Identification of novel biomarker candidates by proteomic analysis of cerebrospinal fluid from patients with moyamoya disease using SELDI-TOF-MS View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-11-08

AUTHORS

Yoshio Araki, Kazuhiro Yoshikawa, Sho Okamoto, Masaki Sumitomo, Mikio Maruwaka, Toshihiko Wakabayashi

ABSTRACT

BACKGROUND: Moyamoya disease (MMD) is an uncommon cerebrovascular condition with unknown etiology characterized by slowly progressive stenosis or occlusion of the bilateral internal carotid arteries associated with an abnormal vascular network. MMD is a major cause of stroke, specifically in the younger population. Diagnosis is based on only radiological features as no other clinical data are available. The purpose of this study was to identify novel biomarker candidate proteins differentially expressed in the cerebrospinal fluid (CSF) of patients with MMD using proteomic analysis. METHODS: For detection of biomarkers, CSF samples were obtained from 20 patients with MMD and 12 control patients. Mass spectral data were generated by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) with an anion exchange chip in three different buffer conditions. After expression difference mapping was undertaken using the obtained protein profiles, a comparative analysis was performed. RESULTS: A statistically significant number of proteins (34) were recognized as single biomarker candidate proteins which were differentially detected in the CSF of patients with MMD, compared to the control patients (p < 0.05). All peak intensity profiles of the biomarker candidates underwent classification and regression tree (CART) analysis to produce prediction models. Two important biomarkers could successfully classify the patients with MMD and control patients. CONCLUSIONS: In this study, several novel biomarker candidate proteins differentially expressed in the CSF of patients with MMD were identified by a recently developed proteomic approach. This is a pilot study of CSF proteomics for MMD using SELDI technology. These biomarker candidates have the potential to shed light on the underlying pathogenesis of MMD. More... »

PAGES

112-112

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2377-10-112

DOI

http://dx.doi.org/10.1186/1471-2377-10-112

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039489722

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21059247


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Moyamoya Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pilot Projects", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Promoting Center for Clinical Research, Aichi Medical University School of Medicine, Nagakute-cho, Aichi 480-1195, Japan", 
          "id": "http://www.grid.ac/institutes/grid.411234.1", 
          "name": [
            "Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan", 
            "Promoting Center for Clinical Research, Aichi Medical University School of Medicine, Nagakute-cho, Aichi 480-1195, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Araki", 
        "givenName": "Yoshio", 
        "id": "sg:person.01072670755.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072670755.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Genetic and Regenerative Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan", 
          "id": "http://www.grid.ac/institutes/grid.437848.4", 
          "name": [
            "Promoting Center for Clinical Research, Aichi Medical University School of Medicine, Nagakute-cho, Aichi 480-1195, Japan", 
            "Center for Genetic and Regenerative Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshikawa", 
        "givenName": "Kazuhiro", 
        "id": "sg:person.0766017060.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766017060.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan", 
          "id": "http://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okamoto", 
        "givenName": "Sho", 
        "id": "sg:person.0600245115.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600245115.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan", 
          "id": "http://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sumitomo", 
        "givenName": "Masaki", 
        "id": "sg:person.0756442355.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756442355.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan", 
          "id": "http://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maruwaka", 
        "givenName": "Mikio", 
        "id": "sg:person.01024555555.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024555555.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan", 
          "id": "http://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wakabayashi", 
        "givenName": "Toshihiko", 
        "id": "sg:person.01367256160.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367256160.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00395095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008501581", 
          "https://doi.org/10.1007/bf00395095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-4598-6-25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042308694", 
          "https://doi.org/10.1186/1476-4598-6-25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10038-004-0143-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039971746", 
          "https://doi.org/10.1007/s10038-004-0143-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-11-08", 
    "datePublishedReg": "2010-11-08", 
    "description": "BACKGROUND: Moyamoya disease (MMD) is an uncommon cerebrovascular condition with unknown etiology characterized by slowly progressive stenosis or occlusion of the bilateral internal carotid arteries associated with an abnormal vascular network. MMD is a major cause of stroke, specifically in the younger population. Diagnosis is based on only radiological features as no other clinical data are available. The purpose of this study was to identify novel biomarker candidate proteins differentially expressed in the cerebrospinal fluid (CSF) of patients with MMD using proteomic analysis.\nMETHODS: For detection of biomarkers, CSF samples were obtained from 20 patients with MMD and 12 control patients. Mass spectral data were generated by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) with an anion exchange chip in three different buffer conditions. After expression difference mapping was undertaken using the obtained protein profiles, a comparative analysis was performed.\nRESULTS: A statistically significant number of proteins (34) were recognized as single biomarker candidate proteins which were differentially detected in the CSF of patients with MMD, compared to the control patients (p < 0.05). All peak intensity profiles of the biomarker candidates underwent classification and regression tree (CART) analysis to produce prediction models. Two important biomarkers could successfully classify the patients with MMD and control patients.\nCONCLUSIONS: In this study, several novel biomarker candidate proteins differentially expressed in the CSF of patients with MMD were identified by a recently developed proteomic approach. This is a pilot study of CSF proteomics for MMD using SELDI technology. These biomarker candidates have the potential to shed light on the underlying pathogenesis of MMD.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2377-10-112", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024950", 
        "issn": [
          "1471-2377"
        ], 
        "name": "BMC Neurology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "CSF of patients", 
      "moyamoya disease", 
      "control patients", 
      "cerebrospinal fluid", 
      "biomarker candidate proteins", 
      "biomarker candidates", 
      "bilateral internal carotid arteries", 
      "only radiological feature", 
      "abnormal vascular network", 
      "internal carotid artery", 
      "novel biomarker candidates", 
      "surface-enhanced laser desorption/ionization time", 
      "candidate proteins", 
      "progressive stenosis", 
      "radiological features", 
      "unknown etiology", 
      "underlying pathogenesis", 
      "cerebrovascular conditions", 
      "clinical data", 
      "carotid artery", 
      "CSF samples", 
      "patients", 
      "CSF proteomics", 
      "major cause", 
      "pilot study", 
      "young population", 
      "regression tree analysis", 
      "important biomarker", 
      "proteomic analysis", 
      "disease", 
      "SELDI-TOF", 
      "biomarkers", 
      "SELDI technology", 
      "vascular network", 
      "significant number", 
      "detection of biomarkers", 
      "stenosis", 
      "artery", 
      "pathogenesis", 
      "etiology", 
      "stroke", 
      "protein", 
      "protein profiles", 
      "diagnosis", 
      "flight mass spectrometry", 
      "occlusion", 
      "study", 
      "proteomic approach", 
      "laser desorption/ionization time", 
      "desorption/ionization time", 
      "cause", 
      "candidates", 
      "fluid", 
      "profile", 
      "population", 
      "ionization time", 
      "data", 
      "analysis", 
      "tree analysis", 
      "mass spectrometry", 
      "purpose", 
      "MS", 
      "samples", 
      "proteomics", 
      "identification", 
      "prediction model", 
      "detection", 
      "number", 
      "conditions", 
      "classification", 
      "time", 
      "potential", 
      "features", 
      "comparative analysis", 
      "different buffer conditions", 
      "peak intensity profiles", 
      "spectrometry", 
      "mass spectral data", 
      "model", 
      "approach", 
      "light", 
      "difference mapping", 
      "mapping", 
      "buffer conditions", 
      "spectral data", 
      "technology", 
      "network", 
      "chip", 
      "intensity profiles", 
      "uncommon cerebrovascular condition", 
      "novel biomarker candidate proteins", 
      "anion exchange chip", 
      "exchange chip", 
      "expression difference mapping", 
      "single biomarker candidate proteins"
    ], 
    "name": "Identification of novel biomarker candidates by proteomic analysis of cerebrospinal fluid from patients with moyamoya disease using SELDI-TOF-MS", 
    "pagination": "112-112", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039489722"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2377-10-112"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21059247"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2377-10-112", 
      "https://app.dimensions.ai/details/publication/pub.1039489722"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2377-10-112"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2377-10-112'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2377-10-112'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2377-10-112'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2377-10-112'


 

This table displays all metadata directly associated to this object as RDF triples.

267 TRIPLES      22 PREDICATES      138 URIs      127 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2377-10-112 schema:about N007ff180aaea4d70a5d9928259cc23cd
2 N00ecef0ed48c4a0382f8fddb5d22b48f
3 N2df59535c5bc413dacc0f98e18cb127a
4 N39f6f32011da4ae18b55ea021c8a3263
5 N417b974b927f43af992de8a849a77315
6 N4b9e09e0e4584c3294ccc4f93f66696e
7 N51b95655f6df4c8189ddd72e1bba001a
8 N6f5f3008037b46dcbfe3dcef0c5484ce
9 N800f889464404a508140edb2c0471a13
10 N8954d6e078fb43369ff9148c6d6b460c
11 Ncadad0661fb04f2fbce3ce376eaf1783
12 Nd34235abd434464a92e36b8eafb72d30
13 Ne6d98a8f21d24a2c9af9b4747213c690
14 Nf3dd7c6fcb5a47b3ac121e09e3eef42c
15 anzsrc-for:11
16 anzsrc-for:1109
17 schema:author Ndf4b9b11b52d4ec0abefd5744046eb25
18 schema:citation sg:pub.10.1007/bf00395095
19 sg:pub.10.1007/s10038-004-0143-6
20 sg:pub.10.1186/1476-4598-6-25
21 schema:datePublished 2010-11-08
22 schema:datePublishedReg 2010-11-08
23 schema:description BACKGROUND: Moyamoya disease (MMD) is an uncommon cerebrovascular condition with unknown etiology characterized by slowly progressive stenosis or occlusion of the bilateral internal carotid arteries associated with an abnormal vascular network. MMD is a major cause of stroke, specifically in the younger population. Diagnosis is based on only radiological features as no other clinical data are available. The purpose of this study was to identify novel biomarker candidate proteins differentially expressed in the cerebrospinal fluid (CSF) of patients with MMD using proteomic analysis. METHODS: For detection of biomarkers, CSF samples were obtained from 20 patients with MMD and 12 control patients. Mass spectral data were generated by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) with an anion exchange chip in three different buffer conditions. After expression difference mapping was undertaken using the obtained protein profiles, a comparative analysis was performed. RESULTS: A statistically significant number of proteins (34) were recognized as single biomarker candidate proteins which were differentially detected in the CSF of patients with MMD, compared to the control patients (p < 0.05). All peak intensity profiles of the biomarker candidates underwent classification and regression tree (CART) analysis to produce prediction models. Two important biomarkers could successfully classify the patients with MMD and control patients. CONCLUSIONS: In this study, several novel biomarker candidate proteins differentially expressed in the CSF of patients with MMD were identified by a recently developed proteomic approach. This is a pilot study of CSF proteomics for MMD using SELDI technology. These biomarker candidates have the potential to shed light on the underlying pathogenesis of MMD.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N57a418455b5f4b2bbffcf8ae1effabff
28 N5dc322c996d14778b6b097d396bc1e70
29 sg:journal.1024950
30 schema:keywords CSF of patients
31 CSF proteomics
32 CSF samples
33 MS
34 SELDI technology
35 SELDI-TOF
36 abnormal vascular network
37 analysis
38 anion exchange chip
39 approach
40 artery
41 bilateral internal carotid arteries
42 biomarker candidate proteins
43 biomarker candidates
44 biomarkers
45 buffer conditions
46 candidate proteins
47 candidates
48 carotid artery
49 cause
50 cerebrospinal fluid
51 cerebrovascular conditions
52 chip
53 classification
54 clinical data
55 comparative analysis
56 conditions
57 control patients
58 data
59 desorption/ionization time
60 detection
61 detection of biomarkers
62 diagnosis
63 difference mapping
64 different buffer conditions
65 disease
66 etiology
67 exchange chip
68 expression difference mapping
69 features
70 flight mass spectrometry
71 fluid
72 identification
73 important biomarker
74 intensity profiles
75 internal carotid artery
76 ionization time
77 laser desorption/ionization time
78 light
79 major cause
80 mapping
81 mass spectral data
82 mass spectrometry
83 model
84 moyamoya disease
85 network
86 novel biomarker candidate proteins
87 novel biomarker candidates
88 number
89 occlusion
90 only radiological feature
91 pathogenesis
92 patients
93 peak intensity profiles
94 pilot study
95 population
96 potential
97 prediction model
98 profile
99 progressive stenosis
100 protein
101 protein profiles
102 proteomic analysis
103 proteomic approach
104 proteomics
105 purpose
106 radiological features
107 regression tree analysis
108 samples
109 significant number
110 single biomarker candidate proteins
111 spectral data
112 spectrometry
113 stenosis
114 stroke
115 study
116 surface-enhanced laser desorption/ionization time
117 technology
118 time
119 tree analysis
120 uncommon cerebrovascular condition
121 underlying pathogenesis
122 unknown etiology
123 vascular network
124 young population
125 schema:name Identification of novel biomarker candidates by proteomic analysis of cerebrospinal fluid from patients with moyamoya disease using SELDI-TOF-MS
126 schema:pagination 112-112
127 schema:productId N8583462b82314f7d8b1eaec7cc6b95d8
128 N97b4386e00624ed1bdf4c7f326d0246d
129 Ne0f7772e1380497b8396ff33f89eaae9
130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039489722
131 https://doi.org/10.1186/1471-2377-10-112
132 schema:sdDatePublished 2022-01-01T18:23
133 schema:sdLicense https://scigraph.springernature.com/explorer/license/
134 schema:sdPublisher N3760a52a36b444c8b5bea09f264afde5
135 schema:url https://doi.org/10.1186/1471-2377-10-112
136 sgo:license sg:explorer/license/
137 sgo:sdDataset articles
138 rdf:type schema:ScholarlyArticle
139 N007ff180aaea4d70a5d9928259cc23cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Child, Preschool
141 rdf:type schema:DefinedTerm
142 N00ecef0ed48c4a0382f8fddb5d22b48f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Middle Aged
144 rdf:type schema:DefinedTerm
145 N2df59535c5bc413dacc0f98e18cb127a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Proteomics
147 rdf:type schema:DefinedTerm
148 N3760a52a36b444c8b5bea09f264afde5 schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 N39f6f32011da4ae18b55ea021c8a3263 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Female
152 rdf:type schema:DefinedTerm
153 N417b974b927f43af992de8a849a77315 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Biomarkers
155 rdf:type schema:DefinedTerm
156 N4b9e09e0e4584c3294ccc4f93f66696e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Infant
158 rdf:type schema:DefinedTerm
159 N4cf650d1502549108c440370a2a25981 rdf:first sg:person.01367256160.54
160 rdf:rest rdf:nil
161 N51b95655f6df4c8189ddd72e1bba001a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Adult
163 rdf:type schema:DefinedTerm
164 N57a418455b5f4b2bbffcf8ae1effabff schema:issueNumber 1
165 rdf:type schema:PublicationIssue
166 N5dc322c996d14778b6b097d396bc1e70 schema:volumeNumber 10
167 rdf:type schema:PublicationVolume
168 N6f5f3008037b46dcbfe3dcef0c5484ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Male
170 rdf:type schema:DefinedTerm
171 N800f889464404a508140edb2c0471a13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Moyamoya Disease
173 rdf:type schema:DefinedTerm
174 N84beb512a3464fc29bfee7acfb53d0d5 rdf:first sg:person.01024555555.16
175 rdf:rest N4cf650d1502549108c440370a2a25981
176 N8583462b82314f7d8b1eaec7cc6b95d8 schema:name pubmed_id
177 schema:value 21059247
178 rdf:type schema:PropertyValue
179 N8954d6e078fb43369ff9148c6d6b460c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Adolescent
181 rdf:type schema:DefinedTerm
182 N97b4386e00624ed1bdf4c7f326d0246d schema:name dimensions_id
183 schema:value pub.1039489722
184 rdf:type schema:PropertyValue
185 Na3c93f9692f5475ca5fc6f6cbe6e178c rdf:first sg:person.0756442355.81
186 rdf:rest N84beb512a3464fc29bfee7acfb53d0d5
187 Ncadad0661fb04f2fbce3ce376eaf1783 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Humans
189 rdf:type schema:DefinedTerm
190 Nd34235abd434464a92e36b8eafb72d30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
192 rdf:type schema:DefinedTerm
193 Ndf4b9b11b52d4ec0abefd5744046eb25 rdf:first sg:person.01072670755.12
194 rdf:rest Nfd1273b81bc34bb799da60825ec065c2
195 Ne0f7772e1380497b8396ff33f89eaae9 schema:name doi
196 schema:value 10.1186/1471-2377-10-112
197 rdf:type schema:PropertyValue
198 Ne2e9fffdeb5c476fab823d19f73967b9 rdf:first sg:person.0600245115.10
199 rdf:rest Na3c93f9692f5475ca5fc6f6cbe6e178c
200 Ne6d98a8f21d24a2c9af9b4747213c690 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Pilot Projects
202 rdf:type schema:DefinedTerm
203 Nf3dd7c6fcb5a47b3ac121e09e3eef42c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Child
205 rdf:type schema:DefinedTerm
206 Nfd1273b81bc34bb799da60825ec065c2 rdf:first sg:person.0766017060.02
207 rdf:rest Ne2e9fffdeb5c476fab823d19f73967b9
208 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
209 schema:name Medical and Health Sciences
210 rdf:type schema:DefinedTerm
211 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
212 schema:name Neurosciences
213 rdf:type schema:DefinedTerm
214 sg:journal.1024950 schema:issn 1471-2377
215 schema:name BMC Neurology
216 schema:publisher Springer Nature
217 rdf:type schema:Periodical
218 sg:person.01024555555.16 schema:affiliation grid-institutes:grid.27476.30
219 schema:familyName Maruwaka
220 schema:givenName Mikio
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024555555.16
222 rdf:type schema:Person
223 sg:person.01072670755.12 schema:affiliation grid-institutes:grid.411234.1
224 schema:familyName Araki
225 schema:givenName Yoshio
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072670755.12
227 rdf:type schema:Person
228 sg:person.01367256160.54 schema:affiliation grid-institutes:grid.27476.30
229 schema:familyName Wakabayashi
230 schema:givenName Toshihiko
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367256160.54
232 rdf:type schema:Person
233 sg:person.0600245115.10 schema:affiliation grid-institutes:grid.27476.30
234 schema:familyName Okamoto
235 schema:givenName Sho
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600245115.10
237 rdf:type schema:Person
238 sg:person.0756442355.81 schema:affiliation grid-institutes:grid.27476.30
239 schema:familyName Sumitomo
240 schema:givenName Masaki
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756442355.81
242 rdf:type schema:Person
243 sg:person.0766017060.02 schema:affiliation grid-institutes:grid.437848.4
244 schema:familyName Yoshikawa
245 schema:givenName Kazuhiro
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766017060.02
247 rdf:type schema:Person
248 sg:pub.10.1007/bf00395095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008501581
249 https://doi.org/10.1007/bf00395095
250 rdf:type schema:CreativeWork
251 sg:pub.10.1007/s10038-004-0143-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039971746
252 https://doi.org/10.1007/s10038-004-0143-6
253 rdf:type schema:CreativeWork
254 sg:pub.10.1186/1476-4598-6-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042308694
255 https://doi.org/10.1186/1476-4598-6-25
256 rdf:type schema:CreativeWork
257 grid-institutes:grid.27476.30 schema:alternateName Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
258 schema:name Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
259 rdf:type schema:Organization
260 grid-institutes:grid.411234.1 schema:alternateName Promoting Center for Clinical Research, Aichi Medical University School of Medicine, Nagakute-cho, Aichi 480-1195, Japan
261 schema:name Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
262 Promoting Center for Clinical Research, Aichi Medical University School of Medicine, Nagakute-cho, Aichi 480-1195, Japan
263 rdf:type schema:Organization
264 grid-institutes:grid.437848.4 schema:alternateName Center for Genetic and Regenerative Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
265 schema:name Center for Genetic and Regenerative Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
266 Promoting Center for Clinical Research, Aichi Medical University School of Medicine, Nagakute-cho, Aichi 480-1195, Japan
267 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...