IP-10 response to RD1 antigens might be a useful biomarker for monitoring tuberculosis therapy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-05-19

AUTHORS

Basirudeen Syed Ahamed Kabeer, Alamelu Raja, Balambal Raman, Satheesh Thangaraj, Marc Leportier, Giuseppe Ippolito, Enrico Girardi, Philippe Henri Lagrange, Delia Goletti

ABSTRACT

BACKGROUND: There is an urgent need of prognosis markers for tuberculosis (TB) to improve treatment strategies. The results of several studies show that the Interferon (IFN)-γ-specific response to the TB antigens of the QuantiFERON TB Gold (QFT-IT antigens) decreases after successful TB therapy. The objective of this study was to evaluate whether there are factors other than IFN-γ [such as IFN-γ inducible protein (IP)-10 which has also been associated with TB] in response to QFT-IT antigens that can be used as biomarkers for monitoring TB treatment. METHODS: In this exploratory study we assessed the changes in IP-10 secretion in response to QFT-IT antigens and RD1 peptides selected by computational analysis in 17 patients with active TB at the time of diagnosis and after 6 months of treatment. The IFN-γ response to QFT-IT antigens and RD1 selected peptides was evaluated as a control. A non-parametric Wilcoxon signed-rank test for paired comparisons was used to compare the continuous variables at the time of diagnosis and at therapy completion. A Chi-square test was used to compare proportions. RESULTS: We did not observe significant IP-10 changes in whole blood from either NIL or QFT-IT antigen tubes, after 1-day stimulation, between baseline and therapy completion (p = 0.08 and p = 0.7 respectively). Conversely, the level of IP-10 release to RD1 selected peptides was significantly different (p = 0.006). Similar results were obtained when we detected the IFN-γ in response to the QFT-IT antigens (p = 0.06) and RD1 selected peptides (p = 0.0003). The proportion of the IP-10 responders to the QFT-IT antigens did not significantly change between baseline and therapy completion (p = 0.6), whereas it significantly changed in response to RD1 selected peptides (p = 0.002). The proportion of IFN-γ responders between baseline and therapy completion was not significant for QFT-IT antigens (p = 0.2), whereas it was significant for the RD1 selected peptides (p = 0.002), confirming previous observations. CONCLUSIONS: Our preliminary study provides an interesting hypothesis: IP-10 response to RD1 selected peptides (similar to IFN-γ) might be a useful biomarker for monitoring therapy efficacy in patients with active TB. However, further studies in larger cohorts are needed to confirm the consistency of these study results. More... »

PAGES

135-135

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2334-11-135

DOI

http://dx.doi.org/10.1186/1471-2334-11-135

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008143174

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21595874


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antigens, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antitubercular Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemokine CXCL10", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Interferon-gamma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mycobacterium tuberculosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tuberculosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Immunology, Tuberculosis Research Centre (ICMR), Tamil Nadu, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417330.2", 
          "name": [
            "Department of Immunology, Tuberculosis Research Centre (ICMR), Tamil Nadu, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kabeer", 
        "givenName": "Basirudeen Syed Ahamed", 
        "id": "sg:person.01273707247.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273707247.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Immunology, Tuberculosis Research Centre (ICMR), Tamil Nadu, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417330.2", 
          "name": [
            "Department of Immunology, Tuberculosis Research Centre (ICMR), Tamil Nadu, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raja", 
        "givenName": "Alamelu", 
        "id": "sg:person.01252174416.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252174416.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Research, Tuberculosis Research Centre (ICMR), Mayor V.R. Ramanathan Road, Chetpet, Chennai -- 600 031, Tamil Nadu, India", 
          "id": "http://www.grid.ac/institutes/grid.417330.2", 
          "name": [
            "Department of Clinical Research, Tuberculosis Research Centre (ICMR), Mayor V.R. Ramanathan Road, Chetpet, Chennai -- 600 031, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raman", 
        "givenName": "Balambal", 
        "id": "sg:person.0727003647.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727003647.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biom\u00e9rieux, Research & Development Immunoassays, Chemin de l'Orme, Marcy L'Etoile, France", 
          "id": "http://www.grid.ac/institutes/grid.424167.2", 
          "name": [
            "Biom\u00e9rieux, Research & Development Immunoassays, Chemin de l'Orme, Marcy L'Etoile, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thangaraj", 
        "givenName": "Satheesh", 
        "id": "sg:person.01147756447.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147756447.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biom\u00e9rieux, Research & Development Immunoassays, Chemin de l'Orme, Marcy L'Etoile, France", 
          "id": "http://www.grid.ac/institutes/grid.424167.2", 
          "name": [
            "Biom\u00e9rieux, Research & Development Immunoassays, Chemin de l'Orme, Marcy L'Etoile, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leportier", 
        "givenName": "Marc", 
        "id": "sg:person.01153617547.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153617547.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scientific Direction, Lazzaro Spallanzani National Institute for Infectious Diseases (INMI), Rome, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Scientific Direction, Lazzaro Spallanzani National Institute for Infectious Diseases (INMI), Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ippolito", 
        "givenName": "Giuseppe", 
        "id": "sg:person.0710457221.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710457221.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Epidemiology and Preclinical Research, INMI, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Epidemiology and Preclinical Research, INMI, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Girardi", 
        "givenName": "Enrico", 
        "id": "sg:person.01222655205.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222655205.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microbiology Service, Saint Louis Hospital, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.413328.f", 
          "name": [
            "Microbiology Service, Saint Louis Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lagrange", 
        "givenName": "Philippe Henri", 
        "id": "sg:person.01171626456.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171626456.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Translational Research Unit, Department of Epidemiology and Preclinical Research, (INMI), Rome, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Translational Research Unit, Department of Epidemiology and Preclinical Research, (INMI), Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goletti", 
        "givenName": "Delia", 
        "id": "sg:person.01200446072.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200446072.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2334-10-333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052844800", 
          "https://doi.org/10.1186/1471-2334-10-333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s15010-007-6114-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039438617", 
          "https://doi.org/10.1007/s15010-007-6114-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2334-6-66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037367872", 
          "https://doi.org/10.1186/1471-2334-6-66"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02829815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019467271", 
          "https://doi.org/10.1007/bf02829815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-2-19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044074331", 
          "https://doi.org/10.1186/1756-0500-2-19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2334-10-138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021950401", 
          "https://doi.org/10.1186/1471-2334-10-138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03402042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075316734", 
          "https://doi.org/10.1007/bf03402042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1465-9921-8-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049800836", 
          "https://doi.org/10.1186/1465-9921-8-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2334-8-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000532665", 
          "https://doi.org/10.1186/1471-2334-8-11"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05-19", 
    "datePublishedReg": "2011-05-19", 
    "description": "BACKGROUND: There is an urgent need of prognosis markers for tuberculosis (TB) to improve treatment strategies. The results of several studies show that the Interferon (IFN)-\u03b3-specific response to the TB antigens of the QuantiFERON TB Gold (QFT-IT antigens) decreases after successful TB therapy. The objective of this study was to evaluate whether there are factors other than IFN-\u03b3 [such as IFN-\u03b3 inducible protein (IP)-10 which has also been associated with TB] in response to QFT-IT antigens that can be used as biomarkers for monitoring TB treatment.\nMETHODS: In this exploratory study we assessed the changes in IP-10 secretion in response to QFT-IT antigens and RD1 peptides selected by computational analysis in 17 patients with active TB at the time of diagnosis and after 6 months of treatment. The IFN-\u03b3 response to QFT-IT antigens and RD1 selected peptides was evaluated as a control. A non-parametric Wilcoxon signed-rank test for paired comparisons was used to compare the continuous variables at the time of diagnosis and at therapy completion. A Chi-square test was used to compare proportions.\nRESULTS: We did not observe significant IP-10 changes in whole blood from either NIL or QFT-IT antigen tubes, after 1-day stimulation, between baseline and therapy completion (p = 0.08 and p = 0.7 respectively). Conversely, the level of IP-10 release to RD1 selected peptides was significantly different (p = 0.006). Similar results were obtained when we detected the IFN-\u03b3 in response to the QFT-IT antigens (p = 0.06) and RD1 selected peptides (p = 0.0003). The proportion of the IP-10 responders to the QFT-IT antigens did not significantly change between baseline and therapy completion (p = 0.6), whereas it significantly changed in response to RD1 selected peptides (p = 0.002). The proportion of IFN-\u03b3 responders between baseline and therapy completion was not significant for QFT-IT antigens (p = 0.2), whereas it was significant for the RD1 selected peptides (p = 0.002), confirming previous observations.\nCONCLUSIONS: Our preliminary study provides an interesting hypothesis: IP-10 response to RD1 selected peptides (similar to IFN-\u03b3) might be a useful biomarker for monitoring therapy efficacy in patients with active TB. However, further studies in larger cohorts are needed to confirm the consistency of these study results.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2334-11-135", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024946", 
        "issn": [
          "1471-2334"
        ], 
        "name": "BMC Infectious Diseases", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "IP-10 responses", 
      "time of diagnosis", 
      "QFT-IT", 
      "therapy completion", 
      "active tuberculosis", 
      "useful biomarker", 
      "proportion of IFN", 
      "months of treatment", 
      "IP-10 secretion", 
      "IP-10 release", 
      "chi-square test", 
      "Wilcoxon signed-rank test", 
      "RD1 peptides", 
      "RD1 antigens", 
      "TB treatment", 
      "TB therapy", 
      "TB antigens", 
      "signed-rank test", 
      "non-parametric Wilcoxon signed-rank test", 
      "antigen tubes", 
      "treatment strategies", 
      "tuberculosis therapy", 
      "prognosis marker", 
      "large cohort", 
      "IFN", 
      "therapy efficacy", 
      "tuberculosis", 
      "whole blood", 
      "antigen", 
      "baseline", 
      "biomarkers", 
      "Further studies", 
      "patients", 
      "therapy", 
      "continuous variables", 
      "responders", 
      "diagnosis", 
      "RD1", 
      "treatment", 
      "peptides", 
      "preliminary study", 
      "urgent need", 
      "response", 
      "specific responses", 
      "proportion", 
      "similar results", 
      "completion", 
      "study results", 
      "previous observations", 
      "interferon", 
      "cohort", 
      "study", 
      "blood", 
      "secretion", 
      "months", 
      "efficacy", 
      "stimulation", 
      "exploratory study", 
      "interesting hypotheses", 
      "markers", 
      "test", 
      "QFT", 
      "changes", 
      "release", 
      "factors", 
      "levels", 
      "decrease", 
      "control", 
      "results", 
      "time", 
      "nil", 
      "hypothesis", 
      "objective", 
      "need", 
      "strategies", 
      "variables", 
      "tube", 
      "comparison", 
      "analysis", 
      "consistency", 
      "observations", 
      "computational analysis", 
      "gold decreases", 
      "QuantiFERON TB Gold (QFT-IT antigens) decreases", 
      "TB Gold (QFT-IT antigens) decreases", 
      "successful TB therapy", 
      "significant IP-10 changes", 
      "IP-10 changes", 
      "IP-10 responders", 
      "QFT-IT antigens"
    ], 
    "name": "IP-10 response to RD1 antigens might be a useful biomarker for monitoring tuberculosis therapy", 
    "pagination": "135-135", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008143174"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2334-11-135"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21595874"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2334-11-135", 
      "https://app.dimensions.ai/details/publication/pub.1008143174"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_555.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2334-11-135"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-135'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-135'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-135'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2334-11-135'


 

This table displays all metadata directly associated to this object as RDF triples.

318 TRIPLES      22 PREDICATES      140 URIs      123 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2334-11-135 schema:about N0ec0e7817cfa49c2be24642ccc2e712f
2 N2daa3a8173c54e0c933e26a29cd30822
3 N373955bff7f34244be1a2f31eb3f02fc
4 N4f092a4530bf4be685e9add8bb5e0b37
5 N509ed68a094c4179bac7091e0fb6f9b0
6 N5aab25b921744b3fb4770e57483d8146
7 N7b1dca7dcc8f443292189f885515a9f3
8 N7ea7a2617dac47a192d95e7a78de5be5
9 N7eb3e9cfcb7c4fa88db55faf4f5fa3fd
10 N8b40c4e2351d4765bbb335fce10352c7
11 N92ffcf7e2b064a938fee5d2f3d054f05
12 N9357241f60d74ab28065051abb4d6945
13 N9762ddd21ccb419c89ed3eb18685168a
14 Nd71206901da04f0ba99d5ac8022506eb
15 Ne5b1426c945a42e39783e441623c1ad0
16 anzsrc-for:11
17 anzsrc-for:1103
18 schema:author N05b613450aee45d29c0634d9b8588428
19 schema:citation sg:pub.10.1007/bf02829815
20 sg:pub.10.1007/bf03402042
21 sg:pub.10.1007/s15010-007-6114-z
22 sg:pub.10.1186/1465-9921-8-5
23 sg:pub.10.1186/1471-2334-10-138
24 sg:pub.10.1186/1471-2334-10-333
25 sg:pub.10.1186/1471-2334-6-66
26 sg:pub.10.1186/1471-2334-8-11
27 sg:pub.10.1186/1756-0500-2-19
28 schema:datePublished 2011-05-19
29 schema:datePublishedReg 2011-05-19
30 schema:description BACKGROUND: There is an urgent need of prognosis markers for tuberculosis (TB) to improve treatment strategies. The results of several studies show that the Interferon (IFN)-γ-specific response to the TB antigens of the QuantiFERON TB Gold (QFT-IT antigens) decreases after successful TB therapy. The objective of this study was to evaluate whether there are factors other than IFN-γ [such as IFN-γ inducible protein (IP)-10 which has also been associated with TB] in response to QFT-IT antigens that can be used as biomarkers for monitoring TB treatment. METHODS: In this exploratory study we assessed the changes in IP-10 secretion in response to QFT-IT antigens and RD1 peptides selected by computational analysis in 17 patients with active TB at the time of diagnosis and after 6 months of treatment. The IFN-γ response to QFT-IT antigens and RD1 selected peptides was evaluated as a control. A non-parametric Wilcoxon signed-rank test for paired comparisons was used to compare the continuous variables at the time of diagnosis and at therapy completion. A Chi-square test was used to compare proportions. RESULTS: We did not observe significant IP-10 changes in whole blood from either NIL or QFT-IT antigen tubes, after 1-day stimulation, between baseline and therapy completion (p = 0.08 and p = 0.7 respectively). Conversely, the level of IP-10 release to RD1 selected peptides was significantly different (p = 0.006). Similar results were obtained when we detected the IFN-γ in response to the QFT-IT antigens (p = 0.06) and RD1 selected peptides (p = 0.0003). The proportion of the IP-10 responders to the QFT-IT antigens did not significantly change between baseline and therapy completion (p = 0.6), whereas it significantly changed in response to RD1 selected peptides (p = 0.002). The proportion of IFN-γ responders between baseline and therapy completion was not significant for QFT-IT antigens (p = 0.2), whereas it was significant for the RD1 selected peptides (p = 0.002), confirming previous observations. CONCLUSIONS: Our preliminary study provides an interesting hypothesis: IP-10 response to RD1 selected peptides (similar to IFN-γ) might be a useful biomarker for monitoring therapy efficacy in patients with active TB. However, further studies in larger cohorts are needed to confirm the consistency of these study results.
31 schema:genre article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N317d91d9ff1a49a2a1b563425918d93f
35 Nd3fc87016bce43d9b190e8d9f28aadb6
36 sg:journal.1024946
37 schema:keywords Further studies
38 IFN
39 IP-10 changes
40 IP-10 release
41 IP-10 responders
42 IP-10 responses
43 IP-10 secretion
44 QFT
45 QFT-IT
46 QFT-IT antigens
47 QuantiFERON TB Gold (QFT-IT antigens) decreases
48 RD1
49 RD1 antigens
50 RD1 peptides
51 TB Gold (QFT-IT antigens) decreases
52 TB antigens
53 TB therapy
54 TB treatment
55 Wilcoxon signed-rank test
56 active tuberculosis
57 analysis
58 antigen
59 antigen tubes
60 baseline
61 biomarkers
62 blood
63 changes
64 chi-square test
65 cohort
66 comparison
67 completion
68 computational analysis
69 consistency
70 continuous variables
71 control
72 decrease
73 diagnosis
74 efficacy
75 exploratory study
76 factors
77 gold decreases
78 hypothesis
79 interesting hypotheses
80 interferon
81 large cohort
82 levels
83 markers
84 months
85 months of treatment
86 need
87 nil
88 non-parametric Wilcoxon signed-rank test
89 objective
90 observations
91 patients
92 peptides
93 preliminary study
94 previous observations
95 prognosis marker
96 proportion
97 proportion of IFN
98 release
99 responders
100 response
101 results
102 secretion
103 signed-rank test
104 significant IP-10 changes
105 similar results
106 specific responses
107 stimulation
108 strategies
109 study
110 study results
111 successful TB therapy
112 test
113 therapy
114 therapy completion
115 therapy efficacy
116 time
117 time of diagnosis
118 treatment
119 treatment strategies
120 tube
121 tuberculosis
122 tuberculosis therapy
123 urgent need
124 useful biomarker
125 variables
126 whole blood
127 schema:name IP-10 response to RD1 antigens might be a useful biomarker for monitoring tuberculosis therapy
128 schema:pagination 135-135
129 schema:productId N52d74cd020584cec89e397b5fa76e218
130 Nb0fb6dbe8f40494e9a289116903b7fa0
131 Nd4362f8f37754308a10a0bfb6d580b68
132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008143174
133 https://doi.org/10.1186/1471-2334-11-135
134 schema:sdDatePublished 2022-01-01T18:26
135 schema:sdLicense https://scigraph.springernature.com/explorer/license/
136 schema:sdPublisher N2718813a04f740cf86b55fb62ad846f4
137 schema:url https://doi.org/10.1186/1471-2334-11-135
138 sgo:license sg:explorer/license/
139 sgo:sdDataset articles
140 rdf:type schema:ScholarlyArticle
141 N05b613450aee45d29c0634d9b8588428 rdf:first sg:person.01273707247.65
142 rdf:rest Nf014262814584223b467f2e944d5cf30
143 N0ec0e7817cfa49c2be24642ccc2e712f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Interferon-gamma
145 rdf:type schema:DefinedTerm
146 N18f79196e1284b749018f3113ebf05d0 rdf:first sg:person.0710457221.03
147 rdf:rest N875baf3baa66430fbadf7bd945ead8c3
148 N2718813a04f740cf86b55fb62ad846f4 schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 N2daa3a8173c54e0c933e26a29cd30822 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Biomarkers
152 rdf:type schema:DefinedTerm
153 N317d91d9ff1a49a2a1b563425918d93f schema:issueNumber 1
154 rdf:type schema:PublicationIssue
155 N32afda9a85be47b89064399781be5756 rdf:first sg:person.01171626456.09
156 rdf:rest Neccfb8a809ba490baff5c9775a5b6379
157 N373955bff7f34244be1a2f31eb3f02fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Middle Aged
159 rdf:type schema:DefinedTerm
160 N4f092a4530bf4be685e9add8bb5e0b37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Antitubercular Agents
162 rdf:type schema:DefinedTerm
163 N509ed68a094c4179bac7091e0fb6f9b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Young Adult
165 rdf:type schema:DefinedTerm
166 N52d74cd020584cec89e397b5fa76e218 schema:name dimensions_id
167 schema:value pub.1008143174
168 rdf:type schema:PropertyValue
169 N5aab25b921744b3fb4770e57483d8146 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Male
171 rdf:type schema:DefinedTerm
172 N6d6659105e5949a488c6f05d4afead99 rdf:first sg:person.01153617547.41
173 rdf:rest N18f79196e1284b749018f3113ebf05d0
174 N7b1dca7dcc8f443292189f885515a9f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Prospective Studies
176 rdf:type schema:DefinedTerm
177 N7d4180f9bb4e47519fae34927d181707 rdf:first sg:person.0727003647.68
178 rdf:rest Nd97afc77b7494b46b65074a621877c50
179 N7ea7a2617dac47a192d95e7a78de5be5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Antigens, Bacterial
181 rdf:type schema:DefinedTerm
182 N7eb3e9cfcb7c4fa88db55faf4f5fa3fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Mycobacterium tuberculosis
184 rdf:type schema:DefinedTerm
185 N875baf3baa66430fbadf7bd945ead8c3 rdf:first sg:person.01222655205.82
186 rdf:rest N32afda9a85be47b89064399781be5756
187 N8b40c4e2351d4765bbb335fce10352c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Chemokine CXCL10
189 rdf:type schema:DefinedTerm
190 N92ffcf7e2b064a938fee5d2f3d054f05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Female
192 rdf:type schema:DefinedTerm
193 N9357241f60d74ab28065051abb4d6945 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Drug Monitoring
195 rdf:type schema:DefinedTerm
196 N9762ddd21ccb419c89ed3eb18685168a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Humans
198 rdf:type schema:DefinedTerm
199 Nb0fb6dbe8f40494e9a289116903b7fa0 schema:name pubmed_id
200 schema:value 21595874
201 rdf:type schema:PropertyValue
202 Nd3fc87016bce43d9b190e8d9f28aadb6 schema:volumeNumber 11
203 rdf:type schema:PublicationVolume
204 Nd4362f8f37754308a10a0bfb6d580b68 schema:name doi
205 schema:value 10.1186/1471-2334-11-135
206 rdf:type schema:PropertyValue
207 Nd71206901da04f0ba99d5ac8022506eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Tuberculosis
209 rdf:type schema:DefinedTerm
210 Nd97afc77b7494b46b65074a621877c50 rdf:first sg:person.01147756447.44
211 rdf:rest N6d6659105e5949a488c6f05d4afead99
212 Ne5b1426c945a42e39783e441623c1ad0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Adult
214 rdf:type schema:DefinedTerm
215 Neccfb8a809ba490baff5c9775a5b6379 rdf:first sg:person.01200446072.99
216 rdf:rest rdf:nil
217 Nf014262814584223b467f2e944d5cf30 rdf:first sg:person.01252174416.47
218 rdf:rest N7d4180f9bb4e47519fae34927d181707
219 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
220 schema:name Medical and Health Sciences
221 rdf:type schema:DefinedTerm
222 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
223 schema:name Clinical Sciences
224 rdf:type schema:DefinedTerm
225 sg:journal.1024946 schema:issn 1471-2334
226 schema:name BMC Infectious Diseases
227 schema:publisher Springer Nature
228 rdf:type schema:Periodical
229 sg:person.01147756447.44 schema:affiliation grid-institutes:grid.424167.2
230 schema:familyName Thangaraj
231 schema:givenName Satheesh
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147756447.44
233 rdf:type schema:Person
234 sg:person.01153617547.41 schema:affiliation grid-institutes:grid.424167.2
235 schema:familyName Leportier
236 schema:givenName Marc
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153617547.41
238 rdf:type schema:Person
239 sg:person.01171626456.09 schema:affiliation grid-institutes:grid.413328.f
240 schema:familyName Lagrange
241 schema:givenName Philippe Henri
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171626456.09
243 rdf:type schema:Person
244 sg:person.01200446072.99 schema:affiliation grid-institutes:None
245 schema:familyName Goletti
246 schema:givenName Delia
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200446072.99
248 rdf:type schema:Person
249 sg:person.01222655205.82 schema:affiliation grid-institutes:None
250 schema:familyName Girardi
251 schema:givenName Enrico
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222655205.82
253 rdf:type schema:Person
254 sg:person.01252174416.47 schema:affiliation grid-institutes:grid.417330.2
255 schema:familyName Raja
256 schema:givenName Alamelu
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252174416.47
258 rdf:type schema:Person
259 sg:person.01273707247.65 schema:affiliation grid-institutes:grid.417330.2
260 schema:familyName Kabeer
261 schema:givenName Basirudeen Syed Ahamed
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273707247.65
263 rdf:type schema:Person
264 sg:person.0710457221.03 schema:affiliation grid-institutes:None
265 schema:familyName Ippolito
266 schema:givenName Giuseppe
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710457221.03
268 rdf:type schema:Person
269 sg:person.0727003647.68 schema:affiliation grid-institutes:grid.417330.2
270 schema:familyName Raman
271 schema:givenName Balambal
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727003647.68
273 rdf:type schema:Person
274 sg:pub.10.1007/bf02829815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019467271
275 https://doi.org/10.1007/bf02829815
276 rdf:type schema:CreativeWork
277 sg:pub.10.1007/bf03402042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075316734
278 https://doi.org/10.1007/bf03402042
279 rdf:type schema:CreativeWork
280 sg:pub.10.1007/s15010-007-6114-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039438617
281 https://doi.org/10.1007/s15010-007-6114-z
282 rdf:type schema:CreativeWork
283 sg:pub.10.1186/1465-9921-8-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049800836
284 https://doi.org/10.1186/1465-9921-8-5
285 rdf:type schema:CreativeWork
286 sg:pub.10.1186/1471-2334-10-138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021950401
287 https://doi.org/10.1186/1471-2334-10-138
288 rdf:type schema:CreativeWork
289 sg:pub.10.1186/1471-2334-10-333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052844800
290 https://doi.org/10.1186/1471-2334-10-333
291 rdf:type schema:CreativeWork
292 sg:pub.10.1186/1471-2334-6-66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037367872
293 https://doi.org/10.1186/1471-2334-6-66
294 rdf:type schema:CreativeWork
295 sg:pub.10.1186/1471-2334-8-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000532665
296 https://doi.org/10.1186/1471-2334-8-11
297 rdf:type schema:CreativeWork
298 sg:pub.10.1186/1756-0500-2-19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044074331
299 https://doi.org/10.1186/1756-0500-2-19
300 rdf:type schema:CreativeWork
301 grid-institutes:None schema:alternateName Department of Epidemiology and Preclinical Research, INMI, Rome, Italy
302 Scientific Direction, Lazzaro Spallanzani National Institute for Infectious Diseases (INMI), Rome, Italy
303 Translational Research Unit, Department of Epidemiology and Preclinical Research, (INMI), Rome, Italy
304 schema:name Department of Epidemiology and Preclinical Research, INMI, Rome, Italy
305 Scientific Direction, Lazzaro Spallanzani National Institute for Infectious Diseases (INMI), Rome, Italy
306 Translational Research Unit, Department of Epidemiology and Preclinical Research, (INMI), Rome, Italy
307 rdf:type schema:Organization
308 grid-institutes:grid.413328.f schema:alternateName Microbiology Service, Saint Louis Hospital, Paris, France
309 schema:name Microbiology Service, Saint Louis Hospital, Paris, France
310 rdf:type schema:Organization
311 grid-institutes:grid.417330.2 schema:alternateName Department of Clinical Research, Tuberculosis Research Centre (ICMR), Mayor V.R. Ramanathan Road, Chetpet, Chennai -- 600 031, Tamil Nadu, India
312 Department of Immunology, Tuberculosis Research Centre (ICMR), Tamil Nadu, Chennai, India
313 schema:name Department of Clinical Research, Tuberculosis Research Centre (ICMR), Mayor V.R. Ramanathan Road, Chetpet, Chennai -- 600 031, Tamil Nadu, India
314 Department of Immunology, Tuberculosis Research Centre (ICMR), Tamil Nadu, Chennai, India
315 rdf:type schema:Organization
316 grid-institutes:grid.424167.2 schema:alternateName Biomérieux, Research & Development Immunoassays, Chemin de l'Orme, Marcy L'Etoile, France
317 schema:name Biomérieux, Research & Development Immunoassays, Chemin de l'Orme, Marcy L'Etoile, France
318 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...