“Health divide” between indigenous and non-indigenous populations in Kerala, India: Population based study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-05-29

AUTHORS

Slim Haddad, Katia Sarla Mohindra, Kendra Siekmans, Geneviève Màk, Delampady Narayana

ABSTRACT

BACKGROUND: The objective of this study is to investigate the magnitude and nature of health inequalities between indigenous (Scheduled Tribes) and non-indigenous populations, as well as between different indigenous groups, in a rural district of Kerala State, India. METHODS: A health survey was carried out in a rural community (N = 1660 men and women, 18-96 years). Age- and sex-standardised prevalence of underweight (BMI < 18.5 kg/m2), anaemia, goitre, suspected tuberculosis and hypertension was compared across forward castes, other backward classes and tribal populations. Multi-level weighted logistic regression models were used to estimate the predicted prevalence of morbidity for each age and social group. A Blinder-Oaxaca decomposition was used to further explore the health gap between tribes and non-tribes, and between subgroups of tribes. RESULTS: Social stratification remains a strong determinant of health in the progressive social policy environment of Kerala. The tribal groups are bearing a higher burden of underweight (46.1 vs. 24.3%), anaemia (9.9 vs. 3.5%) and goitre (8.5 vs. 3.6%) compared to non-tribes, but have similar levels of tuberculosis (21.4 vs. 20.4%) and hypertension (23.5 vs. 20.1%). Significant health inequalities also exist within tribal populations; the Paniya have higher levels of underweight (54.8 vs. 40.7%) and anaemia (17.2 vs. 5.7%) than other Scheduled Tribes. The social gradient in health is evident in each age group, with the exception of hypertension. The predicted prevalence of underweight is 31 and 13 percentage points higher for Paniya and other Scheduled Tribe members, respectively, compared to Forward Caste members 18-30 y (27.1%). Higher hypertension is only evident among Paniya adults 18-30 y (10 percentage points higher than Forward Caste adults of the same age group (5.4%)). The decomposition analysis shows that poverty and other determinants of health only explain 51% and 42% of the health gap between tribes and non-tribes for underweight and goitre, respectively. CONCLUSIONS: Policies and programmes designed to benefit the Scheduled Tribes need to promote their well-being in general but also target the specific needs of the most vulnerable indigenous groups. There is a need to enhance the capacity of the disadvantaged to equally take advantage of health opportunities. More... »

PAGES

390-390

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2458-12-390

DOI

http://dx.doi.org/10.1186/1471-2458-12-390

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012836915

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22642770


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Status Disparities", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Surveys", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "India", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Groups", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rural Health", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Socioeconomic Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CRCHUM, Centre de Recherche du Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al, 3875, Avenue Saint Urbain, Montr\u00e9al, Qu\u00e9bec, H2W 1V1, Canada", 
          "id": "http://www.grid.ac/institutes/grid.410559.c", 
          "name": [
            "CRCHUM, Centre de Recherche du Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al, 3875, Avenue Saint Urbain, Montr\u00e9al, Qu\u00e9bec, H2W 1V1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haddad", 
        "givenName": "Slim", 
        "id": "sg:person.010256366372.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010256366372.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Population Health, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada", 
          "id": "http://www.grid.ac/institutes/grid.28046.38", 
          "name": [
            "CRCHUM, Centre de Recherche du Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al, 3875, Avenue Saint Urbain, Montr\u00e9al, Qu\u00e9bec, H2W 1V1, Canada", 
            "Institute of Population Health, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohindra", 
        "givenName": "Katia Sarla", 
        "id": "sg:person.07715353254.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715353254.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CRCHUM, Centre de Recherche du Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al, 3875, Avenue Saint Urbain, Montr\u00e9al, Qu\u00e9bec, H2W 1V1, Canada", 
          "id": "http://www.grid.ac/institutes/grid.410559.c", 
          "name": [
            "CRCHUM, Centre de Recherche du Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al, 3875, Avenue Saint Urbain, Montr\u00e9al, Qu\u00e9bec, H2W 1V1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siekmans", 
        "givenName": "Kendra", 
        "id": "sg:person.01177303665.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177303665.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CRCHUM, Centre de Recherche du Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al, 3875, Avenue Saint Urbain, Montr\u00e9al, Qu\u00e9bec, H2W 1V1, Canada", 
          "id": "http://www.grid.ac/institutes/grid.410559.c", 
          "name": [
            "CRCHUM, Centre de Recherche du Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al, 3875, Avenue Saint Urbain, Montr\u00e9al, Qu\u00e9bec, H2W 1V1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00e0k", 
        "givenName": "Genevi\u00e8ve", 
        "id": "sg:person.01313532265.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313532265.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Development Studies, Prasanth Nagar, Ulloor, Thiruvananthapuram, 695 011, Kerala, India", 
          "id": "http://www.grid.ac/institutes/grid.433028.e", 
          "name": [
            "Centre for Development Studies, Prasanth Nagar, Ulloor, Thiruvananthapuram, 695 011, Kerala, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narayana", 
        "givenName": "Delampady", 
        "id": "sg:person.01223216576.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223216576.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ni0806-783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017816447", 
          "https://doi.org/10.1038/ni0806-783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.jhh.1001633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027670774", 
          "https://doi.org/10.1038/sj.jhh.1001633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-698x-11-s2-s3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031584403", 
          "https://doi.org/10.1186/1472-698x-11-s2-s3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10198-010-0220-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017492181", 
          "https://doi.org/10.1007/s10198-010-0220-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-9276-10-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030285170", 
          "https://doi.org/10.1186/1475-9276-10-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-05-29", 
    "datePublishedReg": "2012-05-29", 
    "description": "BACKGROUND: The objective of this study is to investigate the magnitude and nature of health inequalities between indigenous (Scheduled Tribes) and non-indigenous populations, as well as between different indigenous groups, in a rural district of Kerala State, India.\nMETHODS: A health survey was carried out in a rural community (N\u2009=\u20091660 men and women, 18-96\u2009years). Age- and sex-standardised prevalence of underweight (BMI\u2009<\u200918.5\u2009kg/m2), anaemia, goitre, suspected tuberculosis and hypertension was compared across forward castes, other backward classes and tribal populations. Multi-level weighted logistic regression models were used to estimate the predicted prevalence of morbidity for each age and social group. A Blinder-Oaxaca decomposition was used to further explore the health gap between tribes and non-tribes, and between subgroups of tribes.\nRESULTS: Social stratification remains a strong determinant of health in the progressive social policy environment of Kerala. The tribal groups are bearing a higher burden of underweight (46.1 vs. 24.3%), anaemia (9.9 vs. 3.5%) and goitre (8.5 vs. 3.6%) compared to non-tribes, but have similar levels of tuberculosis (21.4 vs. 20.4%) and hypertension (23.5 vs. 20.1%). Significant health inequalities also exist within tribal populations; the Paniya have higher levels of underweight (54.8 vs. 40.7%) and anaemia (17.2 vs. 5.7%) than other Scheduled Tribes. The social gradient in health is evident in each age group, with the exception of hypertension. The predicted prevalence of underweight is 31 and 13 percentage points higher for Paniya and other Scheduled Tribe members, respectively, compared to Forward Caste members 18-30\u2009y (27.1%). Higher hypertension is only evident among Paniya adults 18-30\u2009y (10 percentage points higher than Forward Caste adults of the same age group (5.4%)). The decomposition analysis shows that poverty and other determinants of health only explain 51% and 42% of the health gap between tribes and non-tribes for underweight and goitre, respectively.\nCONCLUSIONS: Policies and programmes designed to benefit the Scheduled Tribes need to promote their well-being in general but also target the specific needs of the most vulnerable indigenous groups. There is a need to enhance the capacity of the disadvantaged to equally take advantage of health opportunities.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2458-12-390", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024954", 
        "issn": [
          "1471-2458"
        ], 
        "name": "BMC Public Health", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "non-Indigenous populations", 
      "health gap", 
      "health inequalities", 
      "exception of hypertension", 
      "prevalence of morbidity", 
      "prevalence of underweight", 
      "sex-standardised prevalence", 
      "determinants of health", 
      "logistic regression models", 
      "significant health inequalities", 
      "higher hypertension", 
      "Health Survey", 
      "high burden", 
      "hypertension", 
      "underweight", 
      "age groups", 
      "social gradient", 
      "tribal population", 
      "anemia", 
      "member 18", 
      "goiter", 
      "prevalence", 
      "health opportunities", 
      "health divide", 
      "rural districts", 
      "Paniya", 
      "tuberculosis", 
      "Scheduled Tribes", 
      "regression models", 
      "health", 
      "age", 
      "strong determinant", 
      "group", 
      "population", 
      "similar levels", 
      "high levels", 
      "morbidity", 
      "rural communities", 
      "determinants", 
      "subgroups", 
      "levels", 
      "percentage points", 
      "Blinder-Oaxaca decomposition", 
      "burden", 
      "Kerala State", 
      "study", 
      "specific needs", 
      "tribe members", 
      "stratification", 
      "backward classes", 
      "need", 
      "Kerala", 
      "different indigenous groups", 
      "tribal groups", 
      "India", 
      "survey", 
      "objective", 
      "exception", 
      "program", 
      "indigenous groups", 
      "forward castes", 
      "members", 
      "district", 
      "analysis", 
      "capacity", 
      "policy environment", 
      "community", 
      "opportunities", 
      "gap", 
      "point", 
      "tribes", 
      "magnitude", 
      "model", 
      "social policy environment", 
      "poverty", 
      "state", 
      "class", 
      "social groups", 
      "advantages", 
      "nature", 
      "policy", 
      "inequality", 
      "gradient", 
      "caste", 
      "environment", 
      "decomposition analysis", 
      "social stratification", 
      "divide", 
      "decomposition", 
      "subgroups of tribes", 
      "progressive social policy environment", 
      "Scheduled Tribe members", 
      "Forward Caste members 18", 
      "Caste members 18", 
      "vulnerable indigenous groups"
    ], 
    "name": "\u201cHealth divide\u201d between indigenous and non-indigenous populations in Kerala, India: Population based study", 
    "pagination": "390-390", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012836915"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2458-12-390"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22642770"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2458-12-390", 
      "https://app.dimensions.ai/details/publication/pub.1012836915"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_562.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2458-12-390"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-12-390'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-12-390'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-12-390'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-12-390'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      22 PREDICATES      141 URIs      128 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2458-12-390 schema:about N2d36326301d84f54b9e398be27897271
2 N4104b0bd18be413088985bb6fe525840
3 N4be0e1bee18141bcb3ca96a43fdcdac6
4 N7741a7fe717b42499d6691d71f2428ea
5 N82651bf98f4d4176a67469c2c165b236
6 N86d0a952d4b04adda00655b57caac1bc
7 N89761ae808eb424297f02638dcea8c80
8 N8e370e348c9f4351b3b4bf49a93b732e
9 N8fdc4d6ed5eb493787c6a397758d2353
10 N9c114f5ded704e8db4b0e1277de3cf9e
11 Na527e6f506f44e7ebfb496b10c969fb3
12 Nb8b0f59e81644392b9ad3d9dfb0a0526
13 Nc17e60998be943bc86e46e5df6bfb16b
14 Nd216358042ea4101a323e0eef4d1d52d
15 Neb38b23429d44825aa72b48a94ccf573
16 anzsrc-for:11
17 anzsrc-for:1117
18 schema:author N4e375681c0b24a04bec0a3aaeb7016a0
19 schema:citation sg:pub.10.1007/s10198-010-0220-z
20 sg:pub.10.1038/ni0806-783
21 sg:pub.10.1038/sj.jhh.1001633
22 sg:pub.10.1186/1472-698x-11-s2-s3
23 sg:pub.10.1186/1475-9276-10-1
24 schema:datePublished 2012-05-29
25 schema:datePublishedReg 2012-05-29
26 schema:description BACKGROUND: The objective of this study is to investigate the magnitude and nature of health inequalities between indigenous (Scheduled Tribes) and non-indigenous populations, as well as between different indigenous groups, in a rural district of Kerala State, India. METHODS: A health survey was carried out in a rural community (N = 1660 men and women, 18-96 years). Age- and sex-standardised prevalence of underweight (BMI < 18.5 kg/m2), anaemia, goitre, suspected tuberculosis and hypertension was compared across forward castes, other backward classes and tribal populations. Multi-level weighted logistic regression models were used to estimate the predicted prevalence of morbidity for each age and social group. A Blinder-Oaxaca decomposition was used to further explore the health gap between tribes and non-tribes, and between subgroups of tribes. RESULTS: Social stratification remains a strong determinant of health in the progressive social policy environment of Kerala. The tribal groups are bearing a higher burden of underweight (46.1 vs. 24.3%), anaemia (9.9 vs. 3.5%) and goitre (8.5 vs. 3.6%) compared to non-tribes, but have similar levels of tuberculosis (21.4 vs. 20.4%) and hypertension (23.5 vs. 20.1%). Significant health inequalities also exist within tribal populations; the Paniya have higher levels of underweight (54.8 vs. 40.7%) and anaemia (17.2 vs. 5.7%) than other Scheduled Tribes. The social gradient in health is evident in each age group, with the exception of hypertension. The predicted prevalence of underweight is 31 and 13 percentage points higher for Paniya and other Scheduled Tribe members, respectively, compared to Forward Caste members 18-30 y (27.1%). Higher hypertension is only evident among Paniya adults 18-30 y (10 percentage points higher than Forward Caste adults of the same age group (5.4%)). The decomposition analysis shows that poverty and other determinants of health only explain 51% and 42% of the health gap between tribes and non-tribes for underweight and goitre, respectively. CONCLUSIONS: Policies and programmes designed to benefit the Scheduled Tribes need to promote their well-being in general but also target the specific needs of the most vulnerable indigenous groups. There is a need to enhance the capacity of the disadvantaged to equally take advantage of health opportunities.
27 schema:genre article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N602844c2f83e4366a6b6d9bed374bb64
31 Na976375c319f40969793f15e93b4dad5
32 sg:journal.1024954
33 schema:keywords Blinder-Oaxaca decomposition
34 Caste members 18
35 Forward Caste members 18
36 Health Survey
37 India
38 Kerala
39 Kerala State
40 Paniya
41 Scheduled Tribe members
42 Scheduled Tribes
43 advantages
44 age
45 age groups
46 analysis
47 anemia
48 backward classes
49 burden
50 capacity
51 caste
52 class
53 community
54 decomposition
55 decomposition analysis
56 determinants
57 determinants of health
58 different indigenous groups
59 district
60 divide
61 environment
62 exception
63 exception of hypertension
64 forward castes
65 gap
66 goiter
67 gradient
68 group
69 health
70 health divide
71 health gap
72 health inequalities
73 health opportunities
74 high burden
75 high levels
76 higher hypertension
77 hypertension
78 indigenous groups
79 inequality
80 levels
81 logistic regression models
82 magnitude
83 member 18
84 members
85 model
86 morbidity
87 nature
88 need
89 non-Indigenous populations
90 objective
91 opportunities
92 percentage points
93 point
94 policy
95 policy environment
96 population
97 poverty
98 prevalence
99 prevalence of morbidity
100 prevalence of underweight
101 program
102 progressive social policy environment
103 regression models
104 rural communities
105 rural districts
106 sex-standardised prevalence
107 significant health inequalities
108 similar levels
109 social gradient
110 social groups
111 social policy environment
112 social stratification
113 specific needs
114 state
115 stratification
116 strong determinant
117 study
118 subgroups
119 subgroups of tribes
120 survey
121 tribal groups
122 tribal population
123 tribe members
124 tribes
125 tuberculosis
126 underweight
127 vulnerable indigenous groups
128 schema:name “Health divide” between indigenous and non-indigenous populations in Kerala, India: Population based study
129 schema:pagination 390-390
130 schema:productId N8724b4aa73a04fea94a79387ec40f085
131 N93754c6ef41d4832a43fac2a69de712c
132 Ndc3e1ebf4be541d5b53c17990e663a21
133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012836915
134 https://doi.org/10.1186/1471-2458-12-390
135 schema:sdDatePublished 2021-11-01T18:17
136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
137 schema:sdPublisher N12457b17b2bd4f0d81605c33b699754b
138 schema:url https://doi.org/10.1186/1471-2458-12-390
139 sgo:license sg:explorer/license/
140 sgo:sdDataset articles
141 rdf:type schema:ScholarlyArticle
142 N12457b17b2bd4f0d81605c33b699754b schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 N29d1d4856acf41beafa03986c78ef923 rdf:first sg:person.07715353254.92
145 rdf:rest Nd5703e0bde014ef78fd79d1d9aa93765
146 N2d36326301d84f54b9e398be27897271 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Population Groups
148 rdf:type schema:DefinedTerm
149 N4104b0bd18be413088985bb6fe525840 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Female
151 rdf:type schema:DefinedTerm
152 N4bca5c95c7134f6183bf8f7ba0495387 rdf:first sg:person.01313532265.22
153 rdf:rest N6d6d7ddc3d65440da3e4672a607ea5ac
154 N4be0e1bee18141bcb3ca96a43fdcdac6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Aged, 80 and over
156 rdf:type schema:DefinedTerm
157 N4e375681c0b24a04bec0a3aaeb7016a0 rdf:first sg:person.010256366372.01
158 rdf:rest N29d1d4856acf41beafa03986c78ef923
159 N602844c2f83e4366a6b6d9bed374bb64 schema:volumeNumber 12
160 rdf:type schema:PublicationVolume
161 N6d6d7ddc3d65440da3e4672a607ea5ac rdf:first sg:person.01223216576.55
162 rdf:rest rdf:nil
163 N7741a7fe717b42499d6691d71f2428ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Rural Health
165 rdf:type schema:DefinedTerm
166 N82651bf98f4d4176a67469c2c165b236 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Health Status Disparities
168 rdf:type schema:DefinedTerm
169 N86d0a952d4b04adda00655b57caac1bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Socioeconomic Factors
171 rdf:type schema:DefinedTerm
172 N8724b4aa73a04fea94a79387ec40f085 schema:name doi
173 schema:value 10.1186/1471-2458-12-390
174 rdf:type schema:PropertyValue
175 N89761ae808eb424297f02638dcea8c80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Humans
177 rdf:type schema:DefinedTerm
178 N8e370e348c9f4351b3b4bf49a93b732e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Young Adult
180 rdf:type schema:DefinedTerm
181 N8fdc4d6ed5eb493787c6a397758d2353 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Adolescent
183 rdf:type schema:DefinedTerm
184 N93754c6ef41d4832a43fac2a69de712c schema:name dimensions_id
185 schema:value pub.1012836915
186 rdf:type schema:PropertyValue
187 N9c114f5ded704e8db4b0e1277de3cf9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Adult
189 rdf:type schema:DefinedTerm
190 Na527e6f506f44e7ebfb496b10c969fb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Middle Aged
192 rdf:type schema:DefinedTerm
193 Na976375c319f40969793f15e93b4dad5 schema:issueNumber 1
194 rdf:type schema:PublicationIssue
195 Nb8b0f59e81644392b9ad3d9dfb0a0526 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name India
197 rdf:type schema:DefinedTerm
198 Nc17e60998be943bc86e46e5df6bfb16b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Male
200 rdf:type schema:DefinedTerm
201 Nd216358042ea4101a323e0eef4d1d52d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Aged
203 rdf:type schema:DefinedTerm
204 Nd5703e0bde014ef78fd79d1d9aa93765 rdf:first sg:person.01177303665.99
205 rdf:rest N4bca5c95c7134f6183bf8f7ba0495387
206 Ndc3e1ebf4be541d5b53c17990e663a21 schema:name pubmed_id
207 schema:value 22642770
208 rdf:type schema:PropertyValue
209 Neb38b23429d44825aa72b48a94ccf573 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Health Surveys
211 rdf:type schema:DefinedTerm
212 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
213 schema:name Medical and Health Sciences
214 rdf:type schema:DefinedTerm
215 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
216 schema:name Public Health and Health Services
217 rdf:type schema:DefinedTerm
218 sg:journal.1024954 schema:issn 1471-2458
219 schema:name BMC Public Health
220 schema:publisher Springer Nature
221 rdf:type schema:Periodical
222 sg:person.010256366372.01 schema:affiliation grid-institutes:grid.410559.c
223 schema:familyName Haddad
224 schema:givenName Slim
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010256366372.01
226 rdf:type schema:Person
227 sg:person.01177303665.99 schema:affiliation grid-institutes:grid.410559.c
228 schema:familyName Siekmans
229 schema:givenName Kendra
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177303665.99
231 rdf:type schema:Person
232 sg:person.01223216576.55 schema:affiliation grid-institutes:grid.433028.e
233 schema:familyName Narayana
234 schema:givenName Delampady
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223216576.55
236 rdf:type schema:Person
237 sg:person.01313532265.22 schema:affiliation grid-institutes:grid.410559.c
238 schema:familyName Màk
239 schema:givenName Geneviève
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313532265.22
241 rdf:type schema:Person
242 sg:person.07715353254.92 schema:affiliation grid-institutes:grid.28046.38
243 schema:familyName Mohindra
244 schema:givenName Katia Sarla
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715353254.92
246 rdf:type schema:Person
247 sg:pub.10.1007/s10198-010-0220-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017492181
248 https://doi.org/10.1007/s10198-010-0220-z
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/ni0806-783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017816447
251 https://doi.org/10.1038/ni0806-783
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/sj.jhh.1001633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027670774
254 https://doi.org/10.1038/sj.jhh.1001633
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/1472-698x-11-s2-s3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031584403
257 https://doi.org/10.1186/1472-698x-11-s2-s3
258 rdf:type schema:CreativeWork
259 sg:pub.10.1186/1475-9276-10-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030285170
260 https://doi.org/10.1186/1475-9276-10-1
261 rdf:type schema:CreativeWork
262 grid-institutes:grid.28046.38 schema:alternateName Institute of Population Health, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
263 schema:name CRCHUM, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, 3875, Avenue Saint Urbain, Montréal, Québec, H2W 1V1, Canada
264 Institute of Population Health, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
265 rdf:type schema:Organization
266 grid-institutes:grid.410559.c schema:alternateName CRCHUM, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, 3875, Avenue Saint Urbain, Montréal, Québec, H2W 1V1, Canada
267 schema:name CRCHUM, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, 3875, Avenue Saint Urbain, Montréal, Québec, H2W 1V1, Canada
268 rdf:type schema:Organization
269 grid-institutes:grid.433028.e schema:alternateName Centre for Development Studies, Prasanth Nagar, Ulloor, Thiruvananthapuram, 695 011, Kerala, India
270 schema:name Centre for Development Studies, Prasanth Nagar, Ulloor, Thiruvananthapuram, 695 011, Kerala, India
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...