Automated data extraction from general practice records in an Australian setting: Trends in influenza-like illness in sentinel general practices and ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Gösta TH Liljeqvist, Michael Staff, Michele Puech, Hans Blom, Siranda Torvaldsen

ABSTRACT

BACKGROUND: Influenza intelligence in New South Wales (NSW), Australia is derived mainly from emergency department (ED) presentations and hospital and intensive care admissions, which represent only a portion of influenza-like illness (ILI) in the population. A substantial amount of the remaining data lies hidden in general practice (GP) records. Previous attempts in Australia to gather ILI data from GPs have given them extra work. We explored the possibility of applying automated data extraction from GP records in sentinel surveillance in an Australian setting.The two research questions asked in designing the study were: Can syndromic ILI data be extracted automatically from routine GP data? How do ILI trends in sentinel general practice compare with ILI trends in EDs? METHODS: We adapted a software program already capable of automated data extraction to identify records of patients with ILI in routine electronic GP records in two of the most commonly used commercial programs. This tool was applied in sentinel sites to gather retrospective data for May-October 2007-2009 and in real-time for the same interval in 2010. The data were compared with that provided by the Public Health Real-time Emergency Department Surveillance System (PHREDSS) and with ED data for the same periods. RESULTS: The GP surveillance tool identified seasonal trends in ILI both retrospectively and in near real-time. The curve of seasonal ILI was more responsive and less volatile than that of PHREDSS on a local area level. The number of weekly ILI presentations ranged from 8 to 128 at GP sites and from 0 to 18 in EDs in non-pandemic years. CONCLUSION: Automated data extraction from routine GP records offers a means to gather data without introducing any additional work for the practitioner. Adding this method to current surveillance programs will enhance their ability to monitor ILI and to detect early warning signals of new ILI events. More... »

PAGES

435

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2458-11-435

DOI

http://dx.doi.org/10.1186/1471-2458-11-435

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034746303

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21645354


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Collection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electronic Health Records", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Emergency Service, Hospital", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "General Practice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Influenza, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "New South Wales", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Surveillance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "UNSW Australia", 
          "id": "https://www.grid.ac/institutes/grid.1005.4", 
          "name": [
            "NSW Public Health Officer Training Program, New South Wales Department of Health, Sydney, New South Wales, Australia", 
            "School of Public Health and Community Medicine, University of New South Wales, Sydney, New South Wales, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liljeqvist", 
        "givenName": "G\u00f6sta TH", 
        "id": "sg:person.01041647404.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041647404.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northern Sydney Central Coast Area Health Service", 
          "id": "https://www.grid.ac/institutes/grid.410672.6", 
          "name": [
            "Northern Sydney Central Coast Area Health Service, Hornsby, New South Wales, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Staff", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northern Sydney Central Coast Area Health Service", 
          "id": "https://www.grid.ac/institutes/grid.410672.6", 
          "name": [
            "Northern Sydney Central Coast Area Health Service, Hornsby, New South Wales, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Puech", 
        "givenName": "Michele", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Vale Medical Centre, Brookvale, New South Wales, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blom", 
        "givenName": "Hans", 
        "id": "sg:person.01224211204.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224211204.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UNSW Australia", 
          "id": "https://www.grid.ac/institutes/grid.1005.4", 
          "name": [
            "School of Public Health and Community Medicine, University of New South Wales, Sydney, New South Wales, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torvaldsen", 
        "givenName": "Siranda", 
        "id": "sg:person.01312113252.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312113252.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2458-7-250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005867585", 
          "https://doi.org/10.1186/1471-2458-7-250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sste.2009.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041578062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077126439", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2807/esw.11.25.02980-en", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077264628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077269479", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5694/j.1326-5377.2006.tb00479.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077269479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077655967", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077981319", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077981329", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077981329", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078206486", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Influenza intelligence in New South Wales (NSW), Australia is derived mainly from emergency department (ED) presentations and hospital and intensive care admissions, which represent only a portion of influenza-like illness (ILI) in the population. A substantial amount of the remaining data lies hidden in general practice (GP) records. Previous attempts in Australia to gather ILI data from GPs have given them extra work. We explored the possibility of applying automated data extraction from GP records in sentinel surveillance in an Australian setting.The two research questions asked in designing the study were: Can syndromic ILI data be extracted automatically from routine GP data? How do ILI trends in sentinel general practice compare with ILI trends in EDs?\nMETHODS: We adapted a software program already capable of automated data extraction to identify records of patients with ILI in routine electronic GP records in two of the most commonly used commercial programs. This tool was applied in sentinel sites to gather retrospective data for May-October 2007-2009 and in real-time for the same interval in 2010. The data were compared with that provided by the Public Health Real-time Emergency Department Surveillance System (PHREDSS) and with ED data for the same periods.\nRESULTS: The GP surveillance tool identified seasonal trends in ILI both retrospectively and in near real-time. The curve of seasonal ILI was more responsive and less volatile than that of PHREDSS on a local area level. The number of weekly ILI presentations ranged from 8 to 128 at GP sites and from 0 to 18 in EDs in non-pandemic years.\nCONCLUSION: Automated data extraction from routine GP records offers a means to gather data without introducing any additional work for the practitioner. Adding this method to current surveillance programs will enhance their ability to monitor ILI and to detect early warning signals of new ILI events.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2458-11-435", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024954", 
        "issn": [
          "1471-2458"
        ], 
        "name": "BMC Public Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Automated data extraction from general practice records in an Australian setting: Trends in influenza-like illness in sentinel general practices and emergency departments", 
    "pagination": "435", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a58459db562ff459fcf088906c5826c7bff3c8aa994e14517d541cbf0bd54af5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21645354"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968562"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2458-11-435"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034746303"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2458-11-435", 
      "https://app.dimensions.ai/details/publication/pub.1034746303"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2458-11-435"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-11-435'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-11-435'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-11-435'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-11-435'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      51 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2458-11-435 schema:about N04b1dcba11ee4101b3fb31c1d6578409
2 N3cb31965ca6f4234bfc0bc0ff8c33c9a
3 N3fcef05bda0442e291b24b42b4c9f591
4 N45317371f3db486587b27399f729d14f
5 N46118d934b8e4e3381beed14c994f150
6 N5172f2df51d342adb0c6b6a202b4c3de
7 N7378eb42ab4c4366a7634eb081eb0cc7
8 N73ad02252e3b46cca5e54a41e6b8f6a6
9 Nb691e8a95b5048f3803fe28ad294cdb2
10 Nbb5f39f880d54db69a21619ba7e84ae9
11 Nd5732e06e5b84e5e8bd705f6a916f28c
12 Nfa8cb42a621c43b7a7e34f7c67258569
13 anzsrc-for:11
14 anzsrc-for:1117
15 schema:author N9526f4c25d344ad484418f3273c84ff6
16 schema:citation sg:pub.10.1186/1471-2458-7-250
17 https://app.dimensions.ai/details/publication/pub.1077126439
18 https://app.dimensions.ai/details/publication/pub.1077269479
19 https://app.dimensions.ai/details/publication/pub.1077655967
20 https://app.dimensions.ai/details/publication/pub.1077981319
21 https://app.dimensions.ai/details/publication/pub.1077981329
22 https://app.dimensions.ai/details/publication/pub.1078206486
23 https://doi.org/10.1016/j.sste.2009.12.001
24 https://doi.org/10.2807/esw.11.25.02980-en
25 https://doi.org/10.5694/j.1326-5377.2006.tb00479.x
26 schema:datePublished 2011-12
27 schema:datePublishedReg 2011-12-01
28 schema:description BACKGROUND: Influenza intelligence in New South Wales (NSW), Australia is derived mainly from emergency department (ED) presentations and hospital and intensive care admissions, which represent only a portion of influenza-like illness (ILI) in the population. A substantial amount of the remaining data lies hidden in general practice (GP) records. Previous attempts in Australia to gather ILI data from GPs have given them extra work. We explored the possibility of applying automated data extraction from GP records in sentinel surveillance in an Australian setting.The two research questions asked in designing the study were: Can syndromic ILI data be extracted automatically from routine GP data? How do ILI trends in sentinel general practice compare with ILI trends in EDs? METHODS: We adapted a software program already capable of automated data extraction to identify records of patients with ILI in routine electronic GP records in two of the most commonly used commercial programs. This tool was applied in sentinel sites to gather retrospective data for May-October 2007-2009 and in real-time for the same interval in 2010. The data were compared with that provided by the Public Health Real-time Emergency Department Surveillance System (PHREDSS) and with ED data for the same periods. RESULTS: The GP surveillance tool identified seasonal trends in ILI both retrospectively and in near real-time. The curve of seasonal ILI was more responsive and less volatile than that of PHREDSS on a local area level. The number of weekly ILI presentations ranged from 8 to 128 at GP sites and from 0 to 18 in EDs in non-pandemic years. CONCLUSION: Automated data extraction from routine GP records offers a means to gather data without introducing any additional work for the practitioner. Adding this method to current surveillance programs will enhance their ability to monitor ILI and to detect early warning signals of new ILI events.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N1e24f39be4ad47fa95a42f1a10d95d5e
33 Nb797400cf63b46e39c78d89d62d8ccbc
34 sg:journal.1024954
35 schema:name Automated data extraction from general practice records in an Australian setting: Trends in influenza-like illness in sentinel general practices and emergency departments
36 schema:pagination 435
37 schema:productId N7a7857588cd94ef98f66623bbacc5fba
38 Nb39c147347cd444093ec141de98c2d54
39 Nb4a297d5fe894d4293d18875c8d16a2a
40 Nc8895bcf10ee436288ec996cebe1a590
41 Nd791013cddee4910b2a8a2899e024a92
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034746303
43 https://doi.org/10.1186/1471-2458-11-435
44 schema:sdDatePublished 2019-04-10T23:31
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N4ab32fdab05a44a185e3072c85feff40
47 schema:url http://link.springer.com/10.1186%2F1471-2458-11-435
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N04b1dcba11ee4101b3fb31c1d6578409 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
52 schema:name Population Surveillance
53 rdf:type schema:DefinedTerm
54 N1e24f39be4ad47fa95a42f1a10d95d5e schema:volumeNumber 11
55 rdf:type schema:PublicationVolume
56 N3cb31965ca6f4234bfc0bc0ff8c33c9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Software
58 rdf:type schema:DefinedTerm
59 N3fcef05bda0442e291b24b42b4c9f591 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Data Collection
61 rdf:type schema:DefinedTerm
62 N45317371f3db486587b27399f729d14f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name General Practice
64 rdf:type schema:DefinedTerm
65 N46118d934b8e4e3381beed14c994f150 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Diagnosis, Differential
67 rdf:type schema:DefinedTerm
68 N4ab32fdab05a44a185e3072c85feff40 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N5172f2df51d342adb0c6b6a202b4c3de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Emergency Service, Hospital
72 rdf:type schema:DefinedTerm
73 N7378eb42ab4c4366a7634eb081eb0cc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Electronic Health Records
75 rdf:type schema:DefinedTerm
76 N73ad02252e3b46cca5e54a41e6b8f6a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Automation
78 rdf:type schema:DefinedTerm
79 N7a7857588cd94ef98f66623bbacc5fba schema:name readcube_id
80 schema:value a58459db562ff459fcf088906c5826c7bff3c8aa994e14517d541cbf0bd54af5
81 rdf:type schema:PropertyValue
82 N9526f4c25d344ad484418f3273c84ff6 rdf:first sg:person.01041647404.92
83 rdf:rest Nf763d8f1fe2641fe833e61d14d9e317b
84 N98f04911d3e1472cb49c0bcbddc7624a rdf:first sg:person.01312113252.53
85 rdf:rest rdf:nil
86 Na56291caf74d41e6b45252e86eaabe2b schema:affiliation https://www.grid.ac/institutes/grid.410672.6
87 schema:familyName Staff
88 schema:givenName Michael
89 rdf:type schema:Person
90 Nb39c147347cd444093ec141de98c2d54 schema:name dimensions_id
91 schema:value pub.1034746303
92 rdf:type schema:PropertyValue
93 Nb4a297d5fe894d4293d18875c8d16a2a schema:name doi
94 schema:value 10.1186/1471-2458-11-435
95 rdf:type schema:PropertyValue
96 Nb691e8a95b5048f3803fe28ad294cdb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Humans
98 rdf:type schema:DefinedTerm
99 Nb797400cf63b46e39c78d89d62d8ccbc schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 Nbad07d35dc744113b529956b7df5b787 schema:name Vale Medical Centre, Brookvale, New South Wales, Australia
102 rdf:type schema:Organization
103 Nbb0ae279f05348a5a8c8fbdda58429fe rdf:first Ndaa7c733300d4120a570b4d497beaad4
104 rdf:rest Ne2ff7c4dcbb34c53b10d8c7ab50d86a3
105 Nbb5f39f880d54db69a21619ba7e84ae9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name New South Wales
107 rdf:type schema:DefinedTerm
108 Nc8895bcf10ee436288ec996cebe1a590 schema:name pubmed_id
109 schema:value 21645354
110 rdf:type schema:PropertyValue
111 Nd5732e06e5b84e5e8bd705f6a916f28c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Diagnosis, Computer-Assisted
113 rdf:type schema:DefinedTerm
114 Nd791013cddee4910b2a8a2899e024a92 schema:name nlm_unique_id
115 schema:value 100968562
116 rdf:type schema:PropertyValue
117 Ndaa7c733300d4120a570b4d497beaad4 schema:affiliation https://www.grid.ac/institutes/grid.410672.6
118 schema:familyName Puech
119 schema:givenName Michele
120 rdf:type schema:Person
121 Ne2ff7c4dcbb34c53b10d8c7ab50d86a3 rdf:first sg:person.01224211204.52
122 rdf:rest N98f04911d3e1472cb49c0bcbddc7624a
123 Nf763d8f1fe2641fe833e61d14d9e317b rdf:first Na56291caf74d41e6b45252e86eaabe2b
124 rdf:rest Nbb0ae279f05348a5a8c8fbdda58429fe
125 Nfa8cb42a621c43b7a7e34f7c67258569 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Influenza, Human
127 rdf:type schema:DefinedTerm
128 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
129 schema:name Medical and Health Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
132 schema:name Public Health and Health Services
133 rdf:type schema:DefinedTerm
134 sg:journal.1024954 schema:issn 1471-2458
135 schema:name BMC Public Health
136 rdf:type schema:Periodical
137 sg:person.01041647404.92 schema:affiliation https://www.grid.ac/institutes/grid.1005.4
138 schema:familyName Liljeqvist
139 schema:givenName Gösta TH
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041647404.92
141 rdf:type schema:Person
142 sg:person.01224211204.52 schema:affiliation Nbad07d35dc744113b529956b7df5b787
143 schema:familyName Blom
144 schema:givenName Hans
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224211204.52
146 rdf:type schema:Person
147 sg:person.01312113252.53 schema:affiliation https://www.grid.ac/institutes/grid.1005.4
148 schema:familyName Torvaldsen
149 schema:givenName Siranda
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312113252.53
151 rdf:type schema:Person
152 sg:pub.10.1186/1471-2458-7-250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005867585
153 https://doi.org/10.1186/1471-2458-7-250
154 rdf:type schema:CreativeWork
155 https://app.dimensions.ai/details/publication/pub.1077126439 schema:CreativeWork
156 https://app.dimensions.ai/details/publication/pub.1077269479 schema:CreativeWork
157 https://app.dimensions.ai/details/publication/pub.1077655967 schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1077981319 schema:CreativeWork
159 https://app.dimensions.ai/details/publication/pub.1077981329 schema:CreativeWork
160 https://app.dimensions.ai/details/publication/pub.1078206486 schema:CreativeWork
161 https://doi.org/10.1016/j.sste.2009.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041578062
162 rdf:type schema:CreativeWork
163 https://doi.org/10.2807/esw.11.25.02980-en schema:sameAs https://app.dimensions.ai/details/publication/pub.1077264628
164 rdf:type schema:CreativeWork
165 https://doi.org/10.5694/j.1326-5377.2006.tb00479.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1077269479
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.1005.4 schema:alternateName UNSW Australia
168 schema:name NSW Public Health Officer Training Program, New South Wales Department of Health, Sydney, New South Wales, Australia
169 School of Public Health and Community Medicine, University of New South Wales, Sydney, New South Wales, Australia
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.410672.6 schema:alternateName Northern Sydney Central Coast Area Health Service
172 schema:name Northern Sydney Central Coast Area Health Service, Hornsby, New South Wales, Australia
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...