IP-10 response to RD1 antigens might be a useful biomarker for monitoring tuberculosis therapy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-05-19

AUTHORS

Basirudeen Syed Ahamed Kabeer, Alamelu Raja, Balambal Raman, Satheesh Thangaraj, Marc Leportier, Giuseppe Ippolito, Enrico Girardi, Philippe Henri Lagrange, Delia Goletti

ABSTRACT

BACKGROUND: There is an urgent need of prognosis markers for tuberculosis (TB) to improve treatment strategies. The results of several studies show that the Interferon (IFN)-γ-specific response to the TB antigens of the QuantiFERON TB Gold (QFT-IT antigens) decreases after successful TB therapy. The objective of this study was to evaluate whether there are factors other than IFN-γ [such as IFN-γ inducible protein (IP)-10 which has also been associated with TB] in response to QFT-IT antigens that can be used as biomarkers for monitoring TB treatment. METHODS: In this exploratory study we assessed the changes in IP-10 secretion in response to QFT-IT antigens and RD1 peptides selected by computational analysis in 17 patients with active TB at the time of diagnosis and after 6 months of treatment. The IFN-γ response to QFT-IT antigens and RD1 selected peptides was evaluated as a control. A non-parametric Wilcoxon signed-rank test for paired comparisons was used to compare the continuous variables at the time of diagnosis and at therapy completion. A Chi-square test was used to compare proportions. RESULTS: We did not observe significant IP-10 changes in whole blood from either NIL or QFT-IT antigen tubes, after 1-day stimulation, between baseline and therapy completion (p = 0.08 and p = 0.7 respectively). Conversely, the level of IP-10 release to RD1 selected peptides was significantly different (p = 0.006). Similar results were obtained when we detected the IFN-γ in response to the QFT-IT antigens (p = 0.06) and RD1 selected peptides (p = 0.0003). The proportion of the IP-10 responders to the QFT-IT antigens did not significantly change between baseline and therapy completion (p = 0.6), whereas it significantly changed in response to RD1 selected peptides (p = 0.002). The proportion of IFN-γ responders between baseline and therapy completion was not significant for QFT-IT antigens (p = 0.2), whereas it was significant for the RD1 selected peptides (p = 0.002), confirming previous observations. CONCLUSIONS: Our preliminary study provides an interesting hypothesis: IP-10 response to RD1 selected peptides (similar to IFN-γ) might be a useful biomarker for monitoring therapy efficacy in patients with active TB. However, further studies in larger cohorts are needed to confirm the consistency of these study results. More... »

PAGES

135-135

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2334-11-135

DOI

http://dx.doi.org/10.1186/1471-2334-11-135

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008143174

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21595874


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antigens, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antitubercular Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemokine CXCL10", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Interferon-gamma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mycobacterium tuberculosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tuberculosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Immunology, Tuberculosis Research Centre (ICMR), Tamil Nadu, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417330.2", 
          "name": [
            "Department of Immunology, Tuberculosis Research Centre (ICMR), Tamil Nadu, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kabeer", 
        "givenName": "Basirudeen Syed Ahamed", 
        "id": "sg:person.01273707247.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273707247.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Immunology, Tuberculosis Research Centre (ICMR), Tamil Nadu, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417330.2", 
          "name": [
            "Department of Immunology, Tuberculosis Research Centre (ICMR), Tamil Nadu, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raja", 
        "givenName": "Alamelu", 
        "id": "sg:person.01252174416.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252174416.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Research, Tuberculosis Research Centre (ICMR), Mayor V.R. Ramanathan Road, Chetpet, Chennai -- 600 031, Tamil Nadu, India", 
          "id": "http://www.grid.ac/institutes/grid.417330.2", 
          "name": [
            "Department of Clinical Research, Tuberculosis Research Centre (ICMR), Mayor V.R. Ramanathan Road, Chetpet, Chennai -- 600 031, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raman", 
        "givenName": "Balambal", 
        "id": "sg:person.0727003647.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727003647.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biom\u00e9rieux, Research & Development Immunoassays, Chemin de l'Orme, Marcy L'Etoile, France", 
          "id": "http://www.grid.ac/institutes/grid.424167.2", 
          "name": [
            "Biom\u00e9rieux, Research & Development Immunoassays, Chemin de l'Orme, Marcy L'Etoile, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thangaraj", 
        "givenName": "Satheesh", 
        "id": "sg:person.01147756447.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147756447.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biom\u00e9rieux, Research & Development Immunoassays, Chemin de l'Orme, Marcy L'Etoile, France", 
          "id": "http://www.grid.ac/institutes/grid.424167.2", 
          "name": [
            "Biom\u00e9rieux, Research & Development Immunoassays, Chemin de l'Orme, Marcy L'Etoile, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leportier", 
        "givenName": "Marc", 
        "id": "sg:person.01153617547.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153617547.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scientific Direction, Lazzaro Spallanzani National Institute for Infectious Diseases (INMI), Rome, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Scientific Direction, Lazzaro Spallanzani National Institute for Infectious Diseases (INMI), Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ippolito", 
        "givenName": "Giuseppe", 
        "id": "sg:person.0710457221.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710457221.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Epidemiology and Preclinical Research, INMI, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Epidemiology and Preclinical Research, INMI, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Girardi", 
        "givenName": "Enrico", 
        "id": "sg:person.01222655205.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222655205.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microbiology Service, Saint Louis Hospital, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.413328.f", 
          "name": [
            "Microbiology Service, Saint Louis Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lagrange", 
        "givenName": "Philippe Henri", 
        "id": "sg:person.01171626456.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171626456.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Translational Research Unit, Department of Epidemiology and Preclinical Research, (INMI), Rome, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Translational Research Unit, Department of Epidemiology and Preclinical Research, (INMI), Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goletti", 
        "givenName": "Delia", 
        "id": "sg:person.01200446072.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200446072.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s15010-007-6114-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039438617", 
          "https://doi.org/10.1007/s15010-007-6114-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02829815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019467271", 
          "https://doi.org/10.1007/bf02829815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1465-9921-8-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049800836", 
          "https://doi.org/10.1186/1465-9921-8-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2334-10-138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021950401", 
          "https://doi.org/10.1186/1471-2334-10-138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03402042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075316734", 
          "https://doi.org/10.1007/bf03402042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2334-10-333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052844800", 
          "https://doi.org/10.1186/1471-2334-10-333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2334-8-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000532665", 
          "https://doi.org/10.1186/1471-2334-8-11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2334-6-66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037367872", 
          "https://doi.org/10.1186/1471-2334-6-66"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-2-19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044074331", 
          "https://doi.org/10.1186/1756-0500-2-19"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05-19", 
    "datePublishedReg": "2011-05-19", 
    "description": "BACKGROUND: There is an urgent need of prognosis markers for tuberculosis (TB) to improve treatment strategies. The results of several studies show that the Interferon (IFN)-\u03b3-specific response to the TB antigens of the QuantiFERON TB Gold (QFT-IT antigens) decreases after successful TB therapy. The objective of this study was to evaluate whether there are factors other than IFN-\u03b3 [such as IFN-\u03b3 inducible protein (IP)-10 which has also been associated with TB] in response to QFT-IT antigens that can be used as biomarkers for monitoring TB treatment.\nMETHODS: In this exploratory study we assessed the changes in IP-10 secretion in response to QFT-IT antigens and RD1 peptides selected by computational analysis in 17 patients with active TB at the time of diagnosis and after 6 months of treatment. The IFN-\u03b3 response to QFT-IT antigens and RD1 selected peptides was evaluated as a control. A non-parametric Wilcoxon signed-rank test for paired comparisons was used to compare the continuous variables at the time of diagnosis and at therapy completion. A Chi-square test was used to compare proportions.\nRESULTS: We did not observe significant IP-10 changes in whole blood from either NIL or QFT-IT antigen tubes, after 1-day stimulation, between baseline and therapy completion (p = 0.08 and p = 0.7 respectively). Conversely, the level of IP-10 release to RD1 selected peptides was significantly different (p = 0.006). Similar results were obtained when we detected the IFN-\u03b3 in response to the QFT-IT antigens (p = 0.06) and RD1 selected peptides (p = 0.0003). The proportion of the IP-10 responders to the QFT-IT antigens did not significantly change between baseline and therapy completion (p = 0.6), whereas it significantly changed in response to RD1 selected peptides (p = 0.002). The proportion of IFN-\u03b3 responders between baseline and therapy completion was not significant for QFT-IT antigens (p = 0.2), whereas it was significant for the RD1 selected peptides (p = 0.002), confirming previous observations.\nCONCLUSIONS: Our preliminary study provides an interesting hypothesis: IP-10 response to RD1 selected peptides (similar to IFN-\u03b3) might be a useful biomarker for monitoring therapy efficacy in patients with active TB. However, further studies in larger cohorts are needed to confirm the consistency of these study results.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2334-11-135", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024946", 
        "issn": [
          "1471-2334"
        ], 
        "name": "BMC Infectious Diseases", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "IP-10 responses", 
      "time of diagnosis", 
      "QFT-IT", 
      "therapy completion", 
      "active tuberculosis", 
      "useful biomarker", 
      "proportion of IFN", 
      "months of treatment", 
      "IP-10 secretion", 
      "IP-10 release", 
      "chi-square test", 
      "Wilcoxon signed-rank test", 
      "RD1 peptides", 
      "RD1 antigens", 
      "TB treatment", 
      "TB therapy", 
      "TB antigens", 
      "signed-rank test", 
      "non-parametric Wilcoxon signed-rank test", 
      "antigen tubes", 
      "treatment strategies", 
      "tuberculosis therapy", 
      "prognosis marker", 
      "large cohort", 
      "IFN", 
      "therapy efficacy", 
      "tuberculosis", 
      "whole blood", 
      "antigen", 
      "baseline", 
      "biomarkers", 
      "Further studies", 
      "patients", 
      "therapy", 
      "continuous variables", 
      "responders", 
      "diagnosis", 
      "RD1", 
      "treatment", 
      "peptides", 
      "preliminary study", 
      "urgent need", 
      "response", 
      "specific responses", 
      "proportion", 
      "similar results", 
      "completion", 
      "study results", 
      "previous observations", 
      "interferon", 
      "cohort", 
      "study", 
      "blood", 
      "secretion", 
      "months", 
      "efficacy", 
      "stimulation", 
      "exploratory study", 
      "interesting hypotheses", 
      "markers", 
      "test", 
      "QFT", 
      "changes", 
      "release", 
      "factors", 
      "levels", 
      "decrease", 
      "control", 
      "results", 
      "time", 
      "nil", 
      "hypothesis", 
      "objective", 
      "need", 
      "strategies", 
      "variables", 
      "tube", 
      "comparison", 
      "analysis", 
      "consistency", 
      "observations", 
      "computational analysis", 
      "gold decreases", 
      "QuantiFERON TB Gold (QFT-IT antigens) decreases", 
      "TB Gold (QFT-IT antigens) decreases", 
      "successful TB therapy", 
      "significant IP-10 changes", 
      "IP-10 changes", 
      "IP-10 responders", 
      "QFT-IT antigens"
    ], 
    "name": "IP-10 response to RD1 antigens might be a useful biomarker for monitoring tuberculosis therapy", 
    "pagination": "135-135", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008143174"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2334-11-135"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21595874"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2334-11-135", 
      "https://app.dimensions.ai/details/publication/pub.1008143174"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_552.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2334-11-135"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-135'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-135'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-135'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-135'


 

This table displays all metadata directly associated to this object as RDF triples.

318 TRIPLES      22 PREDICATES      140 URIs      123 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2334-11-135 schema:about N0154ee0f70024dcaaf351c4d147b00de
2 N3e4292657d5a4f11b6b121c46c32bceb
3 N3ec1a9de5f364f75b9a382dd85ee2b26
4 N4d219134c9ea4a52b51bdb71d5f2f1e5
5 N60f305e837d148409860b5f1784eeb00
6 N662d309a1c7742d793ef0df609e13fc5
7 N6f4a06cd18824f9aafcb5c3f92d74bd7
8 N731798eba71b45b488ee1f6f1d24a47d
9 N73203b60bee74da7b827a6332febc501
10 N7f4e9ac9d3dd4ffe95c1869df15fc6f1
11 Na0ea6250ecb94f629a9864a1e956af11
12 Nb43adf91ff094e5da9ac40ae93125596
13 Ncc153ad3308d4dfbba26eeba201be03d
14 Ncebb98c803c74f0abc35fc94fa65d4bd
15 Ndfd28650d5184674b8b6992531871c5c
16 anzsrc-for:11
17 anzsrc-for:1103
18 schema:author Ne1e11006e4e64fceba3eeed5c6d5ced3
19 schema:citation sg:pub.10.1007/bf02829815
20 sg:pub.10.1007/bf03402042
21 sg:pub.10.1007/s15010-007-6114-z
22 sg:pub.10.1186/1465-9921-8-5
23 sg:pub.10.1186/1471-2334-10-138
24 sg:pub.10.1186/1471-2334-10-333
25 sg:pub.10.1186/1471-2334-6-66
26 sg:pub.10.1186/1471-2334-8-11
27 sg:pub.10.1186/1756-0500-2-19
28 schema:datePublished 2011-05-19
29 schema:datePublishedReg 2011-05-19
30 schema:description BACKGROUND: There is an urgent need of prognosis markers for tuberculosis (TB) to improve treatment strategies. The results of several studies show that the Interferon (IFN)-γ-specific response to the TB antigens of the QuantiFERON TB Gold (QFT-IT antigens) decreases after successful TB therapy. The objective of this study was to evaluate whether there are factors other than IFN-γ [such as IFN-γ inducible protein (IP)-10 which has also been associated with TB] in response to QFT-IT antigens that can be used as biomarkers for monitoring TB treatment. METHODS: In this exploratory study we assessed the changes in IP-10 secretion in response to QFT-IT antigens and RD1 peptides selected by computational analysis in 17 patients with active TB at the time of diagnosis and after 6 months of treatment. The IFN-γ response to QFT-IT antigens and RD1 selected peptides was evaluated as a control. A non-parametric Wilcoxon signed-rank test for paired comparisons was used to compare the continuous variables at the time of diagnosis and at therapy completion. A Chi-square test was used to compare proportions. RESULTS: We did not observe significant IP-10 changes in whole blood from either NIL or QFT-IT antigen tubes, after 1-day stimulation, between baseline and therapy completion (p = 0.08 and p = 0.7 respectively). Conversely, the level of IP-10 release to RD1 selected peptides was significantly different (p = 0.006). Similar results were obtained when we detected the IFN-γ in response to the QFT-IT antigens (p = 0.06) and RD1 selected peptides (p = 0.0003). The proportion of the IP-10 responders to the QFT-IT antigens did not significantly change between baseline and therapy completion (p = 0.6), whereas it significantly changed in response to RD1 selected peptides (p = 0.002). The proportion of IFN-γ responders between baseline and therapy completion was not significant for QFT-IT antigens (p = 0.2), whereas it was significant for the RD1 selected peptides (p = 0.002), confirming previous observations. CONCLUSIONS: Our preliminary study provides an interesting hypothesis: IP-10 response to RD1 selected peptides (similar to IFN-γ) might be a useful biomarker for monitoring therapy efficacy in patients with active TB. However, further studies in larger cohorts are needed to confirm the consistency of these study results.
31 schema:genre article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N0a3eed18457a4f6fa240504e7230f6a6
35 N609f57591af64307a52fb0091b09c0d5
36 sg:journal.1024946
37 schema:keywords Further studies
38 IFN
39 IP-10 changes
40 IP-10 release
41 IP-10 responders
42 IP-10 responses
43 IP-10 secretion
44 QFT
45 QFT-IT
46 QFT-IT antigens
47 QuantiFERON TB Gold (QFT-IT antigens) decreases
48 RD1
49 RD1 antigens
50 RD1 peptides
51 TB Gold (QFT-IT antigens) decreases
52 TB antigens
53 TB therapy
54 TB treatment
55 Wilcoxon signed-rank test
56 active tuberculosis
57 analysis
58 antigen
59 antigen tubes
60 baseline
61 biomarkers
62 blood
63 changes
64 chi-square test
65 cohort
66 comparison
67 completion
68 computational analysis
69 consistency
70 continuous variables
71 control
72 decrease
73 diagnosis
74 efficacy
75 exploratory study
76 factors
77 gold decreases
78 hypothesis
79 interesting hypotheses
80 interferon
81 large cohort
82 levels
83 markers
84 months
85 months of treatment
86 need
87 nil
88 non-parametric Wilcoxon signed-rank test
89 objective
90 observations
91 patients
92 peptides
93 preliminary study
94 previous observations
95 prognosis marker
96 proportion
97 proportion of IFN
98 release
99 responders
100 response
101 results
102 secretion
103 signed-rank test
104 significant IP-10 changes
105 similar results
106 specific responses
107 stimulation
108 strategies
109 study
110 study results
111 successful TB therapy
112 test
113 therapy
114 therapy completion
115 therapy efficacy
116 time
117 time of diagnosis
118 treatment
119 treatment strategies
120 tube
121 tuberculosis
122 tuberculosis therapy
123 urgent need
124 useful biomarker
125 variables
126 whole blood
127 schema:name IP-10 response to RD1 antigens might be a useful biomarker for monitoring tuberculosis therapy
128 schema:pagination 135-135
129 schema:productId N14b3e341a23d4355a455f98eb3f7977e
130 N205c5e5febe54f3b998d08a20bf1198a
131 Nc2c78dd187f748a8a8a96056cab1c487
132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008143174
133 https://doi.org/10.1186/1471-2334-11-135
134 schema:sdDatePublished 2021-11-01T18:17
135 schema:sdLicense https://scigraph.springernature.com/explorer/license/
136 schema:sdPublisher Na2ca98cb2ec2483da3d0a8fcd2ac94a2
137 schema:url https://doi.org/10.1186/1471-2334-11-135
138 sgo:license sg:explorer/license/
139 sgo:sdDataset articles
140 rdf:type schema:ScholarlyArticle
141 N0154ee0f70024dcaaf351c4d147b00de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Prospective Studies
143 rdf:type schema:DefinedTerm
144 N09b6a7590a874c6a82894c10de63212f rdf:first sg:person.0727003647.68
145 rdf:rest Nd7b9883f7e894496acb527e642652b4c
146 N0a3eed18457a4f6fa240504e7230f6a6 schema:issueNumber 1
147 rdf:type schema:PublicationIssue
148 N14b3e341a23d4355a455f98eb3f7977e schema:name dimensions_id
149 schema:value pub.1008143174
150 rdf:type schema:PropertyValue
151 N205c5e5febe54f3b998d08a20bf1198a schema:name doi
152 schema:value 10.1186/1471-2334-11-135
153 rdf:type schema:PropertyValue
154 N2c04899b01274fd9a7396dfd226530e0 rdf:first sg:person.01153617547.41
155 rdf:rest N36acfccae98d4898974fce978e820cf0
156 N36acfccae98d4898974fce978e820cf0 rdf:first sg:person.0710457221.03
157 rdf:rest N75e52fae83fe41118ca88477db7552fe
158 N3e4292657d5a4f11b6b121c46c32bceb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Tuberculosis
160 rdf:type schema:DefinedTerm
161 N3ec1a9de5f364f75b9a382dd85ee2b26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Young Adult
163 rdf:type schema:DefinedTerm
164 N4d219134c9ea4a52b51bdb71d5f2f1e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Antitubercular Agents
166 rdf:type schema:DefinedTerm
167 N609f57591af64307a52fb0091b09c0d5 schema:volumeNumber 11
168 rdf:type schema:PublicationVolume
169 N60f305e837d148409860b5f1784eeb00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Chemokine CXCL10
171 rdf:type schema:DefinedTerm
172 N662d309a1c7742d793ef0df609e13fc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Mycobacterium tuberculosis
174 rdf:type schema:DefinedTerm
175 N6f4a06cd18824f9aafcb5c3f92d74bd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Middle Aged
177 rdf:type schema:DefinedTerm
178 N731798eba71b45b488ee1f6f1d24a47d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Male
180 rdf:type schema:DefinedTerm
181 N73203b60bee74da7b827a6332febc501 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Biomarkers
183 rdf:type schema:DefinedTerm
184 N75e52fae83fe41118ca88477db7552fe rdf:first sg:person.01222655205.82
185 rdf:rest Naff383bfd402405da5cd17ef4feb1705
186 N7f4e9ac9d3dd4ffe95c1869df15fc6f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Humans
188 rdf:type schema:DefinedTerm
189 N89c01125035d40948f61e0b423a12156 rdf:first sg:person.01252174416.47
190 rdf:rest N09b6a7590a874c6a82894c10de63212f
191 N947cd15157cf48bbbb0fc3867ac685e0 rdf:first sg:person.01200446072.99
192 rdf:rest rdf:nil
193 Na0ea6250ecb94f629a9864a1e956af11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Interferon-gamma
195 rdf:type schema:DefinedTerm
196 Na2ca98cb2ec2483da3d0a8fcd2ac94a2 schema:name Springer Nature - SN SciGraph project
197 rdf:type schema:Organization
198 Naff383bfd402405da5cd17ef4feb1705 rdf:first sg:person.01171626456.09
199 rdf:rest N947cd15157cf48bbbb0fc3867ac685e0
200 Nb43adf91ff094e5da9ac40ae93125596 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Female
202 rdf:type schema:DefinedTerm
203 Nc2c78dd187f748a8a8a96056cab1c487 schema:name pubmed_id
204 schema:value 21595874
205 rdf:type schema:PropertyValue
206 Ncc153ad3308d4dfbba26eeba201be03d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Antigens, Bacterial
208 rdf:type schema:DefinedTerm
209 Ncebb98c803c74f0abc35fc94fa65d4bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Adult
211 rdf:type schema:DefinedTerm
212 Nd7b9883f7e894496acb527e642652b4c rdf:first sg:person.01147756447.44
213 rdf:rest N2c04899b01274fd9a7396dfd226530e0
214 Ndfd28650d5184674b8b6992531871c5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Drug Monitoring
216 rdf:type schema:DefinedTerm
217 Ne1e11006e4e64fceba3eeed5c6d5ced3 rdf:first sg:person.01273707247.65
218 rdf:rest N89c01125035d40948f61e0b423a12156
219 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
220 schema:name Medical and Health Sciences
221 rdf:type schema:DefinedTerm
222 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
223 schema:name Clinical Sciences
224 rdf:type schema:DefinedTerm
225 sg:journal.1024946 schema:issn 1471-2334
226 schema:name BMC Infectious Diseases
227 schema:publisher Springer Nature
228 rdf:type schema:Periodical
229 sg:person.01147756447.44 schema:affiliation grid-institutes:grid.424167.2
230 schema:familyName Thangaraj
231 schema:givenName Satheesh
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147756447.44
233 rdf:type schema:Person
234 sg:person.01153617547.41 schema:affiliation grid-institutes:grid.424167.2
235 schema:familyName Leportier
236 schema:givenName Marc
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153617547.41
238 rdf:type schema:Person
239 sg:person.01171626456.09 schema:affiliation grid-institutes:grid.413328.f
240 schema:familyName Lagrange
241 schema:givenName Philippe Henri
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171626456.09
243 rdf:type schema:Person
244 sg:person.01200446072.99 schema:affiliation grid-institutes:None
245 schema:familyName Goletti
246 schema:givenName Delia
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200446072.99
248 rdf:type schema:Person
249 sg:person.01222655205.82 schema:affiliation grid-institutes:None
250 schema:familyName Girardi
251 schema:givenName Enrico
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222655205.82
253 rdf:type schema:Person
254 sg:person.01252174416.47 schema:affiliation grid-institutes:grid.417330.2
255 schema:familyName Raja
256 schema:givenName Alamelu
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252174416.47
258 rdf:type schema:Person
259 sg:person.01273707247.65 schema:affiliation grid-institutes:grid.417330.2
260 schema:familyName Kabeer
261 schema:givenName Basirudeen Syed Ahamed
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273707247.65
263 rdf:type schema:Person
264 sg:person.0710457221.03 schema:affiliation grid-institutes:None
265 schema:familyName Ippolito
266 schema:givenName Giuseppe
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710457221.03
268 rdf:type schema:Person
269 sg:person.0727003647.68 schema:affiliation grid-institutes:grid.417330.2
270 schema:familyName Raman
271 schema:givenName Balambal
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727003647.68
273 rdf:type schema:Person
274 sg:pub.10.1007/bf02829815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019467271
275 https://doi.org/10.1007/bf02829815
276 rdf:type schema:CreativeWork
277 sg:pub.10.1007/bf03402042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075316734
278 https://doi.org/10.1007/bf03402042
279 rdf:type schema:CreativeWork
280 sg:pub.10.1007/s15010-007-6114-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039438617
281 https://doi.org/10.1007/s15010-007-6114-z
282 rdf:type schema:CreativeWork
283 sg:pub.10.1186/1465-9921-8-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049800836
284 https://doi.org/10.1186/1465-9921-8-5
285 rdf:type schema:CreativeWork
286 sg:pub.10.1186/1471-2334-10-138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021950401
287 https://doi.org/10.1186/1471-2334-10-138
288 rdf:type schema:CreativeWork
289 sg:pub.10.1186/1471-2334-10-333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052844800
290 https://doi.org/10.1186/1471-2334-10-333
291 rdf:type schema:CreativeWork
292 sg:pub.10.1186/1471-2334-6-66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037367872
293 https://doi.org/10.1186/1471-2334-6-66
294 rdf:type schema:CreativeWork
295 sg:pub.10.1186/1471-2334-8-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000532665
296 https://doi.org/10.1186/1471-2334-8-11
297 rdf:type schema:CreativeWork
298 sg:pub.10.1186/1756-0500-2-19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044074331
299 https://doi.org/10.1186/1756-0500-2-19
300 rdf:type schema:CreativeWork
301 grid-institutes:None schema:alternateName Department of Epidemiology and Preclinical Research, INMI, Rome, Italy
302 Scientific Direction, Lazzaro Spallanzani National Institute for Infectious Diseases (INMI), Rome, Italy
303 Translational Research Unit, Department of Epidemiology and Preclinical Research, (INMI), Rome, Italy
304 schema:name Department of Epidemiology and Preclinical Research, INMI, Rome, Italy
305 Scientific Direction, Lazzaro Spallanzani National Institute for Infectious Diseases (INMI), Rome, Italy
306 Translational Research Unit, Department of Epidemiology and Preclinical Research, (INMI), Rome, Italy
307 rdf:type schema:Organization
308 grid-institutes:grid.413328.f schema:alternateName Microbiology Service, Saint Louis Hospital, Paris, France
309 schema:name Microbiology Service, Saint Louis Hospital, Paris, France
310 rdf:type schema:Organization
311 grid-institutes:grid.417330.2 schema:alternateName Department of Clinical Research, Tuberculosis Research Centre (ICMR), Mayor V.R. Ramanathan Road, Chetpet, Chennai -- 600 031, Tamil Nadu, India
312 Department of Immunology, Tuberculosis Research Centre (ICMR), Tamil Nadu, Chennai, India
313 schema:name Department of Clinical Research, Tuberculosis Research Centre (ICMR), Mayor V.R. Ramanathan Road, Chetpet, Chennai -- 600 031, Tamil Nadu, India
314 Department of Immunology, Tuberculosis Research Centre (ICMR), Tamil Nadu, Chennai, India
315 rdf:type schema:Organization
316 grid-institutes:grid.424167.2 schema:alternateName Biomérieux, Research & Development Immunoassays, Chemin de l'Orme, Marcy L'Etoile, France
317 schema:name Biomérieux, Research & Development Immunoassays, Chemin de l'Orme, Marcy L'Etoile, France
318 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...