western Health Australia, Footscray, Australia
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.466905.8 schema:alternateName Ministry of Health, Nutrition and Indigenous Medicine
225 schema:name Ministry of Health, Colombo, Sri Lanka
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.8065.b schema:alternateName University of Colombo
228 schema:name Department of Clinical Medicine, University of Colombo, Colombo, Sri Lanka
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...