Increased fluoroquinolone resistance with time in Escherichia coli from >17,000 patients at a large county hospital as a function of ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-01-15

AUTHORS

Lauren Becnel Boyd, Robert L Atmar, Graham L Randall, Richard J Hamill, David Steffen, Lynn Zechiedrich

ABSTRACT

BackgroundEscherichia coli infections are common and often treated with fluoroquinolones. Fluoroquinolone resistance is of worldwide importance and is monitored by national and international surveillance networks. In this study, we analyzed the effects of time, culture site, and patient age, sex, and location on fluoroquinolone resistance in E. coli clinical isolates.MethodsTo understand how patient factors and time influenced fluoroquinolone resistance and to determine how well data from surveillance networks predict trends at Ben Taub General Hospital in Houston, TX, we used Perl to parse and MySQL to house data from antibiograms (n ≅ 21,000) for E. coli isolated between 1999 to 2004 using Chi Square, Bonferroni, and Multiple Linear Regression methods.ResultsFluoroquinolone resistance (i) increased with time; (ii) exceeded national averages by 2- to 4-fold; (iii) was higher in males than females, largely because of urinary isolates from male outpatients; (iv) increased with patient age; (v) was 3% in pediatric patients; (vi) was higher in hospitalized patients than outpatients; (vii) was higher in sputum samples, particularly from inpatients, than all other culture sites, including blood and urine, regardless of patient location; and (viii) was lowest in genital isolates than all other culture sites. Additionally, the data suggest that, with regard to susceptibility or resistance by the Dade Behring MicroScan system, a single fluoroquinolone suffices as a "surrogate marker" for all of the fluoroquinolone tested.ConclusionLarge surveillance programs often did not predict E. coli fluoroquinolone resistance trends at a large, urban hospital with a largely indigent, ethnically diverse patient population or its affiliated community clinics. More... »

PAGES

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2334-8-4

DOI

http://dx.doi.org/10.1186/1471-2334-8-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003919278

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18197977


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anti-Bacterial Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli Infections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluoroquinolones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hospitals, County", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant, Newborn", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sentinel Surveillance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Texas", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Molecular Virology and Microbiology, Baylor College of Medicine, 77030, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.39382.33", 
          "name": [
            "Department of Molecular Virology and Microbiology, Baylor College of Medicine, 77030, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boyd", 
        "givenName": "Lauren Becnel", 
        "id": "sg:person.01171135517.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171135517.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, Baylor College of Medicine, 77030, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.39382.33", 
          "name": [
            "Department of Molecular Virology and Microbiology, Baylor College of Medicine, 77030, Houston, TX, USA", 
            "Department of Medicine, Baylor College of Medicine, 77030, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Atmar", 
        "givenName": "Robert L", 
        "id": "sg:person.0672024505.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672024505.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Interinstitutional Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, 77030, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.39382.33", 
          "name": [
            "Interinstitutional Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, 77030, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Randall", 
        "givenName": "Graham L", 
        "id": "sg:person.0663710107.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663710107.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Michael E. DeBakey Veterans Administration Medical Center, 77030, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.413890.7", 
          "name": [
            "Department of Molecular Virology and Microbiology, Baylor College of Medicine, 77030, Houston, TX, USA", 
            "Department of Medicine, Baylor College of Medicine, 77030, Houston, TX, USA", 
            "Michael E. DeBakey Veterans Administration Medical Center, 77030, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamill", 
        "givenName": "Richard J", 
        "id": "sg:person.01302227170.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302227170.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics Resource Center, Baylor College of Medicine, 77030, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.39382.33", 
          "name": [
            "Bioinformatics Resource Center, Baylor College of Medicine, 77030, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steffen", 
        "givenName": "David", 
        "id": "sg:person.01111473231.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111473231.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Interinstitutional Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, 77030, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.39382.33", 
          "name": [
            "Department of Molecular Virology and Microbiology, Baylor College of Medicine, 77030, Houston, TX, USA", 
            "Interinstitutional Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, 77030, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zechiedrich", 
        "givenName": "Lynn", 
        "id": "sg:person.01174776617.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174776617.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1476-0711-3-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003369045", 
          "https://doi.org/10.1186/1476-0711-3-14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11908-005-0018-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045789435", 
          "https://doi.org/10.1007/s11908-005-0018-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01-15", 
    "datePublishedReg": "2008-01-15", 
    "description": "BackgroundEscherichia coli infections are common and often treated with fluoroquinolones. Fluoroquinolone resistance is of worldwide importance and is monitored by national and international surveillance networks. In this study, we analyzed the effects of time, culture site, and patient age, sex, and location on fluoroquinolone resistance in E. coli clinical isolates.MethodsTo understand how patient factors and time influenced fluoroquinolone resistance and to determine how well data from surveillance networks predict trends at Ben Taub General Hospital in Houston, TX, we used Perl to parse and MySQL to house data from antibiograms (n \u2245 21,000) for E. coli isolated between 1999 to 2004 using Chi Square, Bonferroni, and Multiple Linear Regression methods.ResultsFluoroquinolone resistance (i) increased with time; (ii) exceeded national averages by 2- to 4-fold; (iii) was higher in males than females, largely because of urinary isolates from male outpatients; (iv) increased with patient age; (v) was 3% in pediatric patients; (vi) was higher in hospitalized patients than outpatients; (vii) was higher in sputum samples, particularly from inpatients, than all other culture sites, including blood and urine, regardless of patient location; and (viii) was lowest in genital isolates than all other culture sites. Additionally, the data suggest that, with regard to susceptibility or resistance by the Dade Behring MicroScan system, a single fluoroquinolone suffices as a \"surrogate marker\" for all of the fluoroquinolone tested.ConclusionLarge surveillance programs often did not predict E. coli fluoroquinolone resistance trends at a large, urban hospital with a largely indigent, ethnically diverse patient population or its affiliated community clinics.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2334-8-4", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2686594", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2456185", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2681182", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024946", 
        "issn": [
          "1471-2334"
        ], 
        "name": "BMC Infectious Diseases", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "fluoroquinolone resistance", 
      "patient age", 
      "Ben Taub General Hospital", 
      "large county hospital", 
      "surveillance network", 
      "pediatric patients", 
      "patient factors", 
      "patient population", 
      "urinary isolates", 
      "international surveillance networks", 
      "male outpatients", 
      "surrogate marker", 
      "community clinics", 
      "General Hospital", 
      "genital isolates", 
      "County Hospital", 
      "coli infection", 
      "sputum samples", 
      "urban hospital", 
      "resistance trends", 
      "surveillance program", 
      "patients", 
      "hospital", 
      "Chi-square", 
      "patient location", 
      "outpatients", 
      "MicroScan system", 
      "age", 
      "fluoroquinolones", 
      "national average", 
      "E. coli", 
      "sex", 
      "culture sites", 
      "isolates", 
      "inpatients", 
      "effect of time", 
      "antibiogram", 
      "clinic", 
      "infection", 
      "blood", 
      "urine", 
      "resistance", 
      "MethodsTo", 
      "males", 
      "markers", 
      "females", 
      "worldwide importance", 
      "Escherichia coli", 
      "coli", 
      "Bonferroni", 
      "population", 
      "sites", 
      "data", 
      "susceptibility", 
      "time", 
      "factors", 
      "study", 
      "effect", 
      "Houston", 
      "trends", 
      "regard", 
      "location", 
      "average", 
      "program", 
      "function", 
      "samples", 
      "regression method", 
      "TX", 
      "importance", 
      "linear regression method", 
      "method", 
      "multiple linear regression method", 
      "system", 
      "suffices", 
      "network", 
      "Perl", 
      "squares", 
      "MySQL"
    ], 
    "name": "Increased fluoroquinolone resistance with time in Escherichia coli from >17,000 patients at a large county hospital as a function of culture site, age, sex, and location", 
    "pagination": "4", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003919278"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2334-8-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18197977"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2334-8-4", 
      "https://app.dimensions.ai/details/publication/pub.1003919278"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_467.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2334-8-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-8-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-8-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-8-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-8-4'


 

This table displays all metadata directly associated to this object as RDF triples.

286 TRIPLES      21 PREDICATES      127 URIs      117 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2334-8-4 schema:about N210f9115e652446e99a2e29458ad669e
2 N235a8bda730f434ab5961783caeaf37a
3 N317bcd207fd6470cbeb82e18778fc743
4 N44648a0b808649239bddb2ed607734a6
5 N49fd24648f8347608bc1ba7d1841e22a
6 N518a72a47464412188656253b328a235
7 N5c3e0c4c8fd34026911776a1be447b72
8 N68f39e0572fc4ee29e3de816443ad269
9 N762ddf3bc373487c9bdda30ca73baac9
10 N8b0cccb12b6846f482a9172056b9fb31
11 N8c72ff3b0e324b48be9de47438f2a8a7
12 N9912ff7a999544d48a21f9bca7b5721a
13 Na252a6f740c14a5f8a08f8035b62dc37
14 Nae7989cd59594da4afa9f5859876c247
15 Nb0d576dd42e74a32b8d51fa7a8458bf7
16 Nc5b8f3a0e9514faf8c73debbfe03ab7b
17 Ncc6063c78eaa46709d26035748090479
18 Ncdebbde1705a41bc879af19e538e3805
19 Ncec3c16299b24915915cc0517e39f699
20 Nd68887047ebd4b5a8040c9bf74374dd9
21 Nd6f3d4d980b142499dd061270953bc97
22 Nfb2b9b6dab0b4ee786eca6fa6641ea87
23 anzsrc-for:11
24 anzsrc-for:1117
25 schema:author N7093e07656af46c9b49f77c525df8d93
26 schema:citation sg:pub.10.1007/s11908-005-0018-9
27 sg:pub.10.1186/1476-0711-3-14
28 schema:datePublished 2008-01-15
29 schema:datePublishedReg 2008-01-15
30 schema:description BackgroundEscherichia coli infections are common and often treated with fluoroquinolones. Fluoroquinolone resistance is of worldwide importance and is monitored by national and international surveillance networks. In this study, we analyzed the effects of time, culture site, and patient age, sex, and location on fluoroquinolone resistance in E. coli clinical isolates.MethodsTo understand how patient factors and time influenced fluoroquinolone resistance and to determine how well data from surveillance networks predict trends at Ben Taub General Hospital in Houston, TX, we used Perl to parse and MySQL to house data from antibiograms (n ≅ 21,000) for E. coli isolated between 1999 to 2004 using Chi Square, Bonferroni, and Multiple Linear Regression methods.ResultsFluoroquinolone resistance (i) increased with time; (ii) exceeded national averages by 2- to 4-fold; (iii) was higher in males than females, largely because of urinary isolates from male outpatients; (iv) increased with patient age; (v) was 3% in pediatric patients; (vi) was higher in hospitalized patients than outpatients; (vii) was higher in sputum samples, particularly from inpatients, than all other culture sites, including blood and urine, regardless of patient location; and (viii) was lowest in genital isolates than all other culture sites. Additionally, the data suggest that, with regard to susceptibility or resistance by the Dade Behring MicroScan system, a single fluoroquinolone suffices as a "surrogate marker" for all of the fluoroquinolone tested.ConclusionLarge surveillance programs often did not predict E. coli fluoroquinolone resistance trends at a large, urban hospital with a largely indigent, ethnically diverse patient population or its affiliated community clinics.
31 schema:genre article
32 schema:isAccessibleForFree true
33 schema:isPartOf N44d0cc4f79c34dc6bcb9ecf1f0564fd9
34 N5776cd4446d049c7b32cf67a70dddb83
35 sg:journal.1024946
36 schema:keywords Ben Taub General Hospital
37 Bonferroni
38 Chi-square
39 County Hospital
40 E. coli
41 Escherichia coli
42 General Hospital
43 Houston
44 MethodsTo
45 MicroScan system
46 MySQL
47 Perl
48 TX
49 age
50 antibiogram
51 average
52 blood
53 clinic
54 coli
55 coli infection
56 community clinics
57 culture sites
58 data
59 effect
60 effect of time
61 factors
62 females
63 fluoroquinolone resistance
64 fluoroquinolones
65 function
66 genital isolates
67 hospital
68 importance
69 infection
70 inpatients
71 international surveillance networks
72 isolates
73 large county hospital
74 linear regression method
75 location
76 male outpatients
77 males
78 markers
79 method
80 multiple linear regression method
81 national average
82 network
83 outpatients
84 patient age
85 patient factors
86 patient location
87 patient population
88 patients
89 pediatric patients
90 population
91 program
92 regard
93 regression method
94 resistance
95 resistance trends
96 samples
97 sex
98 sites
99 sputum samples
100 squares
101 study
102 suffices
103 surrogate marker
104 surveillance network
105 surveillance program
106 susceptibility
107 system
108 time
109 trends
110 urban hospital
111 urinary isolates
112 urine
113 worldwide importance
114 schema:name Increased fluoroquinolone resistance with time in Escherichia coli from >17,000 patients at a large county hospital as a function of culture site, age, sex, and location
115 schema:pagination 4
116 schema:productId N5587248d33264460ab75c12dce1679a9
117 N9ad085f50e574c46bb09a942129617e7
118 Nfcb3f5239e2344aebcd89e1b7705ec3a
119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003919278
120 https://doi.org/10.1186/1471-2334-8-4
121 schema:sdDatePublished 2022-12-01T06:27
122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
123 schema:sdPublisher Nd09388e6f182464db0edb85e25405155
124 schema:url https://doi.org/10.1186/1471-2334-8-4
125 sgo:license sg:explorer/license/
126 sgo:sdDataset articles
127 rdf:type schema:ScholarlyArticle
128 N1d038ab06e10440a978348a5f05b0f39 rdf:first sg:person.01111473231.25
129 rdf:rest N404d015345be4743a4aa017e2f33f615
130 N210f9115e652446e99a2e29458ad669e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Sex Factors
132 rdf:type schema:DefinedTerm
133 N235a8bda730f434ab5961783caeaf37a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Sentinel Surveillance
135 rdf:type schema:DefinedTerm
136 N317bcd207fd6470cbeb82e18778fc743 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Male
138 rdf:type schema:DefinedTerm
139 N3f61406d5f01438e92cf922e5c66e65e rdf:first sg:person.01302227170.82
140 rdf:rest N1d038ab06e10440a978348a5f05b0f39
141 N404d015345be4743a4aa017e2f33f615 rdf:first sg:person.01174776617.05
142 rdf:rest rdf:nil
143 N412297cc070d4d0b8fc2e6b4d1871e4b rdf:first sg:person.0672024505.03
144 rdf:rest N541d112303d94c279138b9ef6077326d
145 N44648a0b808649239bddb2ed607734a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Child, Preschool
147 rdf:type schema:DefinedTerm
148 N44d0cc4f79c34dc6bcb9ecf1f0564fd9 schema:issueNumber 1
149 rdf:type schema:PublicationIssue
150 N49fd24648f8347608bc1ba7d1841e22a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Female
152 rdf:type schema:DefinedTerm
153 N518a72a47464412188656253b328a235 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Hospitals, County
155 rdf:type schema:DefinedTerm
156 N541d112303d94c279138b9ef6077326d rdf:first sg:person.0663710107.78
157 rdf:rest N3f61406d5f01438e92cf922e5c66e65e
158 N5587248d33264460ab75c12dce1679a9 schema:name pubmed_id
159 schema:value 18197977
160 rdf:type schema:PropertyValue
161 N5776cd4446d049c7b32cf67a70dddb83 schema:volumeNumber 8
162 rdf:type schema:PublicationVolume
163 N5c3e0c4c8fd34026911776a1be447b72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Anti-Bacterial Agents
165 rdf:type schema:DefinedTerm
166 N68f39e0572fc4ee29e3de816443ad269 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Aged
168 rdf:type schema:DefinedTerm
169 N7093e07656af46c9b49f77c525df8d93 rdf:first sg:person.01171135517.69
170 rdf:rest N412297cc070d4d0b8fc2e6b4d1871e4b
171 N762ddf3bc373487c9bdda30ca73baac9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Humans
173 rdf:type schema:DefinedTerm
174 N8b0cccb12b6846f482a9172056b9fb31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Infant, Newborn
176 rdf:type schema:DefinedTerm
177 N8c72ff3b0e324b48be9de47438f2a8a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Escherichia coli
179 rdf:type schema:DefinedTerm
180 N9912ff7a999544d48a21f9bca7b5721a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Adult
182 rdf:type schema:DefinedTerm
183 N9ad085f50e574c46bb09a942129617e7 schema:name doi
184 schema:value 10.1186/1471-2334-8-4
185 rdf:type schema:PropertyValue
186 Na252a6f740c14a5f8a08f8035b62dc37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Middle Aged
188 rdf:type schema:DefinedTerm
189 Nae7989cd59594da4afa9f5859876c247 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Escherichia coli Infections
191 rdf:type schema:DefinedTerm
192 Nb0d576dd42e74a32b8d51fa7a8458bf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Age Factors
194 rdf:type schema:DefinedTerm
195 Nc5b8f3a0e9514faf8c73debbfe03ab7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Child
197 rdf:type schema:DefinedTerm
198 Ncc6063c78eaa46709d26035748090479 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Drug Resistance, Bacterial
200 rdf:type schema:DefinedTerm
201 Ncdebbde1705a41bc879af19e538e3805 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Aged, 80 and over
203 rdf:type schema:DefinedTerm
204 Ncec3c16299b24915915cc0517e39f699 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Fluoroquinolones
206 rdf:type schema:DefinedTerm
207 Nd09388e6f182464db0edb85e25405155 schema:name Springer Nature - SN SciGraph project
208 rdf:type schema:Organization
209 Nd68887047ebd4b5a8040c9bf74374dd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Texas
211 rdf:type schema:DefinedTerm
212 Nd6f3d4d980b142499dd061270953bc97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Infant
214 rdf:type schema:DefinedTerm
215 Nfb2b9b6dab0b4ee786eca6fa6641ea87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Adolescent
217 rdf:type schema:DefinedTerm
218 Nfcb3f5239e2344aebcd89e1b7705ec3a schema:name dimensions_id
219 schema:value pub.1003919278
220 rdf:type schema:PropertyValue
221 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
222 schema:name Medical and Health Sciences
223 rdf:type schema:DefinedTerm
224 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
225 schema:name Public Health and Health Services
226 rdf:type schema:DefinedTerm
227 sg:grant.2456185 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2334-8-4
228 rdf:type schema:MonetaryGrant
229 sg:grant.2681182 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2334-8-4
230 rdf:type schema:MonetaryGrant
231 sg:grant.2686594 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2334-8-4
232 rdf:type schema:MonetaryGrant
233 sg:journal.1024946 schema:issn 1471-2334
234 schema:name BMC Infectious Diseases
235 schema:publisher Springer Nature
236 rdf:type schema:Periodical
237 sg:person.01111473231.25 schema:affiliation grid-institutes:grid.39382.33
238 schema:familyName Steffen
239 schema:givenName David
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111473231.25
241 rdf:type schema:Person
242 sg:person.01171135517.69 schema:affiliation grid-institutes:grid.39382.33
243 schema:familyName Boyd
244 schema:givenName Lauren Becnel
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171135517.69
246 rdf:type schema:Person
247 sg:person.01174776617.05 schema:affiliation grid-institutes:grid.39382.33
248 schema:familyName Zechiedrich
249 schema:givenName Lynn
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174776617.05
251 rdf:type schema:Person
252 sg:person.01302227170.82 schema:affiliation grid-institutes:grid.413890.7
253 schema:familyName Hamill
254 schema:givenName Richard J
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302227170.82
256 rdf:type schema:Person
257 sg:person.0663710107.78 schema:affiliation grid-institutes:grid.39382.33
258 schema:familyName Randall
259 schema:givenName Graham L
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663710107.78
261 rdf:type schema:Person
262 sg:person.0672024505.03 schema:affiliation grid-institutes:grid.39382.33
263 schema:familyName Atmar
264 schema:givenName Robert L
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672024505.03
266 rdf:type schema:Person
267 sg:pub.10.1007/s11908-005-0018-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045789435
268 https://doi.org/10.1007/s11908-005-0018-9
269 rdf:type schema:CreativeWork
270 sg:pub.10.1186/1476-0711-3-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003369045
271 https://doi.org/10.1186/1476-0711-3-14
272 rdf:type schema:CreativeWork
273 grid-institutes:grid.39382.33 schema:alternateName Bioinformatics Resource Center, Baylor College of Medicine, 77030, Houston, TX, USA
274 Department of Medicine, Baylor College of Medicine, 77030, Houston, TX, USA
275 Department of Molecular Virology and Microbiology, Baylor College of Medicine, 77030, Houston, TX, USA
276 Interinstitutional Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, 77030, Houston, TX, USA
277 schema:name Bioinformatics Resource Center, Baylor College of Medicine, 77030, Houston, TX, USA
278 Department of Medicine, Baylor College of Medicine, 77030, Houston, TX, USA
279 Department of Molecular Virology and Microbiology, Baylor College of Medicine, 77030, Houston, TX, USA
280 Interinstitutional Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, 77030, Houston, TX, USA
281 rdf:type schema:Organization
282 grid-institutes:grid.413890.7 schema:alternateName Michael E. DeBakey Veterans Administration Medical Center, 77030, Houston, TX, USA
283 schema:name Department of Medicine, Baylor College of Medicine, 77030, Houston, TX, USA
284 Department of Molecular Virology and Microbiology, Baylor College of Medicine, 77030, Houston, TX, USA
285 Michael E. DeBakey Veterans Administration Medical Center, 77030, Houston, TX, USA
286 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...