Detection of Pulmonary tuberculosis: comparing MR imaging with HRCT View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Elisa Busi Rizzi, Vincenzo Schinina', Massimo Cristofaro, Delia Goletti, Fabrizio Palmieri, Nazario Bevilacqua, Francesco N Lauria, Enrico Girardi, Corrado Bibbolino

ABSTRACT

BACKGROUND: Computer Tomography (CT) is considered the gold standard for assessing the morphological changes of lung parenchyma. Although novel CT techniques have substantially decreased the radiation dose, radiation exposure is still high. Magnetic Resonance Imaging (MRI) has been established as a radiation- free alternative to CT for several lung diseases, but its role in infectious diseases still needs to be explored further. Therefore, the purpose of our study was to compare MRI with high resolution CT (HRCT) for assessing pulmonary tuberculosis. METHODS: 50 patients with culture-proven pulmonary tuberculosis underwent chest HRCT as the standard of reference and were evaluated by MRI within 24 h after HRCT. Altogether we performed 60 CT and MRI examinations, because 10 patients were also examined by CT and MRI at follow- up. Pulmonary abnormalities, their characteristics, location and distribution were analyzed by two readers who were blinded to the HRCT results. RESULTS: Artifacts did not interfere with the diagnostic value of MRI. Both HRCT and MRI correctly diagnosed pulmonary tuberculosis and identified pulmonary abnormalities in all patients. There were no significant differences between the two techniques in terms of identifying the location and distribution of the lung lesions, though the higher resolution of MRI did allow for better identification of parenchymal dishomogeneity, caseosis, and pleural or nodal involvement. CONCLUSION: Technical developments and the refinement of pulse sequences have improved the quality and speed of MRI. Our data indicate that in terms of identifying lung lesions in non-AIDS patients with non- miliary pulmonary tuberculosis, MRI achieves diagnostic performances comparable to those obtained by HRCT but with better and more rapid identification of pulmonary tissue abnormalities due to the excellent contrast resolution. More... »

PAGES

243

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2334-11-243

DOI

http://dx.doi.org/10.1186/1471-2334-11-243

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041540926

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21923910


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography, Thoracic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tuberculosis, Pulmonary", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Diagnostic Department, Radiology. \"L. Spallanzani\" National Institute for Infectious Diseases, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Busi Rizzi", 
        "givenName": "Elisa", 
        "id": "sg:person.01063260774.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063260774.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Diagnostic Department, Radiology. \"L. Spallanzani\" National Institute for Infectious Diseases, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schinina'", 
        "givenName": "Vincenzo", 
        "id": "sg:person.01260364730.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260364730.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Diagnostic Department, Radiology. \"L. Spallanzani\" National Institute for Infectious Diseases, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cristofaro", 
        "givenName": "Massimo", 
        "id": "sg:person.0646344524.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646344524.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Research Department, Translational Research Unit. \"L. Spallanzani\" National Institute for Infectious Diseases, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goletti", 
        "givenName": "Delia", 
        "id": "sg:person.01200446072.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200446072.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Clinical Department, National Institute for Infectious Diseases \"L. Spallanzani\", Rome"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palmieri", 
        "givenName": "Fabrizio", 
        "id": "sg:person.0655031534.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655031534.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Clinical Department, National Institute for Infectious Diseases \"L. Spallanzani\", Rome"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bevilacqua", 
        "givenName": "Nazario", 
        "id": "sg:person.01161236007.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161236007.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani", 
          "id": "https://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Clinical Department, National Institute for Infectious Diseases \"L. Spallanzani\", Rome"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lauria", 
        "givenName": "Francesco N", 
        "id": "sg:person.01050065003.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050065003.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Epidemiology Department, \"L. Spallanzani\" National Institute for Infectious Diseases, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Girardi", 
        "givenName": "Enrico", 
        "id": "sg:person.01222655205.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222655205.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Diagnostic Department, Radiology. \"L. Spallanzani\" National Institute for Infectious Diseases, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bibbolino", 
        "givenName": "Corrado", 
        "id": "sg:person.01050654250.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050654250.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1513/pats.200901-002aw", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002029715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2006.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018121844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023771261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023771261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.101.2.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024288841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2413042056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026258624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-004-2548-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030219441", 
          "https://doi.org/10.1007/s00330-004-2548-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinimag.2006.09.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030584667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2007.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037010538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mric.2008.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040435384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0412-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047223563", 
          "https://doi.org/10.1007/s00330-006-0412-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00117-005-1326-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050280074", 
          "https://doi.org/10.1007/s00117-005-1326-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00117-005-1326-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050280074", 
          "https://doi.org/10.1007/s00117-005-1326-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.175.2.1750391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069323371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074608856", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.185.1.1523341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076861995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.178.3.1994407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077988883"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Computer Tomography (CT) is considered the gold standard for assessing the morphological changes of lung parenchyma. Although novel CT techniques have substantially decreased the radiation dose, radiation exposure is still high. Magnetic Resonance Imaging (MRI) has been established as a radiation- free alternative to CT for several lung diseases, but its role in infectious diseases still needs to be explored further. Therefore, the purpose of our study was to compare MRI with high resolution CT (HRCT) for assessing pulmonary tuberculosis.\nMETHODS: 50 patients with culture-proven pulmonary tuberculosis underwent chest HRCT as the standard of reference and were evaluated by MRI within 24 h after HRCT. Altogether we performed 60 CT and MRI examinations, because 10 patients were also examined by CT and MRI at follow- up. Pulmonary abnormalities, their characteristics, location and distribution were analyzed by two readers who were blinded to the HRCT results.\nRESULTS: Artifacts did not interfere with the diagnostic value of MRI. Both HRCT and MRI correctly diagnosed pulmonary tuberculosis and identified pulmonary abnormalities in all patients. There were no significant differences between the two techniques in terms of identifying the location and distribution of the lung lesions, though the higher resolution of MRI did allow for better identification of parenchymal dishomogeneity, caseosis, and pleural or nodal involvement.\nCONCLUSION: Technical developments and the refinement of pulse sequences have improved the quality and speed of MRI. Our data indicate that in terms of identifying lung lesions in non-AIDS patients with non- miliary pulmonary tuberculosis, MRI achieves diagnostic performances comparable to those obtained by HRCT but with better and more rapid identification of pulmonary tissue abnormalities due to the excellent contrast resolution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2334-11-243", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024946", 
        "issn": [
          "1471-2334"
        ], 
        "name": "BMC Infectious Diseases", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Detection of Pulmonary tuberculosis: comparing MR imaging with HRCT", 
    "pagination": "243", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c5e304f7b9e71f55e457a245353a76216e7cd86189cd473e83d2a1dc1cf095f6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21923910"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968551"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2334-11-243"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041540926"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2334-11-243", 
      "https://app.dimensions.ai/details/publication/pub.1041540926"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2334-11-243"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-243'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-243'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-243'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-243'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      54 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2334-11-243 schema:about N1cda2a30d64a4b299816b3091bb96e7a
2 N328b6d36c0a6423c844c14a200622e89
3 N44cfd8552e7448cfb7ace09edaae82ce
4 N5b42d67bdd594ec29cd917782b9fae80
5 N63ed31b67d1c4958881d8d11b2d138e0
6 N6c720dadc1144beda5975a5a34e105fb
7 N6da2ddada8004845b17eee3f052527c0
8 Nb1d835f441e64634af3233356ca3de2d
9 Ncaa182d5a06e4bdb942ee45a1fe6d2dd
10 Ncbc2fdc139cb4b3293e13a6107d57683
11 anzsrc-for:11
12 anzsrc-for:1102
13 schema:author Na476e49943ce40bdbbd3bb2e15736c61
14 schema:citation sg:pub.10.1007/s00117-005-1326-7
15 sg:pub.10.1007/s00330-004-2548-1
16 sg:pub.10.1007/s00330-006-0412-1
17 https://app.dimensions.ai/details/publication/pub.1074608856
18 https://doi.org/10.1002/jmri.22374
19 https://doi.org/10.1016/j.clinimag.2006.09.026
20 https://doi.org/10.1016/j.ejrad.2006.09.005
21 https://doi.org/10.1016/j.ejrad.2007.08.009
22 https://doi.org/10.1016/j.mric.2008.02.014
23 https://doi.org/10.1148/radiol.2413042056
24 https://doi.org/10.1148/radiology.178.3.1994407
25 https://doi.org/10.1148/radiology.185.1.1523341
26 https://doi.org/10.1378/chest.101.2.371
27 https://doi.org/10.1513/pats.200901-002aw
28 https://doi.org/10.2214/ajr.175.2.1750391
29 schema:datePublished 2011-12
30 schema:datePublishedReg 2011-12-01
31 schema:description BACKGROUND: Computer Tomography (CT) is considered the gold standard for assessing the morphological changes of lung parenchyma. Although novel CT techniques have substantially decreased the radiation dose, radiation exposure is still high. Magnetic Resonance Imaging (MRI) has been established as a radiation- free alternative to CT for several lung diseases, but its role in infectious diseases still needs to be explored further. Therefore, the purpose of our study was to compare MRI with high resolution CT (HRCT) for assessing pulmonary tuberculosis. METHODS: 50 patients with culture-proven pulmonary tuberculosis underwent chest HRCT as the standard of reference and were evaluated by MRI within 24 h after HRCT. Altogether we performed 60 CT and MRI examinations, because 10 patients were also examined by CT and MRI at follow- up. Pulmonary abnormalities, their characteristics, location and distribution were analyzed by two readers who were blinded to the HRCT results. RESULTS: Artifacts did not interfere with the diagnostic value of MRI. Both HRCT and MRI correctly diagnosed pulmonary tuberculosis and identified pulmonary abnormalities in all patients. There were no significant differences between the two techniques in terms of identifying the location and distribution of the lung lesions, though the higher resolution of MRI did allow for better identification of parenchymal dishomogeneity, caseosis, and pleural or nodal involvement. CONCLUSION: Technical developments and the refinement of pulse sequences have improved the quality and speed of MRI. Our data indicate that in terms of identifying lung lesions in non-AIDS patients with non- miliary pulmonary tuberculosis, MRI achieves diagnostic performances comparable to those obtained by HRCT but with better and more rapid identification of pulmonary tissue abnormalities due to the excellent contrast resolution.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N5721c70ab02d4de3a6a92bfe4c0090d6
36 Nd7b1eadfdf1a4186845089cbe732f01a
37 sg:journal.1024946
38 schema:name Detection of Pulmonary tuberculosis: comparing MR imaging with HRCT
39 schema:pagination 243
40 schema:productId N3dcd0e59635c443cb534fc3a1aeed51a
41 N4b9b016472454ebd9e01d2dd349e40c7
42 N669364cdeae04d58931a7ad632493fef
43 N684fa86261a6448f89ea1f3aa9d3b3f0
44 N6f2d6243e3e149db81de74dbea4efa91
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041540926
46 https://doi.org/10.1186/1471-2334-11-243
47 schema:sdDatePublished 2019-04-11T01:06
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N28dc1a0092624d02905424dbb764e232
50 schema:url http://link.springer.com/10.1186%2F1471-2334-11-243
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N141755e00dbe41819600643c331d4def rdf:first sg:person.01260364730.58
55 rdf:rest Nc7210967fcf5473ca6b2b806b99849a8
56 N184de3baa1164d8ea499d0cc0e17148b schema:name Diagnostic Department, Radiology. "L. Spallanzani" National Institute for Infectious Diseases, Rome, Italy
57 rdf:type schema:Organization
58 N1cda2a30d64a4b299816b3091bb96e7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Radiography, Thoracic
60 rdf:type schema:DefinedTerm
61 N28dc1a0092624d02905424dbb764e232 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N328b6d36c0a6423c844c14a200622e89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Humans
65 rdf:type schema:DefinedTerm
66 N3dcd0e59635c443cb534fc3a1aeed51a schema:name readcube_id
67 schema:value c5e304f7b9e71f55e457a245353a76216e7cd86189cd473e83d2a1dc1cf095f6
68 rdf:type schema:PropertyValue
69 N3f3d1962cd6048839f842df3cee5c1a0 rdf:first sg:person.01050065003.28
70 rdf:rest N8f888f0b1c5c41fc890c13862757b904
71 N434b06cccd674abdb1153b807c5f396f schema:name Epidemiology Department, "L. Spallanzani" National Institute for Infectious Diseases, Rome, Italy
72 rdf:type schema:Organization
73 N44cfd8552e7448cfb7ace09edaae82ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Tomography, X-Ray Computed
75 rdf:type schema:DefinedTerm
76 N4b9b016472454ebd9e01d2dd349e40c7 schema:name pubmed_id
77 schema:value 21923910
78 rdf:type schema:PropertyValue
79 N5203276b98924b3fabf2c218229e8507 rdf:first sg:person.01200446072.99
80 rdf:rest N7aca22716bad44b2ad2d87a2e9e7ac8f
81 N5721c70ab02d4de3a6a92bfe4c0090d6 schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 N5b42d67bdd594ec29cd917782b9fae80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Male
85 rdf:type schema:DefinedTerm
86 N63ed31b67d1c4958881d8d11b2d138e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Female
88 rdf:type schema:DefinedTerm
89 N669364cdeae04d58931a7ad632493fef schema:name doi
90 schema:value 10.1186/1471-2334-11-243
91 rdf:type schema:PropertyValue
92 N684fa86261a6448f89ea1f3aa9d3b3f0 schema:name nlm_unique_id
93 schema:value 100968551
94 rdf:type schema:PropertyValue
95 N6c720dadc1144beda5975a5a34e105fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Tuberculosis, Pulmonary
97 rdf:type schema:DefinedTerm
98 N6da2ddada8004845b17eee3f052527c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Lung
100 rdf:type schema:DefinedTerm
101 N6f2d6243e3e149db81de74dbea4efa91 schema:name dimensions_id
102 schema:value pub.1041540926
103 rdf:type schema:PropertyValue
104 N7aca22716bad44b2ad2d87a2e9e7ac8f rdf:first sg:person.0655031534.49
105 rdf:rest N817a5efc10ac42029bcb8e0da1a48108
106 N817a5efc10ac42029bcb8e0da1a48108 rdf:first sg:person.01161236007.37
107 rdf:rest N3f3d1962cd6048839f842df3cee5c1a0
108 N8972a0a4709d43f580819b9d61c20f15 schema:name Research Department, Translational Research Unit. "L. Spallanzani" National Institute for Infectious Diseases, Rome, Italy
109 rdf:type schema:Organization
110 N8f888f0b1c5c41fc890c13862757b904 rdf:first sg:person.01222655205.82
111 rdf:rest Na11a50aa01444733b6cdcc97e368903f
112 Na11a50aa01444733b6cdcc97e368903f rdf:first sg:person.01050654250.31
113 rdf:rest rdf:nil
114 Na476e49943ce40bdbbd3bb2e15736c61 rdf:first sg:person.01063260774.30
115 rdf:rest N141755e00dbe41819600643c331d4def
116 Nb1d835f441e64634af3233356ca3de2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Magnetic Resonance Imaging
118 rdf:type schema:DefinedTerm
119 Nbfbca97bf92540fe82d45947f460c791 schema:name Diagnostic Department, Radiology. "L. Spallanzani" National Institute for Infectious Diseases, Rome, Italy
120 rdf:type schema:Organization
121 Nc7210967fcf5473ca6b2b806b99849a8 rdf:first sg:person.0646344524.57
122 rdf:rest N5203276b98924b3fabf2c218229e8507
123 Ncaa182d5a06e4bdb942ee45a1fe6d2dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Middle Aged
125 rdf:type schema:DefinedTerm
126 Ncbc2fdc139cb4b3293e13a6107d57683 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Adult
128 rdf:type schema:DefinedTerm
129 Nccd9d32b49f2420296860f000412051d schema:name Diagnostic Department, Radiology. "L. Spallanzani" National Institute for Infectious Diseases, Rome, Italy
130 rdf:type schema:Organization
131 Nd7b1eadfdf1a4186845089cbe732f01a schema:volumeNumber 11
132 rdf:type schema:PublicationVolume
133 Ndc0178caa9744627a3751f51e188d5cf schema:name Diagnostic Department, Radiology. "L. Spallanzani" National Institute for Infectious Diseases, Rome, Italy
134 rdf:type schema:Organization
135 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
136 schema:name Medical and Health Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
139 schema:name Cardiorespiratory Medicine and Haematology
140 rdf:type schema:DefinedTerm
141 sg:journal.1024946 schema:issn 1471-2334
142 schema:name BMC Infectious Diseases
143 rdf:type schema:Periodical
144 sg:person.01050065003.28 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
145 schema:familyName Lauria
146 schema:givenName Francesco N
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050065003.28
148 rdf:type schema:Person
149 sg:person.01050654250.31 schema:affiliation Ndc0178caa9744627a3751f51e188d5cf
150 schema:familyName Bibbolino
151 schema:givenName Corrado
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050654250.31
153 rdf:type schema:Person
154 sg:person.01063260774.30 schema:affiliation Nbfbca97bf92540fe82d45947f460c791
155 schema:familyName Busi Rizzi
156 schema:givenName Elisa
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063260774.30
158 rdf:type schema:Person
159 sg:person.01161236007.37 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
160 schema:familyName Bevilacqua
161 schema:givenName Nazario
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161236007.37
163 rdf:type schema:Person
164 sg:person.01200446072.99 schema:affiliation N8972a0a4709d43f580819b9d61c20f15
165 schema:familyName Goletti
166 schema:givenName Delia
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200446072.99
168 rdf:type schema:Person
169 sg:person.01222655205.82 schema:affiliation N434b06cccd674abdb1153b807c5f396f
170 schema:familyName Girardi
171 schema:givenName Enrico
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222655205.82
173 rdf:type schema:Person
174 sg:person.01260364730.58 schema:affiliation Nccd9d32b49f2420296860f000412051d
175 schema:familyName Schinina'
176 schema:givenName Vincenzo
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260364730.58
178 rdf:type schema:Person
179 sg:person.0646344524.57 schema:affiliation N184de3baa1164d8ea499d0cc0e17148b
180 schema:familyName Cristofaro
181 schema:givenName Massimo
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646344524.57
183 rdf:type schema:Person
184 sg:person.0655031534.49 schema:affiliation https://www.grid.ac/institutes/grid.419423.9
185 schema:familyName Palmieri
186 schema:givenName Fabrizio
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655031534.49
188 rdf:type schema:Person
189 sg:pub.10.1007/s00117-005-1326-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050280074
190 https://doi.org/10.1007/s00117-005-1326-7
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s00330-004-2548-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030219441
193 https://doi.org/10.1007/s00330-004-2548-1
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s00330-006-0412-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047223563
196 https://doi.org/10.1007/s00330-006-0412-1
197 rdf:type schema:CreativeWork
198 https://app.dimensions.ai/details/publication/pub.1074608856 schema:CreativeWork
199 https://doi.org/10.1002/jmri.22374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023771261
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.clinimag.2006.09.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030584667
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.ejrad.2006.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018121844
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.ejrad.2007.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037010538
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.mric.2008.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040435384
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1148/radiol.2413042056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026258624
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1148/radiology.178.3.1994407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077988883
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1148/radiology.185.1.1523341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076861995
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1378/chest.101.2.371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024288841
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1513/pats.200901-002aw schema:sameAs https://app.dimensions.ai/details/publication/pub.1002029715
218 rdf:type schema:CreativeWork
219 https://doi.org/10.2214/ajr.175.2.1750391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069323371
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.419423.9 schema:alternateName Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani
222 schema:name Clinical Department, National Institute for Infectious Diseases "L. Spallanzani", Rome
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...