Exploring the effect of biological delays in kinetic models of influenza within a host or cell culture View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-02-25

AUTHORS

Benjamin P Holder, Catherine AA Beauchemin

ABSTRACT

BackgroundFor a typical influenza infection in vivo, viral titers over time are characterized by 1–2 days of exponential growth followed by an exponential decay. This simple dynamic can be reproduced by a broad range of mathematical models which makes model selection and the extraction of biologically-relevant infection parameters from experimental data difficult.ResultsWe analyze in vitro experimental data from the literature, specifically that of single-cycle viral yield experiments, to narrow the range of realistic models of infection. In particular, we demonstrate the viability of using a normal or lognormal distribution for the time a cell spends in a given infection state (e.g., the time spent by a newly infected cell in the latent state before it begins to produce virus), while exposing the shortcomings of ordinary differential equation models which implicitly utilize exponential distributions and delay-differential equation models with fixed-length delays.ConclusionsBy fitting published viral titer data from challenge experiments in human volunteers, we show that alternative models can lead to different estimates of the key infection parameters. More... »

PAGES

s10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2458-11-s1-s10

DOI

http://dx.doi.org/10.1186/1471-2458-11-s1-s10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014564384

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21356129


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Culture Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Influenza, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Ryerson University, M5B 2K3, Toronto, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.68312.3e", 
          "name": [
            "Department of Physics, Ryerson University, M5B 2K3, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holder", 
        "givenName": "Benjamin P", 
        "id": "sg:person.0761235041.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761235041.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Ryerson University, M5B 2K3, Toronto, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.68312.3e", 
          "name": [
            "Department of Physics, Ryerson University, M5B 2K3, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beauchemin", 
        "givenName": "Catherine AA", 
        "id": "sg:person.01273325013.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273325013.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11538-006-9174-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000642965", 
          "https://doi.org/10.1007/s11538-006-9174-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-7-197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038015287", 
          "https://doi.org/10.1186/1471-2458-7-197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-007-9279-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033130635", 
          "https://doi.org/10.1007/s11538-007-9279-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/373123a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014949926", 
          "https://doi.org/10.1038/373123a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039997313", 
          "https://doi.org/10.1007/bf00276034"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-02-25", 
    "datePublishedReg": "2011-02-25", 
    "description": "BackgroundFor a typical influenza infection in vivo, viral titers over time are characterized by 1\u20132 days of exponential growth followed by an exponential decay. This simple dynamic can be reproduced by a broad range of mathematical models which makes model selection and the extraction of biologically-relevant infection parameters from experimental data difficult.ResultsWe analyze in vitro experimental data from the literature, specifically that of single-cycle viral yield experiments, to narrow the range of realistic models of infection. In particular, we demonstrate the viability of using a normal or lognormal distribution for the time a cell spends in a given infection state (e.g., the time spent by a newly infected cell in the latent state before it begins to produce virus), while exposing the shortcomings of ordinary differential equation models which implicitly utilize exponential distributions and delay-differential equation models with fixed-length delays.ConclusionsBy fitting published viral titer data from challenge experiments in human volunteers, we show that alternative models can lead to different estimates of the key infection parameters.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2458-11-s1-s10", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024954", 
        "issn": [
          "1471-2458"
        ], 
        "name": "BMC Public Health", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "ordinary differential equation model", 
      "delay differential equation model", 
      "differential equation model", 
      "key infection parameters", 
      "mathematical model", 
      "model selection", 
      "simple dynamics", 
      "experimental data", 
      "exponential distribution", 
      "lognormal distribution", 
      "equation model", 
      "realistic model", 
      "exponential decay", 
      "biological delays", 
      "model", 
      "parameters", 
      "different estimates", 
      "delay", 
      "titer data", 
      "alternative models", 
      "fitting", 
      "infection parameters", 
      "distribution", 
      "dynamics", 
      "exponential growth", 
      "estimates", 
      "broad range", 
      "decay", 
      "experiments", 
      "kinetic model", 
      "range", 
      "data", 
      "infection state", 
      "state", 
      "time", 
      "shortcomings", 
      "selection", 
      "literature", 
      "effect", 
      "yield experiments", 
      "extraction", 
      "growth", 
      "host", 
      "viability", 
      "cells", 
      "BackgroundFor", 
      "influenza", 
      "influenza infection", 
      "human volunteers", 
      "days", 
      "challenge experiments", 
      "ResultsWe", 
      "volunteers", 
      "viral titers", 
      "infection", 
      "cell cultures", 
      "titers", 
      "vivo", 
      "culture"
    ], 
    "name": "Exploring the effect of biological delays in kinetic models of influenza within a host or cell culture", 
    "pagination": "s10", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014564384"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2458-11-s1-s10"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21356129"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2458-11-s1-s10", 
      "https://app.dimensions.ai/details/publication/pub.1014564384"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_538.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2458-11-s1-s10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-11-s1-s10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-11-s1-s10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-11-s1-s10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-11-s1-s10'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      22 PREDICATES      95 URIs      82 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2458-11-s1-s10 schema:about N00b22918a8064d65ac005dbde0c9bd28
2 N242483842e00478991904bdb75c85ecf
3 N3e9f94010a2040c3a29363480e0efb00
4 Nac23ea137bef420d8a555821203e1022
5 Nf8ecb7f45192489db8ba9dbaf8ecc093
6 anzsrc-for:11
7 anzsrc-for:1108
8 schema:author Nb3e3d57f5f034470808a1afa9f05f59a
9 schema:citation sg:pub.10.1007/bf00276034
10 sg:pub.10.1007/s11538-006-9174-9
11 sg:pub.10.1007/s11538-007-9279-9
12 sg:pub.10.1038/373123a0
13 sg:pub.10.1186/1471-2458-7-197
14 schema:datePublished 2011-02-25
15 schema:datePublishedReg 2011-02-25
16 schema:description BackgroundFor a typical influenza infection in vivo, viral titers over time are characterized by 1–2 days of exponential growth followed by an exponential decay. This simple dynamic can be reproduced by a broad range of mathematical models which makes model selection and the extraction of biologically-relevant infection parameters from experimental data difficult.ResultsWe analyze in vitro experimental data from the literature, specifically that of single-cycle viral yield experiments, to narrow the range of realistic models of infection. In particular, we demonstrate the viability of using a normal or lognormal distribution for the time a cell spends in a given infection state (e.g., the time spent by a newly infected cell in the latent state before it begins to produce virus), while exposing the shortcomings of ordinary differential equation models which implicitly utilize exponential distributions and delay-differential equation models with fixed-length delays.ConclusionsBy fitting published viral titer data from challenge experiments in human volunteers, we show that alternative models can lead to different estimates of the key infection parameters.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N6cf3fb0762c54131ac6140724db29d70
21 Ne2f9d6b132894e23a790783fb084ea17
22 sg:journal.1024954
23 schema:keywords BackgroundFor
24 ResultsWe
25 alternative models
26 biological delays
27 broad range
28 cell cultures
29 cells
30 challenge experiments
31 culture
32 data
33 days
34 decay
35 delay
36 delay differential equation model
37 different estimates
38 differential equation model
39 distribution
40 dynamics
41 effect
42 equation model
43 estimates
44 experimental data
45 experiments
46 exponential decay
47 exponential distribution
48 exponential growth
49 extraction
50 fitting
51 growth
52 host
53 human volunteers
54 infection
55 infection parameters
56 infection state
57 influenza
58 influenza infection
59 key infection parameters
60 kinetic model
61 literature
62 lognormal distribution
63 mathematical model
64 model
65 model selection
66 ordinary differential equation model
67 parameters
68 range
69 realistic model
70 selection
71 shortcomings
72 simple dynamics
73 state
74 time
75 titer data
76 titers
77 viability
78 viral titers
79 vivo
80 volunteers
81 yield experiments
82 schema:name Exploring the effect of biological delays in kinetic models of influenza within a host or cell culture
83 schema:pagination s10
84 schema:productId N78ecd881452c45a2bf22fac7e4b956c4
85 N8675e314586e48bf8dafdc1512134308
86 Nb0a2d23e65034654ba6af13ad7dfd0d9
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014564384
88 https://doi.org/10.1186/1471-2458-11-s1-s10
89 schema:sdDatePublished 2022-05-20T07:27
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Naab727496736413f98295e49f1c8d34b
92 schema:url https://doi.org/10.1186/1471-2458-11-s1-s10
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N00b22918a8064d65ac005dbde0c9bd28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Cell Culture Techniques
98 rdf:type schema:DefinedTerm
99 N242483842e00478991904bdb75c85ecf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Kinetics
101 rdf:type schema:DefinedTerm
102 N37380042bf524ef1830cf5b81744ce52 rdf:first sg:person.01273325013.63
103 rdf:rest rdf:nil
104 N3e9f94010a2040c3a29363480e0efb00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Models, Biological
106 rdf:type schema:DefinedTerm
107 N6cf3fb0762c54131ac6140724db29d70 schema:volumeNumber 11
108 rdf:type schema:PublicationVolume
109 N78ecd881452c45a2bf22fac7e4b956c4 schema:name dimensions_id
110 schema:value pub.1014564384
111 rdf:type schema:PropertyValue
112 N8675e314586e48bf8dafdc1512134308 schema:name pubmed_id
113 schema:value 21356129
114 rdf:type schema:PropertyValue
115 Naab727496736413f98295e49f1c8d34b schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 Nac23ea137bef420d8a555821203e1022 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Humans
119 rdf:type schema:DefinedTerm
120 Nb0a2d23e65034654ba6af13ad7dfd0d9 schema:name doi
121 schema:value 10.1186/1471-2458-11-s1-s10
122 rdf:type schema:PropertyValue
123 Nb3e3d57f5f034470808a1afa9f05f59a rdf:first sg:person.0761235041.83
124 rdf:rest N37380042bf524ef1830cf5b81744ce52
125 Ne2f9d6b132894e23a790783fb084ea17 schema:issueNumber Suppl 1
126 rdf:type schema:PublicationIssue
127 Nf8ecb7f45192489db8ba9dbaf8ecc093 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Influenza, Human
129 rdf:type schema:DefinedTerm
130 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
131 schema:name Medical and Health Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
134 schema:name Medical Microbiology
135 rdf:type schema:DefinedTerm
136 sg:journal.1024954 schema:issn 1471-2458
137 schema:name BMC Public Health
138 schema:publisher Springer Nature
139 rdf:type schema:Periodical
140 sg:person.01273325013.63 schema:affiliation grid-institutes:grid.68312.3e
141 schema:familyName Beauchemin
142 schema:givenName Catherine AA
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273325013.63
144 rdf:type schema:Person
145 sg:person.0761235041.83 schema:affiliation grid-institutes:grid.68312.3e
146 schema:familyName Holder
147 schema:givenName Benjamin P
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761235041.83
149 rdf:type schema:Person
150 sg:pub.10.1007/bf00276034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039997313
151 https://doi.org/10.1007/bf00276034
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s11538-006-9174-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000642965
154 https://doi.org/10.1007/s11538-006-9174-9
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s11538-007-9279-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033130635
157 https://doi.org/10.1007/s11538-007-9279-9
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/373123a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014949926
160 https://doi.org/10.1038/373123a0
161 rdf:type schema:CreativeWork
162 sg:pub.10.1186/1471-2458-7-197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038015287
163 https://doi.org/10.1186/1471-2458-7-197
164 rdf:type schema:CreativeWork
165 grid-institutes:grid.68312.3e schema:alternateName Department of Physics, Ryerson University, M5B 2K3, Toronto, ON, Canada
166 schema:name Department of Physics, Ryerson University, M5B 2K3, Toronto, ON, Canada
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...