A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-02-25

AUTHORS

Catherine AA Beauchemin, Andreas Handel

ABSTRACT

Most mathematical models used to study the dynamics of influenza A have thus far focused on the between-host population level, with the aim to inform public health decisions regarding issues such as drug and social distancing intervention strategies, antiviral stockpiling or vaccine distribution. Here, we investigate mathematical modeling of influenza infection spread at a different scale; namely that occurring within an individual host or a cell culture. We review the models that have been developed in the last decades and discuss their contributions to our understanding of the dynamics of influenza infections. We review kinetic parameters (e.g., viral clearance rate, lifespan of infected cells) and values obtained through fitting mathematical models, and contrast them with values obtained directly from experiments. We explore the symbiotic role of mathematical models and experimental assays in improving our quantitative understanding of influenza infection dynamics. We also discuss the challenges in developing better, more comprehensive models for the course of influenza infections within a host or cell culture. Finally, we explain the contributions of such modeling efforts to important public health issues, and suggest future modeling studies that can help to address additional questions relevant to public health. More... »

PAGES

s7

References to SciGraph publications

  • 2006-09-10. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia in NATURE MEDICINE
  • 2006-04-18. Influenza and the challenge for immunology in NATURE IMMUNOLOGY
  • 2008-03. Cost-Effectiveness Analyses of Vaccination Programmes in PHARMACOECONOMICS
  • 2007-01-07. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract in NATURE MEDICINE
  • 2006-04-26. Strategies for mitigating an influenza pandemic in NATURE
  • 1997-05. Decay characteristics of HIV-1-infected compartments during combination therapy in NATURE
  • 2009-06-22. Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1) in BMC MEDICINE
  • 2009-07-25. An accurate two-phase approximate solution to an acute viral infection model in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2006-03-22. Influenza virus receptors in the human airway in NATURE
  • 2006-09-27. Linking data to models: data regression in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2008-06-09. Systems biology of persistent infection: tuberculosis as a case study in NATURE REVIEWS MICROBIOLOGY
  • 2004-09-19. Modeling the emergence of the 'hot zones': tuberculosis and the amplification dynamics of drug resistance in NATURE MEDICINE
  • 2005-03-24. Postreassortment changes in a model system: HA–NA adjustment in an H3N2 avian–human reassortant influenza virus in ARCHIVES OF VIROLOGY
  • 2002-01. Modelling viral and immune system dynamics in NATURE REVIEWS IMMUNOLOGY
  • 2011-02-25. Exploring the effect of biological delays in kinetic models of influenza within a host or cell culture in BMC PUBLIC HEALTH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2458-11-s1-s7

    DOI

    http://dx.doi.org/10.1186/1471-2458-11-s1-s7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018747618

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21356136


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Culture Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Influenza A virus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Influenza, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Theoretical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Virus Replication", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Ryerson University, M5B 2K3, Toronto, ON, Canada", 
              "id": "http://www.grid.ac/institutes/grid.68312.3e", 
              "name": [
                "Department of Physics, Ryerson University, M5B 2K3, Toronto, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beauchemin", 
            "givenName": "Catherine AA", 
            "id": "sg:person.01273325013.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273325013.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 30602, Athens, GA, USA", 
              "id": "http://www.grid.ac/institutes/grid.213876.9", 
              "name": [
                "Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 30602, Athens, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Handel", 
            "givenName": "Andreas", 
            "id": "sg:person.0716051745.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716051745.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrmicro1919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037369743", 
              "https://doi.org/10.1038/nrmicro1919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni1343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020493695", 
              "https://doi.org/10.1038/ni1343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1741-7015-7-30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030240768", 
              "https://doi.org/10.1186/1741-7015-7-30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2458-11-s1-s10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014564384", 
              "https://doi.org/10.1186/1471-2458-11-s1-s10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-009-0281-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015603929", 
              "https://doi.org/10.1007/s00285-009-0281-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00705-005-0490-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000624474", 
              "https://doi.org/10.1007/s00705-005-0490-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/440435a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026928072", 
              "https://doi.org/10.1038/440435a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2165/00019053-200826030-00004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040162600", 
              "https://doi.org/10.2165/00019053-200826030-00004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm1529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024563608", 
              "https://doi.org/10.1038/nm1529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038171497", 
              "https://doi.org/10.1038/nature04795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/387188a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026180202", 
              "https://doi.org/10.1038/387188a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm1477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051996206", 
              "https://doi.org/10.1038/nm1477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm1102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030754415", 
              "https://doi.org/10.1038/nm1102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm2030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049555900", 
              "https://doi.org/10.1038/nrm2030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003731496", 
              "https://doi.org/10.1038/nri700"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-02-25", 
        "datePublishedReg": "2011-02-25", 
        "description": "Most mathematical models used to study the dynamics of influenza A have thus far focused on the between-host population level, with the aim to inform public health decisions regarding issues such as drug and social distancing intervention strategies, antiviral stockpiling or vaccine distribution. Here, we investigate mathematical modeling of influenza infection spread at a different scale; namely that occurring within an individual host or a cell culture. We review the models that have been developed in the last decades and discuss their contributions to our understanding of the dynamics of influenza infections. We review kinetic parameters (e.g., viral clearance rate, lifespan of infected cells) and values obtained through fitting mathematical models, and contrast them with values obtained directly from experiments. We explore the symbiotic role of mathematical models and experimental assays in improving our quantitative understanding of influenza infection dynamics. We also discuss the challenges in developing better, more comprehensive models for the course of influenza infections within a host or cell culture. Finally, we explain the contributions of such modeling efforts to important public health issues, and suggest future modeling studies that can help to address additional questions relevant to public health.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2458-11-s1-s7", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1024954", 
            "issn": [
              "1471-2458"
            ], 
            "name": "BMC Public Health", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "mathematical model", 
          "fitting mathematical models", 
          "Most mathematical models", 
          "influenza infection", 
          "such modeling efforts", 
          "mathematical modeling", 
          "important public health issue", 
          "public health issue", 
          "cell cultures", 
          "quantitative understanding", 
          "public health decisions", 
          "influenza A", 
          "dynamics", 
          "antiviral stockpiling", 
          "modeling efforts", 
          "vaccine distribution", 
          "infection", 
          "health issues", 
          "health decisions", 
          "infection dynamics", 
          "intervention strategies", 
          "model", 
          "public health", 
          "additional questions", 
          "different scales", 
          "population level", 
          "modeling", 
          "comprehensive model", 
          "influenza", 
          "parameters", 
          "drugs", 
          "health", 
          "distribution", 
          "host", 
          "culture", 
          "individual hosts", 
          "assays", 
          "review", 
          "aim", 
          "values", 
          "contribution", 
          "last decade", 
          "course", 
          "experimental assays", 
          "levels", 
          "study", 
          "role", 
          "kinetic parameters", 
          "experiments", 
          "future modeling studies", 
          "understanding", 
          "challenges", 
          "modeling studies", 
          "scale", 
          "strategies", 
          "issues", 
          "decades", 
          "efforts", 
          "questions", 
          "decisions", 
          "stockpiling", 
          "lessons", 
          "symbiotic role"
        ], 
        "name": "A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead", 
        "pagination": "s7", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018747618"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2458-11-s1-s7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21356136"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2458-11-s1-s7", 
          "https://app.dimensions.ai/details/publication/pub.1018747618"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_553.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2458-11-s1-s7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-11-s1-s7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-11-s1-s7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-11-s1-s7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-11-s1-s7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    222 TRIPLES      22 PREDICATES      111 URIs      88 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2458-11-s1-s7 schema:about N0887cadd2f634fafa62c53db77a40084
    2 N224bd486c79f492da6da7e4c7f96dbcf
    3 N357cfbb4bc894f86ae619a02f01fc3a4
    4 N64153b8be5b84376b084054a8e4f5051
    5 N6f193cd36693456785c4005d6a78ee85
    6 Na284d93cd2764f6b96ef54dcc2444cb0
    7 Ndd07d8f941ef41d886c25db3152e9035
    8 anzsrc-for:11
    9 anzsrc-for:1108
    10 schema:author Nf8c1011d8f3849b29c6c32eedd7b37d1
    11 schema:citation sg:pub.10.1007/s00285-009-0281-8
    12 sg:pub.10.1007/s00705-005-0490-4
    13 sg:pub.10.1038/387188a0
    14 sg:pub.10.1038/440435a
    15 sg:pub.10.1038/nature04795
    16 sg:pub.10.1038/ni1343
    17 sg:pub.10.1038/nm1102
    18 sg:pub.10.1038/nm1477
    19 sg:pub.10.1038/nm1529
    20 sg:pub.10.1038/nri700
    21 sg:pub.10.1038/nrm2030
    22 sg:pub.10.1038/nrmicro1919
    23 sg:pub.10.1186/1471-2458-11-s1-s10
    24 sg:pub.10.1186/1741-7015-7-30
    25 sg:pub.10.2165/00019053-200826030-00004
    26 schema:datePublished 2011-02-25
    27 schema:datePublishedReg 2011-02-25
    28 schema:description Most mathematical models used to study the dynamics of influenza A have thus far focused on the between-host population level, with the aim to inform public health decisions regarding issues such as drug and social distancing intervention strategies, antiviral stockpiling or vaccine distribution. Here, we investigate mathematical modeling of influenza infection spread at a different scale; namely that occurring within an individual host or a cell culture. We review the models that have been developed in the last decades and discuss their contributions to our understanding of the dynamics of influenza infections. We review kinetic parameters (e.g., viral clearance rate, lifespan of infected cells) and values obtained through fitting mathematical models, and contrast them with values obtained directly from experiments. We explore the symbiotic role of mathematical models and experimental assays in improving our quantitative understanding of influenza infection dynamics. We also discuss the challenges in developing better, more comprehensive models for the course of influenza infections within a host or cell culture. Finally, we explain the contributions of such modeling efforts to important public health issues, and suggest future modeling studies that can help to address additional questions relevant to public health.
    29 schema:genre article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N8d72a5441202421eb9c9083415a1e985
    33 Nba1c3dee11364855a87c48571134488f
    34 sg:journal.1024954
    35 schema:keywords Most mathematical models
    36 additional questions
    37 aim
    38 antiviral stockpiling
    39 assays
    40 cell cultures
    41 challenges
    42 comprehensive model
    43 contribution
    44 course
    45 culture
    46 decades
    47 decisions
    48 different scales
    49 distribution
    50 drugs
    51 dynamics
    52 efforts
    53 experimental assays
    54 experiments
    55 fitting mathematical models
    56 future modeling studies
    57 health
    58 health decisions
    59 health issues
    60 host
    61 important public health issue
    62 individual hosts
    63 infection
    64 infection dynamics
    65 influenza
    66 influenza A
    67 influenza infection
    68 intervention strategies
    69 issues
    70 kinetic parameters
    71 last decade
    72 lessons
    73 levels
    74 mathematical model
    75 mathematical modeling
    76 model
    77 modeling
    78 modeling efforts
    79 modeling studies
    80 parameters
    81 population level
    82 public health
    83 public health decisions
    84 public health issue
    85 quantitative understanding
    86 questions
    87 review
    88 role
    89 scale
    90 stockpiling
    91 strategies
    92 study
    93 such modeling efforts
    94 symbiotic role
    95 understanding
    96 vaccine distribution
    97 values
    98 schema:name A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead
    99 schema:pagination s7
    100 schema:productId N202e9a7fa07f4a51bc668f3f21a4c090
    101 N6975e3b6d4d54593a580a771ff48419c
    102 Nddc4937c924b428f8d5b919879f1e277
    103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018747618
    104 https://doi.org/10.1186/1471-2458-11-s1-s7
    105 schema:sdDatePublished 2022-05-10T10:03
    106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    107 schema:sdPublisher Nb445a6c26d65487f9c5c49025de06c11
    108 schema:url https://doi.org/10.1186/1471-2458-11-s1-s7
    109 sgo:license sg:explorer/license/
    110 sgo:sdDataset articles
    111 rdf:type schema:ScholarlyArticle
    112 N0887cadd2f634fafa62c53db77a40084 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Influenza, Human
    114 rdf:type schema:DefinedTerm
    115 N202e9a7fa07f4a51bc668f3f21a4c090 schema:name doi
    116 schema:value 10.1186/1471-2458-11-s1-s7
    117 rdf:type schema:PropertyValue
    118 N224bd486c79f492da6da7e4c7f96dbcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Models, Theoretical
    120 rdf:type schema:DefinedTerm
    121 N357cfbb4bc894f86ae619a02f01fc3a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Cell Culture Techniques
    123 rdf:type schema:DefinedTerm
    124 N64153b8be5b84376b084054a8e4f5051 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Humans
    126 rdf:type schema:DefinedTerm
    127 N6975e3b6d4d54593a580a771ff48419c schema:name pubmed_id
    128 schema:value 21356136
    129 rdf:type schema:PropertyValue
    130 N6f193cd36693456785c4005d6a78ee85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Models, Biological
    132 rdf:type schema:DefinedTerm
    133 N8d72a5441202421eb9c9083415a1e985 schema:issueNumber Suppl 1
    134 rdf:type schema:PublicationIssue
    135 Na284d93cd2764f6b96ef54dcc2444cb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Virus Replication
    137 rdf:type schema:DefinedTerm
    138 Nb445a6c26d65487f9c5c49025de06c11 schema:name Springer Nature - SN SciGraph project
    139 rdf:type schema:Organization
    140 Nba1c3dee11364855a87c48571134488f schema:volumeNumber 11
    141 rdf:type schema:PublicationVolume
    142 Nbe3803579bcd4027aca8e9c047e40433 rdf:first sg:person.0716051745.87
    143 rdf:rest rdf:nil
    144 Ndd07d8f941ef41d886c25db3152e9035 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Influenza A virus
    146 rdf:type schema:DefinedTerm
    147 Nddc4937c924b428f8d5b919879f1e277 schema:name dimensions_id
    148 schema:value pub.1018747618
    149 rdf:type schema:PropertyValue
    150 Nf8c1011d8f3849b29c6c32eedd7b37d1 rdf:first sg:person.01273325013.63
    151 rdf:rest Nbe3803579bcd4027aca8e9c047e40433
    152 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Medical and Health Sciences
    154 rdf:type schema:DefinedTerm
    155 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Medical Microbiology
    157 rdf:type schema:DefinedTerm
    158 sg:journal.1024954 schema:issn 1471-2458
    159 schema:name BMC Public Health
    160 schema:publisher Springer Nature
    161 rdf:type schema:Periodical
    162 sg:person.01273325013.63 schema:affiliation grid-institutes:grid.68312.3e
    163 schema:familyName Beauchemin
    164 schema:givenName Catherine AA
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273325013.63
    166 rdf:type schema:Person
    167 sg:person.0716051745.87 schema:affiliation grid-institutes:grid.213876.9
    168 schema:familyName Handel
    169 schema:givenName Andreas
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716051745.87
    171 rdf:type schema:Person
    172 sg:pub.10.1007/s00285-009-0281-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015603929
    173 https://doi.org/10.1007/s00285-009-0281-8
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s00705-005-0490-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000624474
    176 https://doi.org/10.1007/s00705-005-0490-4
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/387188a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026180202
    179 https://doi.org/10.1038/387188a0
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/440435a schema:sameAs https://app.dimensions.ai/details/publication/pub.1026928072
    182 https://doi.org/10.1038/440435a
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nature04795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038171497
    185 https://doi.org/10.1038/nature04795
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/ni1343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020493695
    188 https://doi.org/10.1038/ni1343
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nm1102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030754415
    191 https://doi.org/10.1038/nm1102
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nm1477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051996206
    194 https://doi.org/10.1038/nm1477
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nm1529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024563608
    197 https://doi.org/10.1038/nm1529
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nri700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003731496
    200 https://doi.org/10.1038/nri700
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nrm2030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049555900
    203 https://doi.org/10.1038/nrm2030
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nrmicro1919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037369743
    206 https://doi.org/10.1038/nrmicro1919
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/1471-2458-11-s1-s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014564384
    209 https://doi.org/10.1186/1471-2458-11-s1-s10
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1186/1741-7015-7-30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030240768
    212 https://doi.org/10.1186/1741-7015-7-30
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.2165/00019053-200826030-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040162600
    215 https://doi.org/10.2165/00019053-200826030-00004
    216 rdf:type schema:CreativeWork
    217 grid-institutes:grid.213876.9 schema:alternateName Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 30602, Athens, GA, USA
    218 schema:name Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 30602, Athens, GA, USA
    219 rdf:type schema:Organization
    220 grid-institutes:grid.68312.3e schema:alternateName Department of Physics, Ryerson University, M5B 2K3, Toronto, ON, Canada
    221 schema:name Department of Physics, Ryerson University, M5B 2K3, Toronto, ON, Canada
    222 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...