Detection of Pulmonary tuberculosis: comparing MR imaging with HRCT View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Elisa Busi Rizzi, Vincenzo Schinina', Massimo Cristofaro, Delia Goletti, Fabrizio Palmieri, Nazario Bevilacqua, Francesco N Lauria, Enrico Girardi, Corrado Bibbolino

ABSTRACT

BACKGROUND: Computer Tomography (CT) is considered the gold standard for assessing the morphological changes of lung parenchyma. Although novel CT techniques have substantially decreased the radiation dose, radiation exposure is still high. Magnetic Resonance Imaging (MRI) has been established as a radiation- free alternative to CT for several lung diseases, but its role in infectious diseases still needs to be explored further. Therefore, the purpose of our study was to compare MRI with high resolution CT (HRCT) for assessing pulmonary tuberculosis. METHODS: 50 patients with culture-proven pulmonary tuberculosis underwent chest HRCT as the standard of reference and were evaluated by MRI within 24 h after HRCT. Altogether we performed 60 CT and MRI examinations, because 10 patients were also examined by CT and MRI at follow- up. Pulmonary abnormalities, their characteristics, location and distribution were analyzed by two readers who were blinded to the HRCT results. RESULTS: Artifacts did not interfere with the diagnostic value of MRI. Both HRCT and MRI correctly diagnosed pulmonary tuberculosis and identified pulmonary abnormalities in all patients. There were no significant differences between the two techniques in terms of identifying the location and distribution of the lung lesions, though the higher resolution of MRI did allow for better identification of parenchymal dishomogeneity, caseosis, and pleural or nodal involvement. CONCLUSION: Technical developments and the refinement of pulse sequences have improved the quality and speed of MRI. Our data indicate that in terms of identifying lung lesions in non-AIDS patients with non- miliary pulmonary tuberculosis, MRI achieves diagnostic performances comparable to those obtained by HRCT but with better and more rapid identification of pulmonary tissue abnormalities due to the excellent contrast resolution. More... »

PAGES

243

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2334-11-243

DOI

http://dx.doi.org/10.1186/1471-2334-11-243

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041540926

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21923910


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography, Thoracic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tuberculosis, Pulmonary", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Diagnostic Department, Radiology. \"L. Spallanzani\" National Institute for Infectious Diseases, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Busi Rizzi", 
        "givenName": "Elisa", 
        "id": "sg:person.01063260774.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063260774.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Diagnostic Department, Radiology. \"L. Spallanzani\" National Institute for Infectious Diseases, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schinina'", 
        "givenName": "Vincenzo", 
        "id": "sg:person.01260364730.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260364730.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Diagnostic Department, Radiology. \"L. Spallanzani\" National Institute for Infectious Diseases, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cristofaro", 
        "givenName": "Massimo", 
        "id": "sg:person.0646344524.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646344524.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Research Department, Translational Research Unit. \"L. Spallanzani\" National Institute for Infectious Diseases, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goletti", 
        "givenName": "Delia", 
        "id": "sg:person.01200446072.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200446072.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Clinical Department, National Institute for Infectious Diseases \"L. Spallanzani\", Rome"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palmieri", 
        "givenName": "Fabrizio", 
        "id": "sg:person.0655031534.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655031534.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Clinical Department, National Institute for Infectious Diseases \"L. Spallanzani\", Rome"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bevilacqua", 
        "givenName": "Nazario", 
        "id": "sg:person.01161236007.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161236007.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Clinical Department, National Institute for Infectious Diseases \"L. Spallanzani\", Rome"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lauria", 
        "givenName": "Francesco N", 
        "id": "sg:person.01050065003.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050065003.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Epidemiology Department, \"L. Spallanzani\" National Institute for Infectious Diseases, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Girardi", 
        "givenName": "Enrico", 
        "id": "sg:person.01222655205.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222655205.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Diagnostic Department, Radiology. \"L. Spallanzani\" National Institute for Infectious Diseases, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bibbolino", 
        "givenName": "Corrado", 
        "id": "sg:person.01050654250.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050654250.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1513/pats.200901-002aw", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002029715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2006.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018121844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023771261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023771261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.101.2.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024288841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2413042056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026258624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-004-2548-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030219441", 
          "https://doi.org/10.1007/s00330-004-2548-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinimag.2006.09.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030584667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2007.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037010538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mric.2008.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040435384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0412-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047223563", 
          "https://doi.org/10.1007/s00330-006-0412-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00117-005-1326-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050280074", 
          "https://doi.org/10.1007/s00117-005-1326-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00117-005-1326-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050280074", 
          "https://doi.org/10.1007/s00117-005-1326-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.175.2.1750391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069323371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074608856", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.185.1.1523341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076861995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.178.3.1994407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077988883"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Computer Tomography (CT) is considered the gold standard for assessing the morphological changes of lung parenchyma. Although novel CT techniques have substantially decreased the radiation dose, radiation exposure is still high. Magnetic Resonance Imaging (MRI) has been established as a radiation- free alternative to CT for several lung diseases, but its role in infectious diseases still needs to be explored further. Therefore, the purpose of our study was to compare MRI with high resolution CT (HRCT) for assessing pulmonary tuberculosis.\nMETHODS: 50 patients with culture-proven pulmonary tuberculosis underwent chest HRCT as the standard of reference and were evaluated by MRI within 24 h after HRCT. Altogether we performed 60 CT and MRI examinations, because 10 patients were also examined by CT and MRI at follow- up. Pulmonary abnormalities, their characteristics, location and distribution were analyzed by two readers who were blinded to the HRCT results.\nRESULTS: Artifacts did not interfere with the diagnostic value of MRI. Both HRCT and MRI correctly diagnosed pulmonary tuberculosis and identified pulmonary abnormalities in all patients. There were no significant differences between the two techniques in terms of identifying the location and distribution of the lung lesions, though the higher resolution of MRI did allow for better identification of parenchymal dishomogeneity, caseosis, and pleural or nodal involvement.\nCONCLUSION: Technical developments and the refinement of pulse sequences have improved the quality and speed of MRI. Our data indicate that in terms of identifying lung lesions in non-AIDS patients with non- miliary pulmonary tuberculosis, MRI achieves diagnostic performances comparable to those obtained by HRCT but with better and more rapid identification of pulmonary tissue abnormalities due to the excellent contrast resolution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2334-11-243", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024946", 
        "issn": [
          "1471-2334"
        ], 
        "name": "BMC Infectious Diseases", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Detection of Pulmonary tuberculosis: comparing MR imaging with HRCT", 
    "pagination": "243", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c5e304f7b9e71f55e457a245353a76216e7cd86189cd473e83d2a1dc1cf095f6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21923910"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968551"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2334-11-243"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041540926"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2334-11-243", 
      "https://app.dimensions.ai/details/publication/pub.1041540926"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2334-11-243"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-243'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-243'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-243'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-243'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      54 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2334-11-243 schema:about N1e061d14801e46a39b1a9167b620f1c9
2 N21d5e18bd3dc40f4a569a25e84a7a373
3 N53b317c4d4ec4d5d894541e9bdc668b1
4 N6cc90c3e9b40486f97ecc5d748b3de56
5 N7cb8f1127b09463d839ec2a31bf088e4
6 N7f303ea4857f4c6ba4d7ce409b4f2df4
7 N929a4d97f4db4531a88dedbe0f0e7693
8 N93b63a4c3fe4453dae1f17707b57db93
9 Na406f629f41d4548b24d03db528c9123
10 Nea885fc4b6ee49c497ca5e6d90d3525c
11 anzsrc-for:11
12 anzsrc-for:1102
13 schema:author N00f9ac842ccd41e9b08e05365b43f4db
14 schema:citation sg:pub.10.1007/s00117-005-1326-7
15 sg:pub.10.1007/s00330-004-2548-1
16 sg:pub.10.1007/s00330-006-0412-1
17 https://app.dimensions.ai/details/publication/pub.1074608856
18 https://doi.org/10.1002/jmri.22374
19 https://doi.org/10.1016/j.clinimag.2006.09.026
20 https://doi.org/10.1016/j.ejrad.2006.09.005
21 https://doi.org/10.1016/j.ejrad.2007.08.009
22 https://doi.org/10.1016/j.mric.2008.02.014
23 https://doi.org/10.1148/radiol.2413042056
24 https://doi.org/10.1148/radiology.178.3.1994407
25 https://doi.org/10.1148/radiology.185.1.1523341
26 https://doi.org/10.1378/chest.101.2.371
27 https://doi.org/10.1513/pats.200901-002aw
28 https://doi.org/10.2214/ajr.175.2.1750391
29 schema:datePublished 2011-12
30 schema:datePublishedReg 2011-12-01
31 schema:description BACKGROUND: Computer Tomography (CT) is considered the gold standard for assessing the morphological changes of lung parenchyma. Although novel CT techniques have substantially decreased the radiation dose, radiation exposure is still high. Magnetic Resonance Imaging (MRI) has been established as a radiation- free alternative to CT for several lung diseases, but its role in infectious diseases still needs to be explored further. Therefore, the purpose of our study was to compare MRI with high resolution CT (HRCT) for assessing pulmonary tuberculosis. METHODS: 50 patients with culture-proven pulmonary tuberculosis underwent chest HRCT as the standard of reference and were evaluated by MRI within 24 h after HRCT. Altogether we performed 60 CT and MRI examinations, because 10 patients were also examined by CT and MRI at follow- up. Pulmonary abnormalities, their characteristics, location and distribution were analyzed by two readers who were blinded to the HRCT results. RESULTS: Artifacts did not interfere with the diagnostic value of MRI. Both HRCT and MRI correctly diagnosed pulmonary tuberculosis and identified pulmonary abnormalities in all patients. There were no significant differences between the two techniques in terms of identifying the location and distribution of the lung lesions, though the higher resolution of MRI did allow for better identification of parenchymal dishomogeneity, caseosis, and pleural or nodal involvement. CONCLUSION: Technical developments and the refinement of pulse sequences have improved the quality and speed of MRI. Our data indicate that in terms of identifying lung lesions in non-AIDS patients with non- miliary pulmonary tuberculosis, MRI achieves diagnostic performances comparable to those obtained by HRCT but with better and more rapid identification of pulmonary tissue abnormalities due to the excellent contrast resolution.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N204ada66f2e34f5eafd80b3e60f0ebd5
36 N768db1ab2ce94c758668932cb76759a1
37 sg:journal.1024946
38 schema:name Detection of Pulmonary tuberculosis: comparing MR imaging with HRCT
39 schema:pagination 243
40 schema:productId N66af58342bc64bbbbe73457bcca6cfc2
41 N7c01cb91c09b49b7bff00490ffc61dc7
42 Nae03eb871b904953ad1f5cac5f6d0fcf
43 Nb265758609634d34bad6dd20abdfd117
44 Nfae237e25c364395ac3e2f0f65a35b19
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041540926
46 https://doi.org/10.1186/1471-2334-11-243
47 schema:sdDatePublished 2019-04-11T01:06
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nfdc3b22339304bad8d5cd4b6986663d3
50 schema:url http://link.springer.com/10.1186%2F1471-2334-11-243
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N00f9ac842ccd41e9b08e05365b43f4db rdf:first sg:person.01063260774.30
55 rdf:rest Nfda66f6475f4401784d8ff4dd9d8f08f
56 N13442f6148b84279b39a8a5aedeb5c97 schema:name Diagnostic Department, Radiology. "L. Spallanzani" National Institute for Infectious Diseases, Rome, Italy
57 rdf:type schema:Organization
58 N1e061d14801e46a39b1a9167b620f1c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Lung
60 rdf:type schema:DefinedTerm
61 N1fe5044da0604ebc95f94557fe813786 rdf:first sg:person.01200446072.99
62 rdf:rest N7cf12d0d31f84325a34c1969f8fa5ce4
63 N204ada66f2e34f5eafd80b3e60f0ebd5 schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 N21d5e18bd3dc40f4a569a25e84a7a373 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Tuberculosis, Pulmonary
67 rdf:type schema:DefinedTerm
68 N25b64c51a4ac4c06a62267f90d2c1dd4 rdf:first sg:person.01050654250.31
69 rdf:rest rdf:nil
70 N2ed64e21af9b4a4d9fd3c34fcc9146a5 schema:name Diagnostic Department, Radiology. "L. Spallanzani" National Institute for Infectious Diseases, Rome, Italy
71 rdf:type schema:Organization
72 N3052c9fd8ed440e98bfecb5e94a897a7 schema:name Diagnostic Department, Radiology. "L. Spallanzani" National Institute for Infectious Diseases, Rome, Italy
73 rdf:type schema:Organization
74 N317f7f46114a4152a46f2f7ef75f979d rdf:first sg:person.01050065003.28
75 rdf:rest N574d2ebeaee145049a2f527b0215c174
76 N53b317c4d4ec4d5d894541e9bdc668b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Male
78 rdf:type schema:DefinedTerm
79 N574d2ebeaee145049a2f527b0215c174 rdf:first sg:person.01222655205.82
80 rdf:rest N25b64c51a4ac4c06a62267f90d2c1dd4
81 N66af58342bc64bbbbe73457bcca6cfc2 schema:name readcube_id
82 schema:value c5e304f7b9e71f55e457a245353a76216e7cd86189cd473e83d2a1dc1cf095f6
83 rdf:type schema:PropertyValue
84 N6cc90c3e9b40486f97ecc5d748b3de56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Radiography, Thoracic
86 rdf:type schema:DefinedTerm
87 N768db1ab2ce94c758668932cb76759a1 schema:volumeNumber 11
88 rdf:type schema:PublicationVolume
89 N79d650a35d2a40e2bea2825d6d5ed4ef schema:name Epidemiology Department, "L. Spallanzani" National Institute for Infectious Diseases, Rome, Italy
90 rdf:type schema:Organization
91 N7c01cb91c09b49b7bff00490ffc61dc7 schema:name doi
92 schema:value 10.1186/1471-2334-11-243
93 rdf:type schema:PropertyValue
94 N7c9e9c7e63a748f0bcc013ffc7c11d39 rdf:first sg:person.01161236007.37
95 rdf:rest N317f7f46114a4152a46f2f7ef75f979d
96 N7cb8f1127b09463d839ec2a31bf088e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Female
98 rdf:type schema:DefinedTerm
99 N7cf12d0d31f84325a34c1969f8fa5ce4 rdf:first sg:person.0655031534.49
100 rdf:rest N7c9e9c7e63a748f0bcc013ffc7c11d39
101 N7e2d22eca90e4eb8829ac1ea6a506d29 schema:name Research Department, Translational Research Unit. "L. Spallanzani" National Institute for Infectious Diseases, Rome, Italy
102 rdf:type schema:Organization
103 N7f303ea4857f4c6ba4d7ce409b4f2df4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Adult
105 rdf:type schema:DefinedTerm
106 N929a4d97f4db4531a88dedbe0f0e7693 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Tomography, X-Ray Computed
108 rdf:type schema:DefinedTerm
109 N93b63a4c3fe4453dae1f17707b57db93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Humans
111 rdf:type schema:DefinedTerm
112 Na406f629f41d4548b24d03db528c9123 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Magnetic Resonance Imaging
114 rdf:type schema:DefinedTerm
115 Nae03eb871b904953ad1f5cac5f6d0fcf schema:name pubmed_id
116 schema:value 21923910
117 rdf:type schema:PropertyValue
118 Nb265758609634d34bad6dd20abdfd117 schema:name dimensions_id
119 schema:value pub.1041540926
120 rdf:type schema:PropertyValue
121 Nd05cdc6727c84093926352e52bddcd9b schema:name Diagnostic Department, Radiology. "L. Spallanzani" National Institute for Infectious Diseases, Rome, Italy
122 rdf:type schema:Organization
123 Nea885fc4b6ee49c497ca5e6d90d3525c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Middle Aged
125 rdf:type schema:DefinedTerm
126 Nfae237e25c364395ac3e2f0f65a35b19 schema:name nlm_unique_id
127 schema:value 100968551
128 rdf:type schema:PropertyValue
129 Nfc4f9e786e114779be8ba84501281306 rdf:first sg:person.0646344524.57
130 rdf:rest N1fe5044da0604ebc95f94557fe813786
131 Nfda66f6475f4401784d8ff4dd9d8f08f rdf:first sg:person.01260364730.58
132 rdf:rest Nfc4f9e786e114779be8ba84501281306
133 Nfdc3b22339304bad8d5cd4b6986663d3 schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
136 schema:name Medical and Health Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
139 schema:name Cardiorespiratory Medicine and Haematology
140 rdf:type schema:DefinedTerm
141 sg:journal.1024946 schema:issn 1471-2334
142 schema:name BMC Infectious Diseases
143 rdf:type schema:Periodical
144 sg:person.01050065003.28 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
145 schema:familyName Lauria
146 schema:givenName Francesco N
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050065003.28
148 rdf:type schema:Person
149 sg:person.01050654250.31 schema:affiliation N3052c9fd8ed440e98bfecb5e94a897a7
150 schema:familyName Bibbolino
151 schema:givenName Corrado
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050654250.31
153 rdf:type schema:Person
154 sg:person.01063260774.30 schema:affiliation N2ed64e21af9b4a4d9fd3c34fcc9146a5
155 schema:familyName Busi Rizzi
156 schema:givenName Elisa
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063260774.30
158 rdf:type schema:Person
159 sg:person.01161236007.37 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
160 schema:familyName Bevilacqua
161 schema:givenName Nazario
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161236007.37
163 rdf:type schema:Person
164 sg:person.01200446072.99 schema:affiliation N7e2d22eca90e4eb8829ac1ea6a506d29
165 schema:familyName Goletti
166 schema:givenName Delia
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200446072.99
168 rdf:type schema:Person
169 sg:person.01222655205.82 schema:affiliation N79d650a35d2a40e2bea2825d6d5ed4ef
170 schema:familyName Girardi
171 schema:givenName Enrico
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222655205.82
173 rdf:type schema:Person
174 sg:person.01260364730.58 schema:affiliation N13442f6148b84279b39a8a5aedeb5c97
175 schema:familyName Schinina'
176 schema:givenName Vincenzo
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260364730.58
178 rdf:type schema:Person
179 sg:person.0646344524.57 schema:affiliation Nd05cdc6727c84093926352e52bddcd9b
180 schema:familyName Cristofaro
181 schema:givenName Massimo
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646344524.57
183 rdf:type schema:Person
184 sg:person.0655031534.49 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
185 schema:familyName Palmieri
186 schema:givenName Fabrizio
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655031534.49
188 rdf:type schema:Person
189 sg:pub.10.1007/s00117-005-1326-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050280074
190 https://doi.org/10.1007/s00117-005-1326-7
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s00330-004-2548-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030219441
193 https://doi.org/10.1007/s00330-004-2548-1
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s00330-006-0412-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047223563
196 https://doi.org/10.1007/s00330-006-0412-1
197 rdf:type schema:CreativeWork
198 https://app.dimensions.ai/details/publication/pub.1074608856 schema:CreativeWork
199 https://doi.org/10.1002/jmri.22374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023771261
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.clinimag.2006.09.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030584667
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.ejrad.2006.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018121844
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.ejrad.2007.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037010538
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.mric.2008.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040435384
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1148/radiol.2413042056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026258624
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1148/radiology.178.3.1994407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077988883
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1148/radiology.185.1.1523341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076861995
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1378/chest.101.2.371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024288841
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1513/pats.200901-002aw schema:sameAs https://app.dimensions.ai/details/publication/pub.1002029715
218 rdf:type schema:CreativeWork
219 https://doi.org/10.2214/ajr.175.2.1750391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069323371
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.419423.9 schema:alternateName Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani
222 schema:name Clinical Department, National Institute for Infectious Diseases "L. Spallanzani", Rome
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...