The distribution of incubation and relapse times in experimental human infections with the malaria parasite Plasmodium vivax View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Andrew A Lover, Xiahong Zhao, Zheng Gao, Richard J Coker, Alex R Cook

ABSTRACT

BACKGROUND: The distributions of incubation and relapse periods are key components of infectious disease models for the malaria parasite Plasmodium vivax; however, detailed distributions based upon experimental data are lacking. METHODS: Using a range of historical, experimental mosquito-transmitted human infections, Bayesian estimation with non-informative priors was used to determine parametric distributions that can be readily implemented for the incubation period and time-to-first relapse in P. vivax infections, including global subregions by parasite source. These analyses were complemented with a pooled analysis of observational human infection data with infections that included malaria chemoprophylaxis and long-latencies. The epidemiological impact of these distributional assumptions was explored using stochastic epidemic simulations at a fixed reproductive number while varying the underlying distribution of incubation periods. RESULTS: Using the Deviance Information Criteria to compare parameterizations, experimental incubation periods are most closely modeled with a shifted log-logistic distribution; a log-logistic mixture is the best fit for incubations in observational studies. The mixture Gompertz distribution was the best fit for experimental times-to-relapse among the tested parameterizations, with some variation by geographic subregions. Simulations suggest underlying distributional assumptions have critically important impacts on both the time-scale and total case counts within epidemics. CONCLUSIONS: These results suggest that the exponential and gamma distributions commonly used for modeling incubation periods and relapse times inadequately capture the complexity in the distributions of event times in P. vivax malaria infections. In future models, log-logistic and Gompertz distributions should be utilized for general incubation periods and relapse times respectively, and region-specific distributions should be considered to accurately model and predict the epidemiology of this important human pathogen. More... »

PAGES

539

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2334-14-539

DOI

http://dx.doi.org/10.1186/1471-2334-14-539

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033630566

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25280926


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemoprevention", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epidemics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Malaria, Vivax", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plasmodium vivax", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recurrence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lover", 
        "givenName": "Andrew A", 
        "id": "sg:person.07575753225.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07575753225.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xiahong", 
        "id": "sg:person.0736323566.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736323566.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Faculty of Engineering, National University of Singapore, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Zheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore", 
            "Communicable Diseases Policy Research Group, London School of Hygiene and Tropical Medicine, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coker", 
        "givenName": "Richard J", 
        "id": "sg:person.0617607412.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617607412.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tan Tock Seng Hospital", 
          "id": "https://www.grid.ac/institutes/grid.240988.f", 
          "name": [
            "Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore", 
            "Yale-NUS College, National University of Singapore, Singapore, Singapore", 
            "Program in Health Services and Systems Research, Duke-NUS Graduate Medical School, Singapore, Singapore", 
            "Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore", 
            "Communicable Diseases Centre, Tan Tock Seng Hospital, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cook", 
        "givenName": "Alex R", 
        "id": "sg:person.01034341733.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034341733.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.4269/tropmed.1999.61-01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000185529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1383-5769(02)00084-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002868191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1383-5769(02)00084-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002868191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2012.08.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004843378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12199-010-0184-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006997791", 
          "https://doi.org/10.1007/s12199-010-0184-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12199-010-0184-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006997791", 
          "https://doi.org/10.1007/s12199-010-0184-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3947/ic.2013.45.2.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007998646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0001979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016142166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0035-9203(84)90042-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018183730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/921715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019940154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1473-3099(13)70095-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025151450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1907.121674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025321231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-13-144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025459768", 
          "https://doi.org/10.1186/1475-2875-13-144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19980130)17:2<219::aid-sim735>3.0.co;2-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025845864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-10-297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026264436", 
          "https://doi.org/10.1186/1475-2875-10-297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6947-12-147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027911346", 
          "https://doi.org/10.1186/1472-6947-12-147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031109601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2001.1599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033713272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-10-202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034806448", 
          "https://doi.org/10.1186/1475-2875-10-202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-4758(00)01789-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035045220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pt.2011.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035677011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.3.5877.440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037008732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.0020174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038874302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.0020174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038874302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040278379", 
          "https://doi.org/10.1038/ng.2373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-397900-1.00001-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040585523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-407826-0.00004-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042166376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0001814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043256627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/512246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044403792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.1996.03540200058032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044497942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047288536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/cmr.00074-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048050574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4269/ajtmh.12-0351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048470498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/cmr.00051-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048527307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pt.2004.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048696317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.276.20.1672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054160357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trstmh.2005.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054751242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1987.10478458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid0701.010105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071122362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4269/ajtmh.1954.3.779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075537770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a119397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076914346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077484884", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080976100", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: The distributions of incubation and relapse periods are key components of infectious disease models for the malaria parasite Plasmodium vivax; however, detailed distributions based upon experimental data are lacking.\nMETHODS: Using a range of historical, experimental mosquito-transmitted human infections, Bayesian estimation with non-informative priors was used to determine parametric distributions that can be readily implemented for the incubation period and time-to-first relapse in P. vivax infections, including global subregions by parasite source. These analyses were complemented with a pooled analysis of observational human infection data with infections that included malaria chemoprophylaxis and long-latencies. The epidemiological impact of these distributional assumptions was explored using stochastic epidemic simulations at a fixed reproductive number while varying the underlying distribution of incubation periods.\nRESULTS: Using the Deviance Information Criteria to compare parameterizations, experimental incubation periods are most closely modeled with a shifted log-logistic distribution; a log-logistic mixture is the best fit for incubations in observational studies. The mixture Gompertz distribution was the best fit for experimental times-to-relapse among the tested parameterizations, with some variation by geographic subregions. Simulations suggest underlying distributional assumptions have critically important impacts on both the time-scale and total case counts within epidemics.\nCONCLUSIONS: These results suggest that the exponential and gamma distributions commonly used for modeling incubation periods and relapse times inadequately capture the complexity in the distributions of event times in P. vivax malaria infections. In future models, log-logistic and Gompertz distributions should be utilized for general incubation periods and relapse times respectively, and region-specific distributions should be considered to accurately model and predict the epidemiology of this important human pathogen.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2334-14-539", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024946", 
        "issn": [
          "1471-2334"
        ], 
        "name": "BMC Infectious Diseases", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "The distribution of incubation and relapse times in experimental human infections with the malaria parasite Plasmodium vivax", 
    "pagination": "539", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a034494878021a31ef7b42ac6d1e77b5f3c09c70a1a05049aeb0d391994a26fa"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25280926"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968551"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2334-14-539"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033630566"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2334-14-539", 
      "https://app.dimensions.ai/details/publication/pub.1033630566"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2334-14-539"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-14-539'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-14-539'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-14-539'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-14-539'


 

This table displays all metadata directly associated to this object as RDF triples.

265 TRIPLES      21 PREDICATES      77 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2334-14-539 schema:about N146f3e66b73345f79b665406ae4569c1
2 N170aa423358d485bad0520812dd1d40e
3 N31f1a71e48a44073abd4bc945aac79fb
4 N63b6e1ed71f24a14b37d7ef407fba079
5 N677a97d02850438d912e0465bd7d1437
6 Na840bd864f7b4d7998522e1d1902d425
7 Naa1e2d333b034fd78e10738dfa5effe1
8 Ncc46c216bdab43b68011913fcaed17ee
9 anzsrc-for:11
10 anzsrc-for:1117
11 schema:author N8303086d207f47bda6cea81549b35905
12 schema:citation sg:pub.10.1007/s12199-010-0184-8
13 sg:pub.10.1038/ng.2373
14 sg:pub.10.1186/1472-6947-12-147
15 sg:pub.10.1186/1475-2875-10-202
16 sg:pub.10.1186/1475-2875-10-297
17 sg:pub.10.1186/1475-2875-13-144
18 https://app.dimensions.ai/details/publication/pub.1077484884
19 https://app.dimensions.ai/details/publication/pub.1080976100
20 https://doi.org/10.1001/jama.1996.03540200058032
21 https://doi.org/10.1001/jama.276.20.1672
22 https://doi.org/10.1002/(sici)1097-0258(19980130)17:2<219::aid-sim735>3.0.co;2-o
23 https://doi.org/10.1002/sim.3659
24 https://doi.org/10.1016/0035-9203(84)90042-7
25 https://doi.org/10.1016/b978-0-12-397900-1.00001-3
26 https://doi.org/10.1016/b978-0-12-407826-0.00004-7
27 https://doi.org/10.1016/j.jtbi.2012.08.024
28 https://doi.org/10.1016/j.pt.2004.07.004
29 https://doi.org/10.1016/j.pt.2011.10.005
30 https://doi.org/10.1016/j.trstmh.2005.11.001
31 https://doi.org/10.1016/s0169-4758(00)01789-0
32 https://doi.org/10.1016/s1383-5769(02)00084-3
33 https://doi.org/10.1016/s1473-3099(13)70095-1
34 https://doi.org/10.1080/01621459.1987.10478458
35 https://doi.org/10.1086/512246
36 https://doi.org/10.1093/oxfordjournals.aje.a119397
37 https://doi.org/10.1098/rspb.2001.1599
38 https://doi.org/10.1111/1467-9868.00353
39 https://doi.org/10.1128/cmr.00051-10
40 https://doi.org/10.1128/cmr.00074-12
41 https://doi.org/10.1136/bmj.3.5877.440
42 https://doi.org/10.1155/2012/921715
43 https://doi.org/10.1371/journal.pmed.0020174
44 https://doi.org/10.1371/journal.pntd.0001814
45 https://doi.org/10.1371/journal.pntd.0001979
46 https://doi.org/10.3201/eid0701.010105
47 https://doi.org/10.3201/eid1907.121674
48 https://doi.org/10.3947/ic.2013.45.2.184
49 https://doi.org/10.4269/ajtmh.12-0351
50 https://doi.org/10.4269/ajtmh.1954.3.779
51 https://doi.org/10.4269/tropmed.1999.61-01
52 schema:datePublished 2014-12
53 schema:datePublishedReg 2014-12-01
54 schema:description BACKGROUND: The distributions of incubation and relapse periods are key components of infectious disease models for the malaria parasite Plasmodium vivax; however, detailed distributions based upon experimental data are lacking. METHODS: Using a range of historical, experimental mosquito-transmitted human infections, Bayesian estimation with non-informative priors was used to determine parametric distributions that can be readily implemented for the incubation period and time-to-first relapse in P. vivax infections, including global subregions by parasite source. These analyses were complemented with a pooled analysis of observational human infection data with infections that included malaria chemoprophylaxis and long-latencies. The epidemiological impact of these distributional assumptions was explored using stochastic epidemic simulations at a fixed reproductive number while varying the underlying distribution of incubation periods. RESULTS: Using the Deviance Information Criteria to compare parameterizations, experimental incubation periods are most closely modeled with a shifted log-logistic distribution; a log-logistic mixture is the best fit for incubations in observational studies. The mixture Gompertz distribution was the best fit for experimental times-to-relapse among the tested parameterizations, with some variation by geographic subregions. Simulations suggest underlying distributional assumptions have critically important impacts on both the time-scale and total case counts within epidemics. CONCLUSIONS: These results suggest that the exponential and gamma distributions commonly used for modeling incubation periods and relapse times inadequately capture the complexity in the distributions of event times in P. vivax malaria infections. In future models, log-logistic and Gompertz distributions should be utilized for general incubation periods and relapse times respectively, and region-specific distributions should be considered to accurately model and predict the epidemiology of this important human pathogen.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf N8caec85b86254688ba087f516fcfc6e4
59 N9ac06fb8ea2b460a9b0cd2609819ab10
60 sg:journal.1024946
61 schema:name The distribution of incubation and relapse times in experimental human infections with the malaria parasite Plasmodium vivax
62 schema:pagination 539
63 schema:productId N0ef3362187a64548a41184bbb608fb39
64 N93a7343c463b4781bb098929a204aa66
65 Nc47d0671b45043da9eec69acd132f2b5
66 Nd4f3d89868804fa3aaabbb23d785b6b2
67 Nf23e8e74c50147908e3bc831262f5274
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033630566
69 https://doi.org/10.1186/1471-2334-14-539
70 schema:sdDatePublished 2019-04-10T22:30
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nd6fb337f4c03442991244d33625d3b52
73 schema:url http://link.springer.com/10.1186%2F1471-2334-14-539
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N003dcbc4e4f34964abfae8aa7e32bcf2 schema:name Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
78 rdf:type schema:Organization
79 N00e6d9ebc5e94426b8da06912c217525 rdf:first sg:person.0617607412.02
80 rdf:rest N78a5f1308724493183f630edc1b9662e
81 N0ef3362187a64548a41184bbb608fb39 schema:name nlm_unique_id
82 schema:value 100968551
83 rdf:type schema:PropertyValue
84 N146f3e66b73345f79b665406ae4569c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Chemoprevention
86 rdf:type schema:DefinedTerm
87 N170aa423358d485bad0520812dd1d40e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Malaria, Vivax
89 rdf:type schema:DefinedTerm
90 N31f1a71e48a44073abd4bc945aac79fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Time Factors
92 rdf:type schema:DefinedTerm
93 N40f0066594b545d399e67821a83a81f0 schema:name Communicable Diseases Policy Research Group, London School of Hygiene and Tropical Medicine, Bangkok, Thailand
94 Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
95 rdf:type schema:Organization
96 N44ed3b853bcc461796b88f67a5883022 schema:name Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
97 rdf:type schema:Organization
98 N4b2b7fdc262c4fc08aa725872c5fd88c schema:affiliation https://www.grid.ac/institutes/grid.4280.e
99 schema:familyName Gao
100 schema:givenName Zheng
101 rdf:type schema:Person
102 N63b6e1ed71f24a14b37d7ef407fba079 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Epidemics
104 rdf:type schema:DefinedTerm
105 N677a97d02850438d912e0465bd7d1437 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Bayes Theorem
107 rdf:type schema:DefinedTerm
108 N78a5f1308724493183f630edc1b9662e rdf:first sg:person.01034341733.34
109 rdf:rest rdf:nil
110 N8303086d207f47bda6cea81549b35905 rdf:first sg:person.07575753225.14
111 rdf:rest Nf5b6a788f6ff45f6bc9b33a82ad46003
112 N8caec85b86254688ba087f516fcfc6e4 schema:volumeNumber 14
113 rdf:type schema:PublicationVolume
114 N93a7343c463b4781bb098929a204aa66 schema:name doi
115 schema:value 10.1186/1471-2334-14-539
116 rdf:type schema:PropertyValue
117 N9ac06fb8ea2b460a9b0cd2609819ab10 schema:issueNumber 1
118 rdf:type schema:PublicationIssue
119 Na840bd864f7b4d7998522e1d1902d425 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Recurrence
121 rdf:type schema:DefinedTerm
122 Naa1e2d333b034fd78e10738dfa5effe1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Plasmodium vivax
124 rdf:type schema:DefinedTerm
125 Nc47d0671b45043da9eec69acd132f2b5 schema:name readcube_id
126 schema:value a034494878021a31ef7b42ac6d1e77b5f3c09c70a1a05049aeb0d391994a26fa
127 rdf:type schema:PropertyValue
128 Ncc46c216bdab43b68011913fcaed17ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Humans
130 rdf:type schema:DefinedTerm
131 Nd4f3d89868804fa3aaabbb23d785b6b2 schema:name pubmed_id
132 schema:value 25280926
133 rdf:type schema:PropertyValue
134 Nd6fb337f4c03442991244d33625d3b52 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 Nf17c0550437b43788d7aed4af4066f56 rdf:first N4b2b7fdc262c4fc08aa725872c5fd88c
137 rdf:rest N00e6d9ebc5e94426b8da06912c217525
138 Nf23e8e74c50147908e3bc831262f5274 schema:name dimensions_id
139 schema:value pub.1033630566
140 rdf:type schema:PropertyValue
141 Nf5b6a788f6ff45f6bc9b33a82ad46003 rdf:first sg:person.0736323566.80
142 rdf:rest Nf17c0550437b43788d7aed4af4066f56
143 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
144 schema:name Medical and Health Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
147 schema:name Public Health and Health Services
148 rdf:type schema:DefinedTerm
149 sg:journal.1024946 schema:issn 1471-2334
150 schema:name BMC Infectious Diseases
151 rdf:type schema:Periodical
152 sg:person.01034341733.34 schema:affiliation https://www.grid.ac/institutes/grid.240988.f
153 schema:familyName Cook
154 schema:givenName Alex R
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034341733.34
156 rdf:type schema:Person
157 sg:person.0617607412.02 schema:affiliation N40f0066594b545d399e67821a83a81f0
158 schema:familyName Coker
159 schema:givenName Richard J
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617607412.02
161 rdf:type schema:Person
162 sg:person.0736323566.80 schema:affiliation N44ed3b853bcc461796b88f67a5883022
163 schema:familyName Zhao
164 schema:givenName Xiahong
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736323566.80
166 rdf:type schema:Person
167 sg:person.07575753225.14 schema:affiliation N003dcbc4e4f34964abfae8aa7e32bcf2
168 schema:familyName Lover
169 schema:givenName Andrew A
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07575753225.14
171 rdf:type schema:Person
172 sg:pub.10.1007/s12199-010-0184-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006997791
173 https://doi.org/10.1007/s12199-010-0184-8
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/ng.2373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040278379
176 https://doi.org/10.1038/ng.2373
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1472-6947-12-147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027911346
179 https://doi.org/10.1186/1472-6947-12-147
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1475-2875-10-202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034806448
182 https://doi.org/10.1186/1475-2875-10-202
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1475-2875-10-297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026264436
185 https://doi.org/10.1186/1475-2875-10-297
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/1475-2875-13-144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025459768
188 https://doi.org/10.1186/1475-2875-13-144
189 rdf:type schema:CreativeWork
190 https://app.dimensions.ai/details/publication/pub.1077484884 schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1080976100 schema:CreativeWork
192 https://doi.org/10.1001/jama.1996.03540200058032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044497942
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1001/jama.276.20.1672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054160357
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1002/(sici)1097-0258(19980130)17:2<219::aid-sim735>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1025845864
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1002/sim.3659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031109601
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/0035-9203(84)90042-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018183730
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/b978-0-12-397900-1.00001-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040585523
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/b978-0-12-407826-0.00004-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042166376
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.jtbi.2012.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004843378
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.pt.2004.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048696317
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.pt.2011.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035677011
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.trstmh.2005.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054751242
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s0169-4758(00)01789-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035045220
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/s1383-5769(02)00084-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002868191
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/s1473-3099(13)70095-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025151450
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1080/01621459.1987.10478458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303435
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1086/512246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044403792
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/oxfordjournals.aje.a119397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076914346
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1098/rspb.2001.1599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033713272
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1111/1467-9868.00353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047288536
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1128/cmr.00051-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048527307
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1128/cmr.00074-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048050574
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1136/bmj.3.5877.440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037008732
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1155/2012/921715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019940154
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1371/journal.pmed.0020174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038874302
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1371/journal.pntd.0001814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043256627
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1371/journal.pntd.0001979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016142166
243 rdf:type schema:CreativeWork
244 https://doi.org/10.3201/eid0701.010105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071122362
245 rdf:type schema:CreativeWork
246 https://doi.org/10.3201/eid1907.121674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025321231
247 rdf:type schema:CreativeWork
248 https://doi.org/10.3947/ic.2013.45.2.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007998646
249 rdf:type schema:CreativeWork
250 https://doi.org/10.4269/ajtmh.12-0351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048470498
251 rdf:type schema:CreativeWork
252 https://doi.org/10.4269/ajtmh.1954.3.779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075537770
253 rdf:type schema:CreativeWork
254 https://doi.org/10.4269/tropmed.1999.61-01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000185529
255 rdf:type schema:CreativeWork
256 https://www.grid.ac/institutes/grid.240988.f schema:alternateName Tan Tock Seng Hospital
257 schema:name Communicable Diseases Centre, Tan Tock Seng Hospital, Singapore, Singapore
258 Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
259 Program in Health Services and Systems Research, Duke-NUS Graduate Medical School, Singapore, Singapore
260 Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
261 Yale-NUS College, National University of Singapore, Singapore, Singapore
262 rdf:type schema:Organization
263 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
264 schema:name Faculty of Engineering, National University of Singapore, Singapore, Singapore
265 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...