Serum procalcitonin for the early recognition of nosocomial infection in the critically ill patients: a preliminary report View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-04-22

AUTHORS

Pierre Emmanuel Charles, Emmanuel Kus, Serge AHO, Sébastien Prin, Jean-Marc Doise, Nils-Olivier Olsson, Bernard Blettery, Jean-Pierre Quenot

ABSTRACT

BackgroundThe usefulness of procalcitonin (PCT) measurement in critically ill medical patients with suspected nosocomial infection is unclear. The aim of the study was to assess PCT value for the early diagnosis of bacterial nosocomial infection in selected critically ill patients.MethodsAn observational cohort study in a 15-bed intensive care unit was performed. Seventy patients with either proven (n = 47) or clinically suspected but not confirmed (n = 23) nosocomial infection were included. Procalcitonin measurements were obtained the day when the infection was suspected (D0) and at least one time within the 3 previous days (D-3 to D0). Patients with proven infection were compared to those without. The diagnostic value of PCT on D0 was determined through the construction of the corresponding receiver operating characteristic (ROC) curve. In addition, the predictive value of PCT variations preceding the clinical suspicion of infection was assessed.ResultsPCT on D0 was the best predictor of proven infection in this population of ICU patients with a clinical suspicion of infection (AUROCC = 0.80; 95% CI, 0.68–0.91). Thus, a cut-off value of 0.44 ng/mL provides sensitivity and specificity of 65.2% and 83.0%, respectively. Procalcitonin variation between D-1 and D0 was calculated in 45 patients and was also found to be predictive of nosocomial infection (AUROCC = 0.89; 95% CI, 0.79–0.98) with a 100% positive predictive value if the +0.26 ng/mL threshold value was applied. Comparable results were obtained when PCT variation between D-2 and D0, or D-3 and D0 were considered. In contrast, CRP elevation, leukocyte count and fever had a poor predictive value in our population.ConclusionPCT monitoring could be helpful in the early diagnosis of nosocomial infection in the ICU. Both absolute values and variations should be considered and evaluated in further studies. More... »

PAGES

49

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2334-9-49

DOI

http://dx.doi.org/10.1186/1471-2334-9-49

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035890551

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19386110


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calcitonin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calcitonin Gene-Related Peptide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Critical Illness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross Infection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Early Diagnosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hospitals, Teaching", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intensive Care Units", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pneumonia, Ventilator-Associated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Precursors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Le Bocage, CHU de DIJON, France", 
          "id": "http://www.grid.ac/institutes/grid.31151.37", 
          "name": [
            "Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Le Bocage, CHU de DIJON, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charles", 
        "givenName": "Pierre Emmanuel", 
        "id": "sg:person.0660013407.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660013407.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Le Bocage, CHU de DIJON, France", 
          "id": "http://www.grid.ac/institutes/grid.31151.37", 
          "name": [
            "Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Le Bocage, CHU de DIJON, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kus", 
        "givenName": "Emmanuel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service d'Epid\u00e9miologie et d'Hygi\u00e8ne Hospitali\u00e8re, H\u00f4pital Le Bocage, CHU de DIJON, France", 
          "id": "http://www.grid.ac/institutes/grid.31151.37", 
          "name": [
            "Service d'Epid\u00e9miologie et d'Hygi\u00e8ne Hospitali\u00e8re, H\u00f4pital Le Bocage, CHU de DIJON, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "AHO", 
        "givenName": "Serge", 
        "id": "sg:person.0707335645.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707335645.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Le Bocage, CHU de DIJON, France", 
          "id": "http://www.grid.ac/institutes/grid.31151.37", 
          "name": [
            "Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Le Bocage, CHU de DIJON, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prin", 
        "givenName": "S\u00e9bastien", 
        "id": "sg:person.01063656227.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063656227.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Le Bocage, CHU de DIJON, France", 
          "id": "http://www.grid.ac/institutes/grid.31151.37", 
          "name": [
            "Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Le Bocage, CHU de DIJON, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doise", 
        "givenName": "Jean-Marc", 
        "id": "sg:person.01162166006.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162166006.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Immunologie, H\u00f4pital Le Bocage, CHU de DIJON, France", 
          "id": "http://www.grid.ac/institutes/grid.31151.37", 
          "name": [
            "Laboratoire d'Immunologie, H\u00f4pital Le Bocage, CHU de DIJON, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olsson", 
        "givenName": "Nils-Olivier", 
        "id": "sg:person.01026010441.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026010441.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Le Bocage, CHU de DIJON, France", 
          "id": "http://www.grid.ac/institutes/grid.31151.37", 
          "name": [
            "Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Le Bocage, CHU de DIJON, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blettery", 
        "givenName": "Bernard", 
        "id": "sg:person.0102273476.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0102273476.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Le Bocage, CHU de DIJON, France", 
          "id": "http://www.grid.ac/institutes/grid.31151.37", 
          "name": [
            "Service de R\u00e9animation M\u00e9dicale, H\u00f4pital Le Bocage, CHU de DIJON, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quenot", 
        "givenName": "Jean-Pierre", 
        "id": "sg:person.0667156247.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667156247.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00134-003-2125-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037213031", 
          "https://doi.org/10.1007/s00134-003-2125-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-003-2018-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026030561", 
          "https://doi.org/10.1007/s00134-003-2018-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/cc3768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018603970", 
          "https://doi.org/10.1186/cc3768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2334-8-163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014617071", 
          "https://doi.org/10.1186/1471-2334-8-163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-008-1112-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031025234", 
          "https://doi.org/10.1007/s00134-008-1112-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-006-0306-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027819329", 
          "https://doi.org/10.1007/s00134-006-0306-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2334-8-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044750167", 
          "https://doi.org/10.1186/1471-2334-8-38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-004-2201-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007719650", 
          "https://doi.org/10.1007/s00134-004-2201-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-04-22", 
    "datePublishedReg": "2009-04-22", 
    "description": "BackgroundThe usefulness of procalcitonin (PCT) measurement in critically ill medical patients with suspected nosocomial infection is unclear. The aim of the study was to assess PCT value for the early diagnosis of bacterial nosocomial infection in selected critically ill patients.MethodsAn observational cohort study in a 15-bed intensive care unit was performed. Seventy patients with either proven (n = 47) or clinically suspected but not confirmed (n = 23) nosocomial infection were included. Procalcitonin measurements were obtained the day when the infection was suspected (D0) and at least one time within the 3 previous days (D-3 to D0). Patients with proven infection were compared to those without. The diagnostic value of PCT on D0 was determined through the construction of the corresponding receiver operating characteristic (ROC) curve. In addition, the predictive value of PCT variations preceding the clinical suspicion of infection was assessed.ResultsPCT on D0 was the best predictor of proven infection in this population of ICU patients with a clinical suspicion of infection (AUROCC = 0.80; 95% CI, 0.68\u20130.91). Thus, a cut-off value of 0.44 ng/mL provides sensitivity and specificity of 65.2% and 83.0%, respectively. Procalcitonin variation between D-1 and D0 was calculated in 45 patients and was also found to be predictive of nosocomial infection (AUROCC = 0.89; 95% CI, 0.79\u20130.98) with a 100% positive predictive value if the +0.26 ng/mL threshold value was applied. Comparable results were obtained when PCT variation between D-2 and D0, or D-3 and D0 were considered. In contrast, CRP elevation, leukocyte count and fever had a poor predictive value in our population.ConclusionPCT monitoring could be helpful in the early diagnosis of nosocomial infection in the ICU. Both absolute values and variations should be considered and evaluated in further studies.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2334-9-49", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024946", 
        "issn": [
          "1471-2334"
        ], 
        "name": "BMC Infectious Diseases", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "nosocomial infections", 
      "predictive value", 
      "procalcitonin measurement", 
      "clinical suspicion", 
      "ill patients", 
      "early diagnosis", 
      "MethodsAn observational cohort study", 
      "ill medical patients", 
      "observational cohort study", 
      "intensive care unit", 
      "bacterial nosocomial infections", 
      "poor predictive value", 
      "positive predictive value", 
      "procalcitonin variation", 
      "CRP elevation", 
      "serum procalcitonin", 
      "cohort study", 
      "ICU patients", 
      "care unit", 
      "medical patients", 
      "PCT values", 
      "leukocyte count", 
      "early recognition", 
      "patients", 
      "diagnostic value", 
      "infection", 
      "PCT variation", 
      "preliminary report", 
      "characteristic curve", 
      "Further studies", 
      "suspicion", 
      "diagnosis", 
      "best predictor", 
      "days", 
      "previous day", 
      "ResultsPCT", 
      "procalcitonin", 
      "ICU", 
      "fever", 
      "population", 
      "study", 
      "comparable results", 
      "predictors", 
      "elevation", 
      "count", 
      "report", 
      "mL", 
      "aim", 
      "specificity", 
      "sensitivity", 
      "contrast", 
      "usefulness", 
      "D0", 
      "values", 
      "monitoring", 
      "PCT", 
      "addition", 
      "threshold value", 
      "units", 
      "receiver", 
      "time", 
      "curves", 
      "measurements", 
      "variation", 
      "results", 
      "recognition", 
      "absolute value", 
      "corresponding receiver", 
      "construction"
    ], 
    "name": "Serum procalcitonin for the early recognition of nosocomial infection in the critically ill patients: a preliminary report", 
    "pagination": "49", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035890551"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2334-9-49"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19386110"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2334-9-49", 
      "https://app.dimensions.ai/details/publication/pub.1035890551"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_489.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2334-9-49"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-9-49'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-9-49'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-9-49'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-9-49'


 

This table displays all metadata directly associated to this object as RDF triples.

286 TRIPLES      22 PREDICATES      121 URIs      105 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2334-9-49 schema:about N1f92c2bcd66840478acf61113a0c8248
2 N20c4ecc5cf544915bbe21eabc38e1a01
3 N2e680a3c48ab4f7c938a4be8ed4a3fe4
4 N3331460a8f40487093f1db291789e3b5
5 N4ed668bedf2d45ef906cb8ace1861aa0
6 N62f7c3aad37e441e840b39a547f7598d
7 N7c7331297fd848b0a4e9f7dc04a568eb
8 N88febd5d2c814d83b72c5d51c0603a76
9 N8a78a500cbbb465bb6146898df6aaf2c
10 N9a8fe3c07f9c4fe498a3757b39f00ae0
11 Na107ef8a19e04967a66fcae3c98bfe42
12 Nb9d14334f5c24974b18d7d7eeb3bf53e
13 Nc8ec199e85664b8386ee0118b92acd77
14 Ncd3528fcb2174382a3d8f57dcf09f85b
15 Ne777f8b70c5844cf8f4dc6e2e33cc71c
16 Ned51b68a11864b1e88fef9dc1a9615aa
17 Nf2a2bc1d4aeb4b9da607e8e51b426d22
18 Nfd14efcfd613474bab8ea104f98a295a
19 anzsrc-for:11
20 anzsrc-for:1103
21 schema:author N947fad41a22d4c7ea3474222240e7abd
22 schema:citation sg:pub.10.1007/s00134-003-2018-2
23 sg:pub.10.1007/s00134-003-2125-0
24 sg:pub.10.1007/s00134-004-2201-0
25 sg:pub.10.1007/s00134-006-0306-3
26 sg:pub.10.1007/s00134-008-1112-x
27 sg:pub.10.1186/1471-2334-8-163
28 sg:pub.10.1186/1471-2334-8-38
29 sg:pub.10.1186/cc3768
30 schema:datePublished 2009-04-22
31 schema:datePublishedReg 2009-04-22
32 schema:description BackgroundThe usefulness of procalcitonin (PCT) measurement in critically ill medical patients with suspected nosocomial infection is unclear. The aim of the study was to assess PCT value for the early diagnosis of bacterial nosocomial infection in selected critically ill patients.MethodsAn observational cohort study in a 15-bed intensive care unit was performed. Seventy patients with either proven (n = 47) or clinically suspected but not confirmed (n = 23) nosocomial infection were included. Procalcitonin measurements were obtained the day when the infection was suspected (D0) and at least one time within the 3 previous days (D-3 to D0). Patients with proven infection were compared to those without. The diagnostic value of PCT on D0 was determined through the construction of the corresponding receiver operating characteristic (ROC) curve. In addition, the predictive value of PCT variations preceding the clinical suspicion of infection was assessed.ResultsPCT on D0 was the best predictor of proven infection in this population of ICU patients with a clinical suspicion of infection (AUROCC = 0.80; 95% CI, 0.68–0.91). Thus, a cut-off value of 0.44 ng/mL provides sensitivity and specificity of 65.2% and 83.0%, respectively. Procalcitonin variation between D-1 and D0 was calculated in 45 patients and was also found to be predictive of nosocomial infection (AUROCC = 0.89; 95% CI, 0.79–0.98) with a 100% positive predictive value if the +0.26 ng/mL threshold value was applied. Comparable results were obtained when PCT variation between D-2 and D0, or D-3 and D0 were considered. In contrast, CRP elevation, leukocyte count and fever had a poor predictive value in our population.ConclusionPCT monitoring could be helpful in the early diagnosis of nosocomial infection in the ICU. Both absolute values and variations should be considered and evaluated in further studies.
33 schema:genre article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N6b4bd114a00347abadea3cd10e42e045
37 N7f6b602cf10440b299060f8c264cfd64
38 sg:journal.1024946
39 schema:keywords CRP elevation
40 D0
41 Further studies
42 ICU
43 ICU patients
44 MethodsAn observational cohort study
45 PCT
46 PCT values
47 PCT variation
48 ResultsPCT
49 absolute value
50 addition
51 aim
52 bacterial nosocomial infections
53 best predictor
54 care unit
55 characteristic curve
56 clinical suspicion
57 cohort study
58 comparable results
59 construction
60 contrast
61 corresponding receiver
62 count
63 curves
64 days
65 diagnosis
66 diagnostic value
67 early diagnosis
68 early recognition
69 elevation
70 fever
71 ill medical patients
72 ill patients
73 infection
74 intensive care unit
75 leukocyte count
76 mL
77 measurements
78 medical patients
79 monitoring
80 nosocomial infections
81 observational cohort study
82 patients
83 poor predictive value
84 population
85 positive predictive value
86 predictive value
87 predictors
88 preliminary report
89 previous day
90 procalcitonin
91 procalcitonin measurement
92 procalcitonin variation
93 receiver
94 recognition
95 report
96 results
97 sensitivity
98 serum procalcitonin
99 specificity
100 study
101 suspicion
102 threshold value
103 time
104 units
105 usefulness
106 values
107 variation
108 schema:name Serum procalcitonin for the early recognition of nosocomial infection in the critically ill patients: a preliminary report
109 schema:pagination 49
110 schema:productId N796fddb0d68e46519562b725c67c2513
111 N8bccbaef9a4b495990ef3809b8f1d088
112 Na036711ce435467798fa1fc2fe5cef20
113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035890551
114 https://doi.org/10.1186/1471-2334-9-49
115 schema:sdDatePublished 2022-06-01T22:06
116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
117 schema:sdPublisher N50c5e9a024ca434d866395e7f7c31b81
118 schema:url https://doi.org/10.1186/1471-2334-9-49
119 sgo:license sg:explorer/license/
120 sgo:sdDataset articles
121 rdf:type schema:ScholarlyArticle
122 N07deb2b989844099b23e857cc4d89e8b rdf:first sg:person.0667156247.07
123 rdf:rest rdf:nil
124 N0cdabdac7ab34145b0b5cd6f2b05eec7 rdf:first sg:person.0707335645.22
125 rdf:rest N21a20ec7854d4502aeb65ed953b0e6ab
126 N1182ca87b4874df491d2ff644b6ce2d5 rdf:first N57847a464bfc4f0981c1051373b6120c
127 rdf:rest N0cdabdac7ab34145b0b5cd6f2b05eec7
128 N1f92c2bcd66840478acf61113a0c8248 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Calcitonin Gene-Related Peptide
130 rdf:type schema:DefinedTerm
131 N20c4ecc5cf544915bbe21eabc38e1a01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Protein Precursors
133 rdf:type schema:DefinedTerm
134 N21a20ec7854d4502aeb65ed953b0e6ab rdf:first sg:person.01063656227.40
135 rdf:rest N7d39be89afc04d27a72c5e8e4d7cdbcd
136 N2e680a3c48ab4f7c938a4be8ed4a3fe4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Predictive Value of Tests
138 rdf:type schema:DefinedTerm
139 N3331460a8f40487093f1db291789e3b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Middle Aged
141 rdf:type schema:DefinedTerm
142 N4ed668bedf2d45ef906cb8ace1861aa0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Critical Illness
144 rdf:type schema:DefinedTerm
145 N50c5e9a024ca434d866395e7f7c31b81 schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 N57847a464bfc4f0981c1051373b6120c schema:affiliation grid-institutes:grid.31151.37
148 schema:familyName Kus
149 schema:givenName Emmanuel
150 rdf:type schema:Person
151 N62f7c3aad37e441e840b39a547f7598d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Cross Infection
153 rdf:type schema:DefinedTerm
154 N6b4bd114a00347abadea3cd10e42e045 schema:issueNumber 1
155 rdf:type schema:PublicationIssue
156 N796fddb0d68e46519562b725c67c2513 schema:name dimensions_id
157 schema:value pub.1035890551
158 rdf:type schema:PropertyValue
159 N7c7331297fd848b0a4e9f7dc04a568eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Calcitonin
161 rdf:type schema:DefinedTerm
162 N7d39be89afc04d27a72c5e8e4d7cdbcd rdf:first sg:person.01162166006.98
163 rdf:rest Nedaa0b99a1324efb9f26ef6d76564d0f
164 N7f6b602cf10440b299060f8c264cfd64 schema:volumeNumber 9
165 rdf:type schema:PublicationVolume
166 N88febd5d2c814d83b72c5d51c0603a76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Hospitals, Teaching
168 rdf:type schema:DefinedTerm
169 N8a78a500cbbb465bb6146898df6aaf2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Early Diagnosis
171 rdf:type schema:DefinedTerm
172 N8bccbaef9a4b495990ef3809b8f1d088 schema:name doi
173 schema:value 10.1186/1471-2334-9-49
174 rdf:type schema:PropertyValue
175 N947fad41a22d4c7ea3474222240e7abd rdf:first sg:person.0660013407.69
176 rdf:rest N1182ca87b4874df491d2ff644b6ce2d5
177 N9a8fe3c07f9c4fe498a3757b39f00ae0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Aged
179 rdf:type schema:DefinedTerm
180 Na036711ce435467798fa1fc2fe5cef20 schema:name pubmed_id
181 schema:value 19386110
182 rdf:type schema:PropertyValue
183 Na107ef8a19e04967a66fcae3c98bfe42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Intensive Care Units
185 rdf:type schema:DefinedTerm
186 Nb9d14334f5c24974b18d7d7eeb3bf53e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Female
188 rdf:type schema:DefinedTerm
189 Nbce2d7d09ffd4c12934c40808e8c0552 rdf:first sg:person.0102273476.06
190 rdf:rest N07deb2b989844099b23e857cc4d89e8b
191 Nc8ec199e85664b8386ee0118b92acd77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Male
193 rdf:type schema:DefinedTerm
194 Ncd3528fcb2174382a3d8f57dcf09f85b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name ROC Curve
196 rdf:type schema:DefinedTerm
197 Ne777f8b70c5844cf8f4dc6e2e33cc71c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Biomarkers
199 rdf:type schema:DefinedTerm
200 Ned51b68a11864b1e88fef9dc1a9615aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Prospective Studies
202 rdf:type schema:DefinedTerm
203 Nedaa0b99a1324efb9f26ef6d76564d0f rdf:first sg:person.01026010441.46
204 rdf:rest Nbce2d7d09ffd4c12934c40808e8c0552
205 Nf2a2bc1d4aeb4b9da607e8e51b426d22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Pneumonia, Ventilator-Associated
207 rdf:type schema:DefinedTerm
208 Nfd14efcfd613474bab8ea104f98a295a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Humans
210 rdf:type schema:DefinedTerm
211 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
212 schema:name Medical and Health Sciences
213 rdf:type schema:DefinedTerm
214 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
215 schema:name Clinical Sciences
216 rdf:type schema:DefinedTerm
217 sg:journal.1024946 schema:issn 1471-2334
218 schema:name BMC Infectious Diseases
219 schema:publisher Springer Nature
220 rdf:type schema:Periodical
221 sg:person.0102273476.06 schema:affiliation grid-institutes:grid.31151.37
222 schema:familyName Blettery
223 schema:givenName Bernard
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0102273476.06
225 rdf:type schema:Person
226 sg:person.01026010441.46 schema:affiliation grid-institutes:grid.31151.37
227 schema:familyName Olsson
228 schema:givenName Nils-Olivier
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026010441.46
230 rdf:type schema:Person
231 sg:person.01063656227.40 schema:affiliation grid-institutes:grid.31151.37
232 schema:familyName Prin
233 schema:givenName Sébastien
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063656227.40
235 rdf:type schema:Person
236 sg:person.01162166006.98 schema:affiliation grid-institutes:grid.31151.37
237 schema:familyName Doise
238 schema:givenName Jean-Marc
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162166006.98
240 rdf:type schema:Person
241 sg:person.0660013407.69 schema:affiliation grid-institutes:grid.31151.37
242 schema:familyName Charles
243 schema:givenName Pierre Emmanuel
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660013407.69
245 rdf:type schema:Person
246 sg:person.0667156247.07 schema:affiliation grid-institutes:grid.31151.37
247 schema:familyName Quenot
248 schema:givenName Jean-Pierre
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667156247.07
250 rdf:type schema:Person
251 sg:person.0707335645.22 schema:affiliation grid-institutes:grid.31151.37
252 schema:familyName AHO
253 schema:givenName Serge
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707335645.22
255 rdf:type schema:Person
256 sg:pub.10.1007/s00134-003-2018-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026030561
257 https://doi.org/10.1007/s00134-003-2018-2
258 rdf:type schema:CreativeWork
259 sg:pub.10.1007/s00134-003-2125-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037213031
260 https://doi.org/10.1007/s00134-003-2125-0
261 rdf:type schema:CreativeWork
262 sg:pub.10.1007/s00134-004-2201-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007719650
263 https://doi.org/10.1007/s00134-004-2201-0
264 rdf:type schema:CreativeWork
265 sg:pub.10.1007/s00134-006-0306-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027819329
266 https://doi.org/10.1007/s00134-006-0306-3
267 rdf:type schema:CreativeWork
268 sg:pub.10.1007/s00134-008-1112-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031025234
269 https://doi.org/10.1007/s00134-008-1112-x
270 rdf:type schema:CreativeWork
271 sg:pub.10.1186/1471-2334-8-163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014617071
272 https://doi.org/10.1186/1471-2334-8-163
273 rdf:type schema:CreativeWork
274 sg:pub.10.1186/1471-2334-8-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044750167
275 https://doi.org/10.1186/1471-2334-8-38
276 rdf:type schema:CreativeWork
277 sg:pub.10.1186/cc3768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018603970
278 https://doi.org/10.1186/cc3768
279 rdf:type schema:CreativeWork
280 grid-institutes:grid.31151.37 schema:alternateName Laboratoire d'Immunologie, Hôpital Le Bocage, CHU de DIJON, France
281 Service d'Epidémiologie et d'Hygiène Hospitalière, Hôpital Le Bocage, CHU de DIJON, France
282 Service de Réanimation Médicale, Hôpital Le Bocage, CHU de DIJON, France
283 schema:name Laboratoire d'Immunologie, Hôpital Le Bocage, CHU de DIJON, France
284 Service d'Epidémiologie et d'Hygiène Hospitalière, Hôpital Le Bocage, CHU de DIJON, France
285 Service de Réanimation Médicale, Hôpital Le Bocage, CHU de DIJON, France
286 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...