“Health divide” between indigenous and non-indigenous populations in Kerala, India: Population based study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-05-29

AUTHORS

Slim Haddad, Katia Sarla Mohindra, Kendra Siekmans, Geneviève Màk, Delampady Narayana

ABSTRACT

BACKGROUND: The objective of this study is to investigate the magnitude and nature of health inequalities between indigenous (Scheduled Tribes) and non-indigenous populations, as well as between different indigenous groups, in a rural district of Kerala State, India. METHODS: A health survey was carried out in a rural community (N = 1660 men and women, 18-96 years). Age- and sex-standardised prevalence of underweight (BMI < 18.5 kg/m2), anaemia, goitre, suspected tuberculosis and hypertension was compared across forward castes, other backward classes and tribal populations. Multi-level weighted logistic regression models were used to estimate the predicted prevalence of morbidity for each age and social group. A Blinder-Oaxaca decomposition was used to further explore the health gap between tribes and non-tribes, and between subgroups of tribes. RESULTS: Social stratification remains a strong determinant of health in the progressive social policy environment of Kerala. The tribal groups are bearing a higher burden of underweight (46.1 vs. 24.3%), anaemia (9.9 vs. 3.5%) and goitre (8.5 vs. 3.6%) compared to non-tribes, but have similar levels of tuberculosis (21.4 vs. 20.4%) and hypertension (23.5 vs. 20.1%). Significant health inequalities also exist within tribal populations; the Paniya have higher levels of underweight (54.8 vs. 40.7%) and anaemia (17.2 vs. 5.7%) than other Scheduled Tribes. The social gradient in health is evident in each age group, with the exception of hypertension. The predicted prevalence of underweight is 31 and 13 percentage points higher for Paniya and other Scheduled Tribe members, respectively, compared to Forward Caste members 18-30 y (27.1%). Higher hypertension is only evident among Paniya adults 18-30 y (10 percentage points higher than Forward Caste adults of the same age group (5.4%)). The decomposition analysis shows that poverty and other determinants of health only explain 51% and 42% of the health gap between tribes and non-tribes for underweight and goitre, respectively. CONCLUSIONS: Policies and programmes designed to benefit the Scheduled Tribes need to promote their well-being in general but also target the specific needs of the most vulnerable indigenous groups. There is a need to enhance the capacity of the disadvantaged to equally take advantage of health opportunities. More... »

PAGES

390-390

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2458-12-390

DOI

http://dx.doi.org/10.1186/1471-2458-12-390

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012836915

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22642770


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Status Disparities", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Surveys", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "India", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Groups", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rural Health", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Socioeconomic Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CRCHUM, Centre de Recherche du Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al, 3875, Avenue Saint Urbain, Montr\u00e9al, Qu\u00e9bec, H2W 1V1, Canada", 
          "id": "http://www.grid.ac/institutes/grid.410559.c", 
          "name": [
            "CRCHUM, Centre de Recherche du Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al, 3875, Avenue Saint Urbain, Montr\u00e9al, Qu\u00e9bec, H2W 1V1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haddad", 
        "givenName": "Slim", 
        "id": "sg:person.010256366372.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010256366372.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Population Health, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada", 
          "id": "http://www.grid.ac/institutes/grid.28046.38", 
          "name": [
            "CRCHUM, Centre de Recherche du Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al, 3875, Avenue Saint Urbain, Montr\u00e9al, Qu\u00e9bec, H2W 1V1, Canada", 
            "Institute of Population Health, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohindra", 
        "givenName": "Katia Sarla", 
        "id": "sg:person.07715353254.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715353254.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CRCHUM, Centre de Recherche du Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al, 3875, Avenue Saint Urbain, Montr\u00e9al, Qu\u00e9bec, H2W 1V1, Canada", 
          "id": "http://www.grid.ac/institutes/grid.410559.c", 
          "name": [
            "CRCHUM, Centre de Recherche du Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al, 3875, Avenue Saint Urbain, Montr\u00e9al, Qu\u00e9bec, H2W 1V1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siekmans", 
        "givenName": "Kendra", 
        "id": "sg:person.01177303665.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177303665.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CRCHUM, Centre de Recherche du Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al, 3875, Avenue Saint Urbain, Montr\u00e9al, Qu\u00e9bec, H2W 1V1, Canada", 
          "id": "http://www.grid.ac/institutes/grid.410559.c", 
          "name": [
            "CRCHUM, Centre de Recherche du Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al, 3875, Avenue Saint Urbain, Montr\u00e9al, Qu\u00e9bec, H2W 1V1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00e0k", 
        "givenName": "Genevi\u00e8ve", 
        "id": "sg:person.01313532265.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313532265.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Development Studies, Prasanth Nagar, Ulloor, Thiruvananthapuram, 695 011, Kerala, India", 
          "id": "http://www.grid.ac/institutes/grid.433028.e", 
          "name": [
            "Centre for Development Studies, Prasanth Nagar, Ulloor, Thiruvananthapuram, 695 011, Kerala, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narayana", 
        "givenName": "Delampady", 
        "id": "sg:person.01223216576.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223216576.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1475-9276-10-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030285170", 
          "https://doi.org/10.1186/1475-9276-10-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10198-010-0220-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017492181", 
          "https://doi.org/10.1007/s10198-010-0220-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-698x-11-s2-s3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031584403", 
          "https://doi.org/10.1186/1472-698x-11-s2-s3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jhh.1001633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027670774", 
          "https://doi.org/10.1038/sj.jhh.1001633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni0806-783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017816447", 
          "https://doi.org/10.1038/ni0806-783"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-05-29", 
    "datePublishedReg": "2012-05-29", 
    "description": "BACKGROUND: The objective of this study is to investigate the magnitude and nature of health inequalities between indigenous (Scheduled Tribes) and non-indigenous populations, as well as between different indigenous groups, in a rural district of Kerala State, India.\nMETHODS: A health survey was carried out in a rural community (N\u2009=\u20091660 men and women, 18-96\u2009years). Age- and sex-standardised prevalence of underweight (BMI\u2009<\u200918.5\u2009kg/m2), anaemia, goitre, suspected tuberculosis and hypertension was compared across forward castes, other backward classes and tribal populations. Multi-level weighted logistic regression models were used to estimate the predicted prevalence of morbidity for each age and social group. A Blinder-Oaxaca decomposition was used to further explore the health gap between tribes and non-tribes, and between subgroups of tribes.\nRESULTS: Social stratification remains a strong determinant of health in the progressive social policy environment of Kerala. The tribal groups are bearing a higher burden of underweight (46.1 vs. 24.3%), anaemia (9.9 vs. 3.5%) and goitre (8.5 vs. 3.6%) compared to non-tribes, but have similar levels of tuberculosis (21.4 vs. 20.4%) and hypertension (23.5 vs. 20.1%). Significant health inequalities also exist within tribal populations; the Paniya have higher levels of underweight (54.8 vs. 40.7%) and anaemia (17.2 vs. 5.7%) than other Scheduled Tribes. The social gradient in health is evident in each age group, with the exception of hypertension. The predicted prevalence of underweight is 31 and 13 percentage points higher for Paniya and other Scheduled Tribe members, respectively, compared to Forward Caste members 18-30\u2009y (27.1%). Higher hypertension is only evident among Paniya adults 18-30\u2009y (10 percentage points higher than Forward Caste adults of the same age group (5.4%)). The decomposition analysis shows that poverty and other determinants of health only explain 51% and 42% of the health gap between tribes and non-tribes for underweight and goitre, respectively.\nCONCLUSIONS: Policies and programmes designed to benefit the Scheduled Tribes need to promote their well-being in general but also target the specific needs of the most vulnerable indigenous groups. There is a need to enhance the capacity of the disadvantaged to equally take advantage of health opportunities.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2458-12-390", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024954", 
        "issn": [
          "1471-2458"
        ], 
        "name": "BMC Public Health", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "non-Indigenous populations", 
      "health gap", 
      "health inequalities", 
      "exception of hypertension", 
      "prevalence of morbidity", 
      "prevalence of underweight", 
      "sex-standardised prevalence", 
      "determinants of health", 
      "logistic regression models", 
      "significant health inequalities", 
      "higher hypertension", 
      "Health Survey", 
      "high burden", 
      "hypertension", 
      "underweight", 
      "age groups", 
      "social gradient", 
      "tribal population", 
      "anemia", 
      "member 18", 
      "goiter", 
      "prevalence", 
      "health opportunities", 
      "health divide", 
      "rural districts", 
      "Paniya", 
      "tuberculosis", 
      "Scheduled Tribes", 
      "regression models", 
      "health", 
      "age", 
      "strong determinant", 
      "group", 
      "population", 
      "similar levels", 
      "high levels", 
      "morbidity", 
      "rural communities", 
      "determinants", 
      "subgroups", 
      "levels", 
      "percentage points", 
      "Blinder-Oaxaca decomposition", 
      "burden", 
      "Kerala State", 
      "study", 
      "specific needs", 
      "tribe members", 
      "stratification", 
      "backward classes", 
      "need", 
      "Kerala", 
      "different indigenous groups", 
      "tribal groups", 
      "India", 
      "survey", 
      "objective", 
      "exception", 
      "program", 
      "indigenous groups", 
      "forward castes", 
      "members", 
      "district", 
      "analysis", 
      "capacity", 
      "policy environment", 
      "community", 
      "opportunities", 
      "gap", 
      "point", 
      "tribes", 
      "magnitude", 
      "model", 
      "social policy environment", 
      "poverty", 
      "state", 
      "class", 
      "social groups", 
      "advantages", 
      "nature", 
      "policy", 
      "inequality", 
      "gradient", 
      "caste", 
      "environment", 
      "decomposition analysis", 
      "social stratification", 
      "divide", 
      "decomposition", 
      "subgroups of tribes", 
      "progressive social policy environment", 
      "Scheduled Tribe members", 
      "Forward Caste members 18", 
      "Caste members 18", 
      "vulnerable indigenous groups"
    ], 
    "name": "\u201cHealth divide\u201d between indigenous and non-indigenous populations in Kerala, India: Population based study", 
    "pagination": "390-390", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012836915"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2458-12-390"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22642770"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2458-12-390", 
      "https://app.dimensions.ai/details/publication/pub.1012836915"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_565.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2458-12-390"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-12-390'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-12-390'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-12-390'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-12-390'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      22 PREDICATES      141 URIs      128 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2458-12-390 schema:about N00baafc0d49045c6ade48e4b91e037b0
2 N0db7a140a714434082c3f7257060d2e5
3 N15dcb8ab4fb949ef8a9b1ba30f437ef2
4 N1eea1581e71e4c0e949499bfaf34acdf
5 N540a0a1d51374e498674609ea3a4dc9f
6 N5561a9fd8bfb47c3bfd510e977c825e7
7 N55ae6968c1d14680ab1d4b6eb8ea1daa
8 N5af522809d7c4f14a441e3da200f1620
9 N6e258f07c28f416dab8ec643aeca9c8f
10 Nb228a2c8039d47698e2eeb3657fc6f08
11 Nb228de334c884fe8835d6639ea942559
12 Nb4a2f2b9bc354a6d810f3695f87975c9
13 Nd10956b76b474472b199faa82fa51542
14 Ne1d6f6b31dbd4dd58a396dbec1331acd
15 Ne1de56049fbf4c02af4e1f70bed40db0
16 anzsrc-for:11
17 anzsrc-for:1117
18 schema:author N6aed683f562148e9b9e03cf1398e47e6
19 schema:citation sg:pub.10.1007/s10198-010-0220-z
20 sg:pub.10.1038/ni0806-783
21 sg:pub.10.1038/sj.jhh.1001633
22 sg:pub.10.1186/1472-698x-11-s2-s3
23 sg:pub.10.1186/1475-9276-10-1
24 schema:datePublished 2012-05-29
25 schema:datePublishedReg 2012-05-29
26 schema:description BACKGROUND: The objective of this study is to investigate the magnitude and nature of health inequalities between indigenous (Scheduled Tribes) and non-indigenous populations, as well as between different indigenous groups, in a rural district of Kerala State, India. METHODS: A health survey was carried out in a rural community (N = 1660 men and women, 18-96 years). Age- and sex-standardised prevalence of underweight (BMI < 18.5 kg/m2), anaemia, goitre, suspected tuberculosis and hypertension was compared across forward castes, other backward classes and tribal populations. Multi-level weighted logistic regression models were used to estimate the predicted prevalence of morbidity for each age and social group. A Blinder-Oaxaca decomposition was used to further explore the health gap between tribes and non-tribes, and between subgroups of tribes. RESULTS: Social stratification remains a strong determinant of health in the progressive social policy environment of Kerala. The tribal groups are bearing a higher burden of underweight (46.1 vs. 24.3%), anaemia (9.9 vs. 3.5%) and goitre (8.5 vs. 3.6%) compared to non-tribes, but have similar levels of tuberculosis (21.4 vs. 20.4%) and hypertension (23.5 vs. 20.1%). Significant health inequalities also exist within tribal populations; the Paniya have higher levels of underweight (54.8 vs. 40.7%) and anaemia (17.2 vs. 5.7%) than other Scheduled Tribes. The social gradient in health is evident in each age group, with the exception of hypertension. The predicted prevalence of underweight is 31 and 13 percentage points higher for Paniya and other Scheduled Tribe members, respectively, compared to Forward Caste members 18-30 y (27.1%). Higher hypertension is only evident among Paniya adults 18-30 y (10 percentage points higher than Forward Caste adults of the same age group (5.4%)). The decomposition analysis shows that poverty and other determinants of health only explain 51% and 42% of the health gap between tribes and non-tribes for underweight and goitre, respectively. CONCLUSIONS: Policies and programmes designed to benefit the Scheduled Tribes need to promote their well-being in general but also target the specific needs of the most vulnerable indigenous groups. There is a need to enhance the capacity of the disadvantaged to equally take advantage of health opportunities.
27 schema:genre article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N2520c7ea6a6e452ab9b2743c8171e50b
31 N5a0a2d597a5840879cf4de069557c6d5
32 sg:journal.1024954
33 schema:keywords Blinder-Oaxaca decomposition
34 Caste members 18
35 Forward Caste members 18
36 Health Survey
37 India
38 Kerala
39 Kerala State
40 Paniya
41 Scheduled Tribe members
42 Scheduled Tribes
43 advantages
44 age
45 age groups
46 analysis
47 anemia
48 backward classes
49 burden
50 capacity
51 caste
52 class
53 community
54 decomposition
55 decomposition analysis
56 determinants
57 determinants of health
58 different indigenous groups
59 district
60 divide
61 environment
62 exception
63 exception of hypertension
64 forward castes
65 gap
66 goiter
67 gradient
68 group
69 health
70 health divide
71 health gap
72 health inequalities
73 health opportunities
74 high burden
75 high levels
76 higher hypertension
77 hypertension
78 indigenous groups
79 inequality
80 levels
81 logistic regression models
82 magnitude
83 member 18
84 members
85 model
86 morbidity
87 nature
88 need
89 non-Indigenous populations
90 objective
91 opportunities
92 percentage points
93 point
94 policy
95 policy environment
96 population
97 poverty
98 prevalence
99 prevalence of morbidity
100 prevalence of underweight
101 program
102 progressive social policy environment
103 regression models
104 rural communities
105 rural districts
106 sex-standardised prevalence
107 significant health inequalities
108 similar levels
109 social gradient
110 social groups
111 social policy environment
112 social stratification
113 specific needs
114 state
115 stratification
116 strong determinant
117 study
118 subgroups
119 subgroups of tribes
120 survey
121 tribal groups
122 tribal population
123 tribe members
124 tribes
125 tuberculosis
126 underweight
127 vulnerable indigenous groups
128 schema:name “Health divide” between indigenous and non-indigenous populations in Kerala, India: Population based study
129 schema:pagination 390-390
130 schema:productId N5e1d55ec90984bcdb97838d8f3d12e15
131 Nbbb54283b4fc44d999d8710c6f0ce2b0
132 Nc9b10259655145d6b854d01f8e173322
133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012836915
134 https://doi.org/10.1186/1471-2458-12-390
135 schema:sdDatePublished 2022-01-01T18:27
136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
137 schema:sdPublisher N0caf29b255e540d88b72fc7c08a47bfd
138 schema:url https://doi.org/10.1186/1471-2458-12-390
139 sgo:license sg:explorer/license/
140 sgo:sdDataset articles
141 rdf:type schema:ScholarlyArticle
142 N00baafc0d49045c6ade48e4b91e037b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Male
144 rdf:type schema:DefinedTerm
145 N0caf29b255e540d88b72fc7c08a47bfd schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 N0db7a140a714434082c3f7257060d2e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Rural Health
149 rdf:type schema:DefinedTerm
150 N1319a58c4e4c4c028043e69fab8e910f rdf:first sg:person.01177303665.99
151 rdf:rest N7183a38c651b43caa0a3c930c38de159
152 N15dcb8ab4fb949ef8a9b1ba30f437ef2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name India
154 rdf:type schema:DefinedTerm
155 N1eea1581e71e4c0e949499bfaf34acdf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Population Groups
157 rdf:type schema:DefinedTerm
158 N2520c7ea6a6e452ab9b2743c8171e50b schema:issueNumber 1
159 rdf:type schema:PublicationIssue
160 N3701f924981f4bf6b481cbd044732551 rdf:first sg:person.01223216576.55
161 rdf:rest rdf:nil
162 N540a0a1d51374e498674609ea3a4dc9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Adult
164 rdf:type schema:DefinedTerm
165 N5561a9fd8bfb47c3bfd510e977c825e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Female
167 rdf:type schema:DefinedTerm
168 N55ae6968c1d14680ab1d4b6eb8ea1daa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Health Status Disparities
170 rdf:type schema:DefinedTerm
171 N5a0a2d597a5840879cf4de069557c6d5 schema:volumeNumber 12
172 rdf:type schema:PublicationVolume
173 N5af522809d7c4f14a441e3da200f1620 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Aged, 80 and over
175 rdf:type schema:DefinedTerm
176 N5e1d55ec90984bcdb97838d8f3d12e15 schema:name dimensions_id
177 schema:value pub.1012836915
178 rdf:type schema:PropertyValue
179 N6aed683f562148e9b9e03cf1398e47e6 rdf:first sg:person.010256366372.01
180 rdf:rest Nc0efe41ef8fb4580baeaea1a23bf60c5
181 N6e258f07c28f416dab8ec643aeca9c8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Health Surveys
183 rdf:type schema:DefinedTerm
184 N7183a38c651b43caa0a3c930c38de159 rdf:first sg:person.01313532265.22
185 rdf:rest N3701f924981f4bf6b481cbd044732551
186 Nb228a2c8039d47698e2eeb3657fc6f08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Young Adult
188 rdf:type schema:DefinedTerm
189 Nb228de334c884fe8835d6639ea942559 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Humans
191 rdf:type schema:DefinedTerm
192 Nb4a2f2b9bc354a6d810f3695f87975c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Adolescent
194 rdf:type schema:DefinedTerm
195 Nbbb54283b4fc44d999d8710c6f0ce2b0 schema:name doi
196 schema:value 10.1186/1471-2458-12-390
197 rdf:type schema:PropertyValue
198 Nc0efe41ef8fb4580baeaea1a23bf60c5 rdf:first sg:person.07715353254.92
199 rdf:rest N1319a58c4e4c4c028043e69fab8e910f
200 Nc9b10259655145d6b854d01f8e173322 schema:name pubmed_id
201 schema:value 22642770
202 rdf:type schema:PropertyValue
203 Nd10956b76b474472b199faa82fa51542 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Aged
205 rdf:type schema:DefinedTerm
206 Ne1d6f6b31dbd4dd58a396dbec1331acd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Middle Aged
208 rdf:type schema:DefinedTerm
209 Ne1de56049fbf4c02af4e1f70bed40db0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Socioeconomic Factors
211 rdf:type schema:DefinedTerm
212 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
213 schema:name Medical and Health Sciences
214 rdf:type schema:DefinedTerm
215 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
216 schema:name Public Health and Health Services
217 rdf:type schema:DefinedTerm
218 sg:journal.1024954 schema:issn 1471-2458
219 schema:name BMC Public Health
220 schema:publisher Springer Nature
221 rdf:type schema:Periodical
222 sg:person.010256366372.01 schema:affiliation grid-institutes:grid.410559.c
223 schema:familyName Haddad
224 schema:givenName Slim
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010256366372.01
226 rdf:type schema:Person
227 sg:person.01177303665.99 schema:affiliation grid-institutes:grid.410559.c
228 schema:familyName Siekmans
229 schema:givenName Kendra
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177303665.99
231 rdf:type schema:Person
232 sg:person.01223216576.55 schema:affiliation grid-institutes:grid.433028.e
233 schema:familyName Narayana
234 schema:givenName Delampady
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223216576.55
236 rdf:type schema:Person
237 sg:person.01313532265.22 schema:affiliation grid-institutes:grid.410559.c
238 schema:familyName Màk
239 schema:givenName Geneviève
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313532265.22
241 rdf:type schema:Person
242 sg:person.07715353254.92 schema:affiliation grid-institutes:grid.28046.38
243 schema:familyName Mohindra
244 schema:givenName Katia Sarla
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715353254.92
246 rdf:type schema:Person
247 sg:pub.10.1007/s10198-010-0220-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017492181
248 https://doi.org/10.1007/s10198-010-0220-z
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/ni0806-783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017816447
251 https://doi.org/10.1038/ni0806-783
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/sj.jhh.1001633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027670774
254 https://doi.org/10.1038/sj.jhh.1001633
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/1472-698x-11-s2-s3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031584403
257 https://doi.org/10.1186/1472-698x-11-s2-s3
258 rdf:type schema:CreativeWork
259 sg:pub.10.1186/1475-9276-10-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030285170
260 https://doi.org/10.1186/1475-9276-10-1
261 rdf:type schema:CreativeWork
262 grid-institutes:grid.28046.38 schema:alternateName Institute of Population Health, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
263 schema:name CRCHUM, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, 3875, Avenue Saint Urbain, Montréal, Québec, H2W 1V1, Canada
264 Institute of Population Health, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
265 rdf:type schema:Organization
266 grid-institutes:grid.410559.c schema:alternateName CRCHUM, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, 3875, Avenue Saint Urbain, Montréal, Québec, H2W 1V1, Canada
267 schema:name CRCHUM, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, 3875, Avenue Saint Urbain, Montréal, Québec, H2W 1V1, Canada
268 rdf:type schema:Organization
269 grid-institutes:grid.433028.e schema:alternateName Centre for Development Studies, Prasanth Nagar, Ulloor, Thiruvananthapuram, 695 011, Kerala, India
270 schema:name Centre for Development Studies, Prasanth Nagar, Ulloor, Thiruvananthapuram, 695 011, Kerala, India
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...