Using automated medical records for rapid identification of illness syndromes (syndromic surveillance): the example of lower respiratory infection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-12

AUTHORS

Ross Lazarus, Ken P Kleinman, Inna Dashevsky, Alfred DeMaria, Richard Platt

ABSTRACT

BACKGROUND: Gaps in disease surveillance capacity, particularly for emerging infections and bioterrorist attack, highlight a need for efficient, real time identification of diseases. METHODS: We studied automated records from 1996 through 1999 of approximately 250,000 health plan members in greater Boston. RESULTS: We identified 152,435 lower respiratory infection illness visits, comprising 106,670 episodes during 1,143,208 person-years. Three diagnoses, cough (ICD9CM 786.2), pneumonia not otherwise specified (ICD9CM 486) and acute bronchitis (ICD9CM 466.0) accounted for 91% of these visits, with expected age and sex distributions. Variation of weekly occurrences corresponded closely to national pneumonia and influenza mortality data. There was substantial variation in geographic location of the cases. CONCLUSION: This information complements existing surveillance programs by assessing the large majority of episodes of illness for which no etiologic agents are identified. Additional advantages include: a) sensitivity, uniformity and efficiency, since detection of events does not depend on clinicians' to actively report diagnoses, b) timeliness, the data are available within a day of the clinical event; and c) ease of integration into automated surveillance systems. These features facilitate early detection of conditions of public health importance, including regularly occurring events like seasonal respiratory illness, as well as unusual occurrences, such as a bioterrorist attack that first manifests as respiratory symptoms. These methods should also be applicable to other infectious and non-infectious conditions. Knowledge of disease patterns in real time may also help clinicians to manage patients, and assist health plan administrators in allocating resources efficiently. More... »

PAGES

9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2458-1-9

DOI

http://dx.doi.org/10.1186/1471-2458-1-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049162460

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11722798


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acute Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ambulatory Care Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bioterrorism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Boston", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bronchitis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cough", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Notification", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Episode of Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Geography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Maintenance Organizations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Medical Records Systems, Computerized", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Office Visits", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pneumonia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Surveillance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Public Health Informatics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiratory Tract Infections", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sydney", 
          "id": "https://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "Chanming Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA", 
            "Department of Public Health and Community Medicine, University of Sydney, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lazarus", 
        "givenName": "Ross", 
        "id": "sg:person.0766744011.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766744011.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Ambulatory Care and Prevention, Harvard Medical School, Harvard Pilgrim Health Care, and Harvard Vanguard Medical Associates, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kleinman", 
        "givenName": "Ken P", 
        "id": "sg:person.016677331057.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016677331057.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Ambulatory Care and Prevention, Harvard Medical School, Harvard Pilgrim Health Care, and Harvard Vanguard Medical Associates, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dashevsky", 
        "givenName": "Inna", 
        "id": "sg:person.01346106366.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346106366.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Department of Public Health", 
          "id": "https://www.grid.ac/institutes/grid.416511.6", 
          "name": [
            "Bureau of Communicable Disease Control, Massachusetts Department of Public Health, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DeMaria", 
        "givenName": "Alfred", 
        "id": "sg:person.01110100345.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110100345.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Chanming Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA", 
            "Department of Ambulatory Care and Prevention, Harvard Medical School, Harvard Pilgrim Health Care, and Harvard Vanguard Medical Associates, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Platt", 
        "givenName": "Richard", 
        "id": "sg:person.01126117364.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126117364.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/01.str.29.8.1602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000140065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00124784-200107060-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005455259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00124784-200107060-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005455259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.1997.00440360129015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018304202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006205-199311000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024601772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006205-199311000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024601772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.159.21.2531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032256860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1399-3003.2000.15d21.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038869495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.157.15.1709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054115361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1979.11438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061444304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid0701.010113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071122368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a113061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081648004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a116770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082754455"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-12", 
    "datePublishedReg": "2001-12-01", 
    "description": "BACKGROUND: Gaps in disease surveillance capacity, particularly for emerging infections and bioterrorist attack, highlight a need for efficient, real time identification of diseases.\nMETHODS: We studied automated records from 1996 through 1999 of approximately 250,000 health plan members in greater Boston.\nRESULTS: We identified 152,435 lower respiratory infection illness visits, comprising 106,670 episodes during 1,143,208 person-years. Three diagnoses, cough (ICD9CM 786.2), pneumonia not otherwise specified (ICD9CM 486) and acute bronchitis (ICD9CM 466.0) accounted for 91% of these visits, with expected age and sex distributions. Variation of weekly occurrences corresponded closely to national pneumonia and influenza mortality data. There was substantial variation in geographic location of the cases.\nCONCLUSION: This information complements existing surveillance programs by assessing the large majority of episodes of illness for which no etiologic agents are identified. Additional advantages include: a) sensitivity, uniformity and efficiency, since detection of events does not depend on clinicians' to actively report diagnoses, b) timeliness, the data are available within a day of the clinical event; and c) ease of integration into automated surveillance systems. These features facilitate early detection of conditions of public health importance, including regularly occurring events like seasonal respiratory illness, as well as unusual occurrences, such as a bioterrorist attack that first manifests as respiratory symptoms. These methods should also be applicable to other infectious and non-infectious conditions. Knowledge of disease patterns in real time may also help clinicians to manage patients, and assist health plan administrators in allocating resources efficiently.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2458-1-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024954", 
        "issn": [
          "1471-2458"
        ], 
        "name": "BMC Public Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Using automated medical records for rapid identification of illness syndromes (syndromic surveillance): the example of lower respiratory infection", 
    "pagination": "9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ea33b36f75babfe11abc578a03fef6a41c37f4adbe96cc2439ae3e8a9d671ddc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11722798"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968562"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2458-1-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049162460"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2458-1-9", 
      "https://app.dimensions.ai/details/publication/pub.1049162460"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2458-1-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-1-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-1-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-1-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2458-1-9'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      58 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2458-1-9 schema:about N0a50bad3808b4f51b132f1295e203a7b
2 N27e3ce62644646b39c5110f31037dc6a
3 N2a916229c847457dbb010e6d5557e5fd
4 N2bbc34d2d45e4b80ad5bbfc380179c5d
5 N2ceb5a1abc6a4ca1b0e68934b2fde6c0
6 N306cfc913d664c1191f30948f5a5805e
7 N5af893723c72440985e2e78a6d17ccbb
8 N6c54e368a5e147dd85fc0d06d94ea746
9 N7b9b7db02cca4e379d1697c7b857b3a8
10 N877bc9fd40784524ae13dde78f35f413
11 Naf7faa3e526447e1b0c0995f3ccf992f
12 Nb10127dcd1ac47059ff3633b3a4827ca
13 Nb299b3de00004f2da16c64a5e0329e26
14 Nb9256f388e214762916f740d7d0fe724
15 Nce47d55fd9304f4590899e80ed35c3dd
16 Nd594ad955a0c45169f385bc0a74f5e2c
17 Nf5a71c2a051543d1bc70677e46476694
18 Nf67a935738724b2fb5641613b4a49635
19 anzsrc-for:11
20 anzsrc-for:1117
21 schema:author N1937021e64834fb5bdc9e90de8c4608f
22 schema:citation https://doi.org/10.1001/archinte.157.15.1709
23 https://doi.org/10.1001/archinte.159.21.2531
24 https://doi.org/10.1001/archinte.1997.00440360129015
25 https://doi.org/10.1034/j.1399-3003.2000.15d21.x
26 https://doi.org/10.1093/oxfordjournals.aje.a113061
27 https://doi.org/10.1093/oxfordjournals.aje.a116770
28 https://doi.org/10.1097/00006205-199311000-00004
29 https://doi.org/10.1097/00124784-200107060-00005
30 https://doi.org/10.1109/proc.1979.11438
31 https://doi.org/10.1161/01.str.29.8.1602
32 https://doi.org/10.3201/eid0701.010113
33 schema:datePublished 2001-12
34 schema:datePublishedReg 2001-12-01
35 schema:description BACKGROUND: Gaps in disease surveillance capacity, particularly for emerging infections and bioterrorist attack, highlight a need for efficient, real time identification of diseases. METHODS: We studied automated records from 1996 through 1999 of approximately 250,000 health plan members in greater Boston. RESULTS: We identified 152,435 lower respiratory infection illness visits, comprising 106,670 episodes during 1,143,208 person-years. Three diagnoses, cough (ICD9CM 786.2), pneumonia not otherwise specified (ICD9CM 486) and acute bronchitis (ICD9CM 466.0) accounted for 91% of these visits, with expected age and sex distributions. Variation of weekly occurrences corresponded closely to national pneumonia and influenza mortality data. There was substantial variation in geographic location of the cases. CONCLUSION: This information complements existing surveillance programs by assessing the large majority of episodes of illness for which no etiologic agents are identified. Additional advantages include: a) sensitivity, uniformity and efficiency, since detection of events does not depend on clinicians' to actively report diagnoses, b) timeliness, the data are available within a day of the clinical event; and c) ease of integration into automated surveillance systems. These features facilitate early detection of conditions of public health importance, including regularly occurring events like seasonal respiratory illness, as well as unusual occurrences, such as a bioterrorist attack that first manifests as respiratory symptoms. These methods should also be applicable to other infectious and non-infectious conditions. Knowledge of disease patterns in real time may also help clinicians to manage patients, and assist health plan administrators in allocating resources efficiently.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N6c506bf09ca14b20a82c3f66b74dd061
40 Nc8049e507c834ff09b208ff0633d081a
41 sg:journal.1024954
42 schema:name Using automated medical records for rapid identification of illness syndromes (syndromic surveillance): the example of lower respiratory infection
43 schema:pagination 9
44 schema:productId N31c364f1d6644db999040c3f9d24b7ce
45 N3359a189211142a2917df5c24097e7bc
46 N6c6f1e0c2d4646ec924aaddeb77b3b3f
47 Nb1f490f142114b6491ddf3442ea0a259
48 Nbd19ab3b0a2a4319b83a36553455df19
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049162460
50 https://doi.org/10.1186/1471-2458-1-9
51 schema:sdDatePublished 2019-04-10T15:02
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N0b4a2ab601f94d79a2c4bebdedd53b97
54 schema:url http://link.springer.com/10.1186%2F1471-2458-1-9
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0a50bad3808b4f51b132f1295e203a7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Geography
60 rdf:type schema:DefinedTerm
61 N0b4a2ab601f94d79a2c4bebdedd53b97 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N1937021e64834fb5bdc9e90de8c4608f rdf:first sg:person.0766744011.63
64 rdf:rest Na1a445d12fbe4fd5b6ad2d86eb040d6d
65 N27e3ce62644646b39c5110f31037dc6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Public Health Informatics
67 rdf:type schema:DefinedTerm
68 N2a916229c847457dbb010e6d5557e5fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Boston
70 rdf:type schema:DefinedTerm
71 N2bbc34d2d45e4b80ad5bbfc380179c5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Office Visits
73 rdf:type schema:DefinedTerm
74 N2ceb5a1abc6a4ca1b0e68934b2fde6c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Bioterrorism
76 rdf:type schema:DefinedTerm
77 N306cfc913d664c1191f30948f5a5805e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Episode of Care
79 rdf:type schema:DefinedTerm
80 N31c364f1d6644db999040c3f9d24b7ce schema:name readcube_id
81 schema:value ea33b36f75babfe11abc578a03fef6a41c37f4adbe96cc2439ae3e8a9d671ddc
82 rdf:type schema:PropertyValue
83 N3359a189211142a2917df5c24097e7bc schema:name dimensions_id
84 schema:value pub.1049162460
85 rdf:type schema:PropertyValue
86 N3dea66cf1e114bd8832adc98ebbf8c2d rdf:first sg:person.01126117364.45
87 rdf:rest rdf:nil
88 N5af893723c72440985e2e78a6d17ccbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Cough
90 rdf:type schema:DefinedTerm
91 N6c506bf09ca14b20a82c3f66b74dd061 schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 N6c54e368a5e147dd85fc0d06d94ea746 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Health Maintenance Organizations
95 rdf:type schema:DefinedTerm
96 N6c6f1e0c2d4646ec924aaddeb77b3b3f schema:name pubmed_id
97 schema:value 11722798
98 rdf:type schema:PropertyValue
99 N7b9b7db02cca4e379d1697c7b857b3a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Pneumonia
101 rdf:type schema:DefinedTerm
102 N7ebf87fcac3348b8860502767a58c4ba rdf:first sg:person.01346106366.21
103 rdf:rest Nb218d02ab5484051bf92631745582b00
104 N877bc9fd40784524ae13dde78f35f413 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Acute Disease
106 rdf:type schema:DefinedTerm
107 Na1a445d12fbe4fd5b6ad2d86eb040d6d rdf:first sg:person.016677331057.90
108 rdf:rest N7ebf87fcac3348b8860502767a58c4ba
109 Naf7faa3e526447e1b0c0995f3ccf992f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Disease Notification
111 rdf:type schema:DefinedTerm
112 Nb10127dcd1ac47059ff3633b3a4827ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Bronchitis
114 rdf:type schema:DefinedTerm
115 Nb1f490f142114b6491ddf3442ea0a259 schema:name nlm_unique_id
116 schema:value 100968562
117 rdf:type schema:PropertyValue
118 Nb218d02ab5484051bf92631745582b00 rdf:first sg:person.01110100345.08
119 rdf:rest N3dea66cf1e114bd8832adc98ebbf8c2d
120 Nb299b3de00004f2da16c64a5e0329e26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Medical Records Systems, Computerized
122 rdf:type schema:DefinedTerm
123 Nb9256f388e214762916f740d7d0fe724 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Reproducibility of Results
125 rdf:type schema:DefinedTerm
126 Nbd19ab3b0a2a4319b83a36553455df19 schema:name doi
127 schema:value 10.1186/1471-2458-1-9
128 rdf:type schema:PropertyValue
129 Nc8049e507c834ff09b208ff0633d081a schema:volumeNumber 1
130 rdf:type schema:PublicationVolume
131 Nce47d55fd9304f4590899e80ed35c3dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Ambulatory Care Information Systems
133 rdf:type schema:DefinedTerm
134 Nd594ad955a0c45169f385bc0a74f5e2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Population Surveillance
136 rdf:type schema:DefinedTerm
137 Nf5a71c2a051543d1bc70677e46476694 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Humans
139 rdf:type schema:DefinedTerm
140 Nf67a935738724b2fb5641613b4a49635 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Respiratory Tract Infections
142 rdf:type schema:DefinedTerm
143 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
144 schema:name Medical and Health Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
147 schema:name Public Health and Health Services
148 rdf:type schema:DefinedTerm
149 sg:journal.1024954 schema:issn 1471-2458
150 schema:name BMC Public Health
151 rdf:type schema:Periodical
152 sg:person.01110100345.08 schema:affiliation https://www.grid.ac/institutes/grid.416511.6
153 schema:familyName DeMaria
154 schema:givenName Alfred
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110100345.08
156 rdf:type schema:Person
157 sg:person.01126117364.45 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
158 schema:familyName Platt
159 schema:givenName Richard
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126117364.45
161 rdf:type schema:Person
162 sg:person.01346106366.21 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
163 schema:familyName Dashevsky
164 schema:givenName Inna
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346106366.21
166 rdf:type schema:Person
167 sg:person.016677331057.90 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
168 schema:familyName Kleinman
169 schema:givenName Ken P
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016677331057.90
171 rdf:type schema:Person
172 sg:person.0766744011.63 schema:affiliation https://www.grid.ac/institutes/grid.1013.3
173 schema:familyName Lazarus
174 schema:givenName Ross
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766744011.63
176 rdf:type schema:Person
177 https://doi.org/10.1001/archinte.157.15.1709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054115361
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1001/archinte.159.21.2531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032256860
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1001/archinte.1997.00440360129015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018304202
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1034/j.1399-3003.2000.15d21.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038869495
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/oxfordjournals.aje.a113061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081648004
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/oxfordjournals.aje.a116770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082754455
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1097/00006205-199311000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024601772
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1097/00124784-200107060-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005455259
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/proc.1979.11438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061444304
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1161/01.str.29.8.1602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000140065
196 rdf:type schema:CreativeWork
197 https://doi.org/10.3201/eid0701.010113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071122368
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.1013.3 schema:alternateName University of Sydney
200 schema:name Chanming Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
201 Department of Public Health and Community Medicine, University of Sydney, Sydney, Australia
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
204 schema:name Chanming Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
205 Department of Ambulatory Care and Prevention, Harvard Medical School, Harvard Pilgrim Health Care, and Harvard Vanguard Medical Associates, Boston, MA, USA
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.416511.6 schema:alternateName Massachusetts Department of Public Health
208 schema:name Bureau of Communicable Disease Control, Massachusetts Department of Public Health, Boston, MA, USA
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...