Molecular epidemiology and evolutionary genetics of Mycobacterium tuberculosisin Taipei View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Horng-Yunn Dou, Fan-Chen Tseng, Chih-Wei Lin, Jia-Ru Chang, Jun-Ren Sun, Wen-Shing Tsai, Shi-Yi Lee, Ih-Jen Su, Jang-Jih Lu

ABSTRACT

BACKGROUND: The control of tuberculosis in densely populated cities is complicated by close human-to-human contacts and potential transmission of pathogens from multiple sources. We conducted a molecular epidemiologic analysis of 356 Mycobacterium tuberculosis (MTB) isolates from patients presenting pulmonary tuberculosis in metropolitan Taipei. Classical antibiogram studies and genetic characterization, using mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing and spoligotyping, were applied after culture. METHODS: A total of 356 isolates were genotyped by standard spoligotyping and the strains were compared with in the international spoligotyping database (SpolDB4). All isolates were also categorized using the 15 loci MIRU-VNTR typing method and combin with NTF locus and RD deletion analyses. RESULTS: Of 356 isolates spoligotyped, 290 (81.4%) displayed known spoligotypes and 66 were not identified in the database. Major spoligotypes found were Beijing lineages (52.5%), followed by Haarlem lineages (13.5%) and EAI plus EAI-like lineages (11%). When MIRU-VNTR was employed, 140 patterns were identified, including 36 clusters by 252 isolates and 104 unique patterns, and the largest cluster comprised 95 isolates from the Beijing family. The combination of spoligotyping and MIRU-VNTR revealed that 236 (67%) of the 356 isolates were clustered in 43 genotypes. Strains of the Beijing family was more likely to be of modern strain and a higher percentage of multiple drug resistance than other families combined (P = 0.08). Patients infected with Beijing strains were younger than those with other strains (mean 58.7 vs. 64.2, p = 0.02). Moreover, 85.3% of infected persons younger than 25 years had Beijing modern strain, suggesting a possible recent spread in the young population by this family of TB strain in Taipei. CONCLUSION: Our data on MTB genotype in Taipei suggest that MTB infection has not been optimally controlled. Control efforts should be reinforced in view of the high prevalence of the Beijing strain in young population and association with drug resistance. More... »

PAGES

170

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2334-8-170

DOI

http://dx.doi.org/10.1186/1471-2334-8-170

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038700454

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19102768


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Typing Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Minisatellite Repeats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Epidemiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mycobacterium tuberculosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reagent Kits, Diagnostic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Taiwan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tuberculosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tuberculosis, Pulmonary", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Health Research Institutes", 
          "id": "https://www.grid.ac/institutes/grid.59784.37", 
          "name": [
            "Division of Clinical Research, National Health Research Institutes, Zhunan, Taiwan, 35 Keyan Road, Zhunan, Miaoli County 350, Republic of China, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dou", 
        "givenName": "Horng-Yunn", 
        "id": "sg:person.01357606427.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357606427.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Health Research Institutes", 
          "id": "https://www.grid.ac/institutes/grid.59784.37", 
          "name": [
            "Division of Clinical Research, National Health Research Institutes, Zhunan, Taiwan, 35 Keyan Road, Zhunan, Miaoli County 350, Republic of China, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tseng", 
        "givenName": "Fan-Chen", 
        "id": "sg:person.0736546234.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736546234.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Health Research Institutes", 
          "id": "https://www.grid.ac/institutes/grid.59784.37", 
          "name": [
            "Division of Clinical Research, National Health Research Institutes, Zhunan, Taiwan, 35 Keyan Road, Zhunan, Miaoli County 350, Republic of China, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Chih-Wei", 
        "id": "sg:person.0714136163.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714136163.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Health Research Institutes", 
          "id": "https://www.grid.ac/institutes/grid.59784.37", 
          "name": [
            "Division of Clinical Research, National Health Research Institutes, Zhunan, Taiwan, 35 Keyan Road, Zhunan, Miaoli County 350, Republic of China, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Jia-Ru", 
        "id": "sg:person.01030364563.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030364563.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, 325 Sec. 2 Chenggong Rd., Taipei 114, Republic of China, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jun-Ren", 
        "id": "sg:person.01144613163.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144613163.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, 325 Sec. 2 Chenggong Rd., Taipei 114, Republic of China, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsai", 
        "givenName": "Wen-Shing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, 325 Sec. 2 Chenggong Rd., Taipei 114, Republic of China, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Shi-Yi", 
        "id": "sg:person.0603550663.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603550663.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Health Research Institutes", 
          "id": "https://www.grid.ac/institutes/grid.59784.37", 
          "name": [
            "Division of Clinical Research, National Health Research Institutes, Zhunan, Taiwan, 35 Keyan Road, Zhunan, Miaoli County 350, Republic of China, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Ih-Jen", 
        "id": "sg:person.01121644372.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121644372.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Medical University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411508.9", 
          "name": [
            "Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, 325 Sec. 2 Chenggong Rd., Taipei 114, Republic of China, Taiwan", 
            "Department of Laboratory Medicine, China Medical University Hospital, 2, Yuh-Der Road, 404, Taichung, Republic of China, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Jang-Jih", 
        "id": "sg:person.01101237475.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101237475.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1128/jcm.40.6.1930-1937.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000698609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.052548299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002264494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.40.12.4457-4465.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003585910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2005.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005721658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2005.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005721658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.42.5.1986-1993.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006166006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0305627101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007100693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1006.030575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009119872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1106.041365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009251094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.42.12.5528-5536.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009670329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/427940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011344745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-6-23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013028388", 
          "https://doi.org/10.1186/1471-2180-6-23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.43.7.3185-3191.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014387200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.43.1.95-100.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016326247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199406163302402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017823604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/431517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018901048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyh021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019897423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0305634101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021000098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.40.7.2677-2680.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022116518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/ajrccm.164.7.2101031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028935165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(00)02730-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029731667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/314930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029766521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.98.4.1901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030460390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199406163302403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030703248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.01392-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033386237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.42.2.674-682.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034381423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid0603.000312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035002775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.femsim.2004.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035783816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.293.22.2726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038180731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1465-9921-6-134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038517518", 
          "https://doi.org/10.1186/1465-9921-6-134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meegid.2008.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043337288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.2000.01905.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044112158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2249.2003.02171.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049909451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid0808.020002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050333887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3840605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050480345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/155.6.565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053743104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0950268801005659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053764976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0950268801225424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053874641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0950268801225424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053874641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid0805.020002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071122592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074490820", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074796745", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076187391", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077187217", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082563630", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082696581", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082870431", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083197949", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083201854", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: The control of tuberculosis in densely populated cities is complicated by close human-to-human contacts and potential transmission of pathogens from multiple sources. We conducted a molecular epidemiologic analysis of 356 Mycobacterium tuberculosis (MTB) isolates from patients presenting pulmonary tuberculosis in metropolitan Taipei. Classical antibiogram studies and genetic characterization, using mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing and spoligotyping, were applied after culture.\nMETHODS: A total of 356 isolates were genotyped by standard spoligotyping and the strains were compared with in the international spoligotyping database (SpolDB4). All isolates were also categorized using the 15 loci MIRU-VNTR typing method and combin with NTF locus and RD deletion analyses.\nRESULTS: Of 356 isolates spoligotyped, 290 (81.4%) displayed known spoligotypes and 66 were not identified in the database. Major spoligotypes found were Beijing lineages (52.5%), followed by Haarlem lineages (13.5%) and EAI plus EAI-like lineages (11%). When MIRU-VNTR was employed, 140 patterns were identified, including 36 clusters by 252 isolates and 104 unique patterns, and the largest cluster comprised 95 isolates from the Beijing family. The combination of spoligotyping and MIRU-VNTR revealed that 236 (67%) of the 356 isolates were clustered in 43 genotypes. Strains of the Beijing family was more likely to be of modern strain and a higher percentage of multiple drug resistance than other families combined (P = 0.08). Patients infected with Beijing strains were younger than those with other strains (mean 58.7 vs. 64.2, p = 0.02). Moreover, 85.3% of infected persons younger than 25 years had Beijing modern strain, suggesting a possible recent spread in the young population by this family of TB strain in Taipei.\nCONCLUSION: Our data on MTB genotype in Taipei suggest that MTB infection has not been optimally controlled. Control efforts should be reinforced in view of the high prevalence of the Beijing strain in young population and association with drug resistance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2334-8-170", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024946", 
        "issn": [
          "1471-2334"
        ], 
        "name": "BMC Infectious Diseases", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Molecular epidemiology and evolutionary genetics of Mycobacterium tuberculosisin Taipei", 
    "pagination": "170", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b85a5c68d7303547a5f6499c25f2a8a837e9fa2c10fb11f7e49e393a866eb13f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19102768"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968551"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2334-8-170"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038700454"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2334-8-170", 
      "https://app.dimensions.ai/details/publication/pub.1038700454"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2334-8-170"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-8-170'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-8-170'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-8-170'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-8-170'


 

This table displays all metadata directly associated to this object as RDF triples.

323 TRIPLES      21 PREDICATES      90 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2334-8-170 schema:about N1d2813a973ff474fab8ade2ee64e11b6
2 N2007203005a948d98ae009446668e184
3 N30d1acedd47646ae8e1e3179a440abcb
4 N346dfe54fcde4535a3fa76e2150d4818
5 N38404265f5aa4bed9fd6007724af0b16
6 N39fb6950d0a8434c950308df1ccdff22
7 N3f303b798a2048e19493abd5c4b6f324
8 N49b342f14a5b494ca81fbba94c41c146
9 N6bb201ce20c940c998a28d94aa30d9d4
10 N8a5496ad54c74c17802a128d1cc8df4c
11 Nacde421fbabe49bab54dd6b6f3d7b8f6
12 Nbf1baf6151544b6a8eebeddd012df668
13 Ndb59b4c84cfd45c69bcf5103e04895bf
14 Nf11506d3e313469b93b7c6cf632a4e01
15 anzsrc-for:11
16 anzsrc-for:1108
17 schema:author N86b22ad791e74598ab39f364f56d2cd5
18 schema:citation sg:pub.10.1186/1465-9921-6-134
19 sg:pub.10.1186/1471-2180-6-23
20 https://app.dimensions.ai/details/publication/pub.1074490820
21 https://app.dimensions.ai/details/publication/pub.1074796745
22 https://app.dimensions.ai/details/publication/pub.1076187391
23 https://app.dimensions.ai/details/publication/pub.1077187217
24 https://app.dimensions.ai/details/publication/pub.1082563630
25 https://app.dimensions.ai/details/publication/pub.1082696581
26 https://app.dimensions.ai/details/publication/pub.1082870431
27 https://app.dimensions.ai/details/publication/pub.1083197949
28 https://app.dimensions.ai/details/publication/pub.1083201854
29 https://doi.org/10.1001/jama.293.22.2726
30 https://doi.org/10.1016/j.femsim.2004.05.012
31 https://doi.org/10.1016/j.meegid.2008.02.003
32 https://doi.org/10.1016/j.mimet.2005.03.002
33 https://doi.org/10.1016/s0140-6736(00)02730-6
34 https://doi.org/10.1017/s0950268801005659
35 https://doi.org/10.1017/s0950268801225424
36 https://doi.org/10.1046/j.1365-2249.2003.02171.x
37 https://doi.org/10.1046/j.1365-2958.2000.01905.x
38 https://doi.org/10.1056/nejm199406163302402
39 https://doi.org/10.1056/nejm199406163302403
40 https://doi.org/10.1073/pnas.0305627101
41 https://doi.org/10.1073/pnas.0305634101
42 https://doi.org/10.1073/pnas.052548299
43 https://doi.org/10.1073/pnas.98.4.1901
44 https://doi.org/10.1086/314930
45 https://doi.org/10.1086/427940
46 https://doi.org/10.1086/431517
47 https://doi.org/10.1093/aje/155.6.565
48 https://doi.org/10.1093/ije/dyh021
49 https://doi.org/10.1101/gr.3840605
50 https://doi.org/10.1128/jcm.01392-06
51 https://doi.org/10.1128/jcm.40.12.4457-4465.2002
52 https://doi.org/10.1128/jcm.40.6.1930-1937.2002
53 https://doi.org/10.1128/jcm.40.7.2677-2680.2002
54 https://doi.org/10.1128/jcm.42.12.5528-5536.2004
55 https://doi.org/10.1128/jcm.42.2.674-682.2004
56 https://doi.org/10.1128/jcm.42.5.1986-1993.2004
57 https://doi.org/10.1128/jcm.43.1.95-100.2005
58 https://doi.org/10.1128/jcm.43.7.3185-3191.2005
59 https://doi.org/10.1164/ajrccm.164.7.2101031
60 https://doi.org/10.3201/eid0603.000312
61 https://doi.org/10.3201/eid0805.020002
62 https://doi.org/10.3201/eid0808.020002
63 https://doi.org/10.3201/eid1006.030575
64 https://doi.org/10.3201/eid1106.041365
65 schema:datePublished 2008-12
66 schema:datePublishedReg 2008-12-01
67 schema:description BACKGROUND: The control of tuberculosis in densely populated cities is complicated by close human-to-human contacts and potential transmission of pathogens from multiple sources. We conducted a molecular epidemiologic analysis of 356 Mycobacterium tuberculosis (MTB) isolates from patients presenting pulmonary tuberculosis in metropolitan Taipei. Classical antibiogram studies and genetic characterization, using mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing and spoligotyping, were applied after culture. METHODS: A total of 356 isolates were genotyped by standard spoligotyping and the strains were compared with in the international spoligotyping database (SpolDB4). All isolates were also categorized using the 15 loci MIRU-VNTR typing method and combin with NTF locus and RD deletion analyses. RESULTS: Of 356 isolates spoligotyped, 290 (81.4%) displayed known spoligotypes and 66 were not identified in the database. Major spoligotypes found were Beijing lineages (52.5%), followed by Haarlem lineages (13.5%) and EAI plus EAI-like lineages (11%). When MIRU-VNTR was employed, 140 patterns were identified, including 36 clusters by 252 isolates and 104 unique patterns, and the largest cluster comprised 95 isolates from the Beijing family. The combination of spoligotyping and MIRU-VNTR revealed that 236 (67%) of the 356 isolates were clustered in 43 genotypes. Strains of the Beijing family was more likely to be of modern strain and a higher percentage of multiple drug resistance than other families combined (P = 0.08). Patients infected with Beijing strains were younger than those with other strains (mean 58.7 vs. 64.2, p = 0.02). Moreover, 85.3% of infected persons younger than 25 years had Beijing modern strain, suggesting a possible recent spread in the young population by this family of TB strain in Taipei. CONCLUSION: Our data on MTB genotype in Taipei suggest that MTB infection has not been optimally controlled. Control efforts should be reinforced in view of the high prevalence of the Beijing strain in young population and association with drug resistance.
68 schema:genre research_article
69 schema:inLanguage en
70 schema:isAccessibleForFree true
71 schema:isPartOf N9d9ddcbfdf0340d8aed73a48a0a46b9e
72 Ne7952ff6dcfa4e42b6b397a3fc0becba
73 sg:journal.1024946
74 schema:name Molecular epidemiology and evolutionary genetics of Mycobacterium tuberculosisin Taipei
75 schema:pagination 170
76 schema:productId N3ff80a8fff2a4469ba56084753c6b5f7
77 N6b58f407c2fc4dfea0e0de42c37dd1de
78 N848f273e5b99419790b4faf1a97d1a94
79 N8c80b5b31ddf4cb4b3eb472bb7f0ecf9
80 N9f85ca4b58444a2faca5a0ac223189c1
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038700454
82 https://doi.org/10.1186/1471-2334-8-170
83 schema:sdDatePublished 2019-04-11T01:06
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N47f32c900c664f2db6f70fb73bb80297
86 schema:url http://link.springer.com/10.1186%2F1471-2334-8-170
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N1d2813a973ff474fab8ade2ee64e11b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Humans
92 rdf:type schema:DefinedTerm
93 N2007203005a948d98ae009446668e184 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Bacterial Typing Techniques
95 rdf:type schema:DefinedTerm
96 N30d1acedd47646ae8e1e3179a440abcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Molecular Epidemiology
98 rdf:type schema:DefinedTerm
99 N346dfe54fcde4535a3fa76e2150d4818 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Tuberculosis, Pulmonary
101 rdf:type schema:DefinedTerm
102 N38404265f5aa4bed9fd6007724af0b16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Taiwan
104 rdf:type schema:DefinedTerm
105 N39eed24e6cae4e569087591827f53701 rdf:first sg:person.01101237475.76
106 rdf:rest rdf:nil
107 N39fb6950d0a8434c950308df1ccdff22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Evolution, Molecular
109 rdf:type schema:DefinedTerm
110 N3f303b798a2048e19493abd5c4b6f324 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Female
112 rdf:type schema:DefinedTerm
113 N3ff80a8fff2a4469ba56084753c6b5f7 schema:name doi
114 schema:value 10.1186/1471-2334-8-170
115 rdf:type schema:PropertyValue
116 N47f32c900c664f2db6f70fb73bb80297 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 N49b342f14a5b494ca81fbba94c41c146 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name DNA, Bacterial
120 rdf:type schema:DefinedTerm
121 N4fcd845b737e49ceaeb35f5448dcae68 rdf:first sg:person.01144613163.83
122 rdf:rest N5a60f58cc967404085ccb04ade15bbae
123 N5a60f58cc967404085ccb04ade15bbae rdf:first N72f8ca09120b41e2ac93a1861e159a40
124 rdf:rest Na3ad29ad4cf148419e637889108eba03
125 N5e70e33d52f047ee8c441d4b869f376a rdf:first sg:person.0736546234.56
126 rdf:rest Na2cd69cbe1fd4070941dd5bca7491b3e
127 N6b58f407c2fc4dfea0e0de42c37dd1de schema:name readcube_id
128 schema:value b85a5c68d7303547a5f6499c25f2a8a837e9fa2c10fb11f7e49e393a866eb13f
129 rdf:type schema:PropertyValue
130 N6bb201ce20c940c998a28d94aa30d9d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Minisatellite Repeats
132 rdf:type schema:DefinedTerm
133 N72f8ca09120b41e2ac93a1861e159a40 schema:affiliation N9df1e4662c4a4de0b8188aff02f3bcc4
134 schema:familyName Tsai
135 schema:givenName Wen-Shing
136 rdf:type schema:Person
137 N848f273e5b99419790b4faf1a97d1a94 schema:name pubmed_id
138 schema:value 19102768
139 rdf:type schema:PropertyValue
140 N86b22ad791e74598ab39f364f56d2cd5 rdf:first sg:person.01357606427.04
141 rdf:rest N5e70e33d52f047ee8c441d4b869f376a
142 N8a5496ad54c74c17802a128d1cc8df4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Male
144 rdf:type schema:DefinedTerm
145 N8c80b5b31ddf4cb4b3eb472bb7f0ecf9 schema:name dimensions_id
146 schema:value pub.1038700454
147 rdf:type schema:PropertyValue
148 N9d18e2261a1d41fbbeac546d7c5a34bf rdf:first sg:person.01030364563.50
149 rdf:rest N4fcd845b737e49ceaeb35f5448dcae68
150 N9d9ddcbfdf0340d8aed73a48a0a46b9e schema:issueNumber 1
151 rdf:type schema:PublicationIssue
152 N9df1e4662c4a4de0b8188aff02f3bcc4 schema:name Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, 325 Sec. 2 Chenggong Rd., Taipei 114, Republic of China, Taiwan
153 rdf:type schema:Organization
154 N9f85ca4b58444a2faca5a0ac223189c1 schema:name nlm_unique_id
155 schema:value 100968551
156 rdf:type schema:PropertyValue
157 Na2cd69cbe1fd4070941dd5bca7491b3e rdf:first sg:person.0714136163.55
158 rdf:rest N9d18e2261a1d41fbbeac546d7c5a34bf
159 Na3ad29ad4cf148419e637889108eba03 rdf:first sg:person.0603550663.52
160 rdf:rest Nca7df16308bb4855a3f96c57fd7d0442
161 Nacde421fbabe49bab54dd6b6f3d7b8f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Reagent Kits, Diagnostic
163 rdf:type schema:DefinedTerm
164 Nbc46160fd0a347daa3e887a45dd53d0a schema:name Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, 325 Sec. 2 Chenggong Rd., Taipei 114, Republic of China, Taiwan
165 rdf:type schema:Organization
166 Nbf1baf6151544b6a8eebeddd012df668 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Drug Resistance, Bacterial
168 rdf:type schema:DefinedTerm
169 Nca7df16308bb4855a3f96c57fd7d0442 rdf:first sg:person.01121644372.31
170 rdf:rest N39eed24e6cae4e569087591827f53701
171 Ndb59b4c84cfd45c69bcf5103e04895bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Tuberculosis
173 rdf:type schema:DefinedTerm
174 Ne7952ff6dcfa4e42b6b397a3fc0becba schema:volumeNumber 8
175 rdf:type schema:PublicationVolume
176 Nf11506d3e313469b93b7c6cf632a4e01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Mycobacterium tuberculosis
178 rdf:type schema:DefinedTerm
179 Nf18a89f7df244f388c0da916753aeb4b schema:name Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, 325 Sec. 2 Chenggong Rd., Taipei 114, Republic of China, Taiwan
180 rdf:type schema:Organization
181 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
182 schema:name Medical and Health Sciences
183 rdf:type schema:DefinedTerm
184 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
185 schema:name Medical Microbiology
186 rdf:type schema:DefinedTerm
187 sg:journal.1024946 schema:issn 1471-2334
188 schema:name BMC Infectious Diseases
189 rdf:type schema:Periodical
190 sg:person.01030364563.50 schema:affiliation https://www.grid.ac/institutes/grid.59784.37
191 schema:familyName Chang
192 schema:givenName Jia-Ru
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030364563.50
194 rdf:type schema:Person
195 sg:person.01101237475.76 schema:affiliation https://www.grid.ac/institutes/grid.411508.9
196 schema:familyName Lu
197 schema:givenName Jang-Jih
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101237475.76
199 rdf:type schema:Person
200 sg:person.01121644372.31 schema:affiliation https://www.grid.ac/institutes/grid.59784.37
201 schema:familyName Su
202 schema:givenName Ih-Jen
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121644372.31
204 rdf:type schema:Person
205 sg:person.01144613163.83 schema:affiliation Nbc46160fd0a347daa3e887a45dd53d0a
206 schema:familyName Sun
207 schema:givenName Jun-Ren
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144613163.83
209 rdf:type schema:Person
210 sg:person.01357606427.04 schema:affiliation https://www.grid.ac/institutes/grid.59784.37
211 schema:familyName Dou
212 schema:givenName Horng-Yunn
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357606427.04
214 rdf:type schema:Person
215 sg:person.0603550663.52 schema:affiliation Nf18a89f7df244f388c0da916753aeb4b
216 schema:familyName Lee
217 schema:givenName Shi-Yi
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603550663.52
219 rdf:type schema:Person
220 sg:person.0714136163.55 schema:affiliation https://www.grid.ac/institutes/grid.59784.37
221 schema:familyName Lin
222 schema:givenName Chih-Wei
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714136163.55
224 rdf:type schema:Person
225 sg:person.0736546234.56 schema:affiliation https://www.grid.ac/institutes/grid.59784.37
226 schema:familyName Tseng
227 schema:givenName Fan-Chen
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736546234.56
229 rdf:type schema:Person
230 sg:pub.10.1186/1465-9921-6-134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038517518
231 https://doi.org/10.1186/1465-9921-6-134
232 rdf:type schema:CreativeWork
233 sg:pub.10.1186/1471-2180-6-23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013028388
234 https://doi.org/10.1186/1471-2180-6-23
235 rdf:type schema:CreativeWork
236 https://app.dimensions.ai/details/publication/pub.1074490820 schema:CreativeWork
237 https://app.dimensions.ai/details/publication/pub.1074796745 schema:CreativeWork
238 https://app.dimensions.ai/details/publication/pub.1076187391 schema:CreativeWork
239 https://app.dimensions.ai/details/publication/pub.1077187217 schema:CreativeWork
240 https://app.dimensions.ai/details/publication/pub.1082563630 schema:CreativeWork
241 https://app.dimensions.ai/details/publication/pub.1082696581 schema:CreativeWork
242 https://app.dimensions.ai/details/publication/pub.1082870431 schema:CreativeWork
243 https://app.dimensions.ai/details/publication/pub.1083197949 schema:CreativeWork
244 https://app.dimensions.ai/details/publication/pub.1083201854 schema:CreativeWork
245 https://doi.org/10.1001/jama.293.22.2726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038180731
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.femsim.2004.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035783816
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.meegid.2008.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043337288
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.mimet.2005.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005721658
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/s0140-6736(00)02730-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029731667
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1017/s0950268801005659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053764976
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1017/s0950268801225424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053874641
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1046/j.1365-2249.2003.02171.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049909451
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1046/j.1365-2958.2000.01905.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044112158
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1056/nejm199406163302402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017823604
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1056/nejm199406163302403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030703248
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1073/pnas.0305627101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007100693
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1073/pnas.0305634101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021000098
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1073/pnas.052548299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002264494
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1073/pnas.98.4.1901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030460390
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1086/314930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029766521
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1086/427940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011344745
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1086/431517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018901048
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1093/aje/155.6.565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053743104
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1093/ije/dyh021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019897423
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1101/gr.3840605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050480345
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1128/jcm.01392-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033386237
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1128/jcm.40.12.4457-4465.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003585910
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1128/jcm.40.6.1930-1937.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000698609
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1128/jcm.40.7.2677-2680.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022116518
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1128/jcm.42.12.5528-5536.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009670329
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1128/jcm.42.2.674-682.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034381423
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1128/jcm.42.5.1986-1993.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006166006
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1128/jcm.43.1.95-100.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016326247
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1128/jcm.43.7.3185-3191.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014387200
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1164/ajrccm.164.7.2101031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028935165
306 rdf:type schema:CreativeWork
307 https://doi.org/10.3201/eid0603.000312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035002775
308 rdf:type schema:CreativeWork
309 https://doi.org/10.3201/eid0805.020002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071122592
310 rdf:type schema:CreativeWork
311 https://doi.org/10.3201/eid0808.020002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050333887
312 rdf:type schema:CreativeWork
313 https://doi.org/10.3201/eid1006.030575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009119872
314 rdf:type schema:CreativeWork
315 https://doi.org/10.3201/eid1106.041365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009251094
316 rdf:type schema:CreativeWork
317 https://www.grid.ac/institutes/grid.411508.9 schema:alternateName China Medical University Hospital
318 schema:name Department of Laboratory Medicine, China Medical University Hospital, 2, Yuh-Der Road, 404, Taichung, Republic of China, Taiwan
319 Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, 325 Sec. 2 Chenggong Rd., Taipei 114, Republic of China, Taiwan
320 rdf:type schema:Organization
321 https://www.grid.ac/institutes/grid.59784.37 schema:alternateName National Health Research Institutes
322 schema:name Division of Clinical Research, National Health Research Institutes, Zhunan, Taiwan, 35 Keyan Road, Zhunan, Miaoli County 350, Republic of China, Taiwan
323 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...