Estimating the treatment effect from non-randomized studies: The example of reduced intensity conditioning allogeneic stem cell transplantation in hematological diseases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-08-16

AUTHORS

Matthieu Resche-Rigon, Romain Pirracchio, Marie Robin, Regis Peffault De Latour, David Sibon, Lionel Ades, Patricia Ribaud, Jean-Paul Fermand, Catherine Thieblemont, Gérard Socié, Sylvie Chevret

ABSTRACT

BackgroundIn some clinical situations, for which RCT are rare or impossible, the majority of the evidence comes from observational studies, but standard estimations could be biased because they ignore covariates that confound treatment decisions and outcomes.MethodsThree observational studies were conducted to assess the benefit of Allo-SCT in hematological malignancies of multiple myeloma, follicular lymphoma and Hodgkin’s disease. Two statistical analyses were performed: the propensity score (PS) matching approach and the inverse probability weighting (IPW) approach.ResultsBased on PS-matched samples, a survival benefit in MM patients treated by Allo-SCT, as compared to similar non-allo treated patients, was observed with an HR of death at 0.35 (95%CI: 0.14-0.88). Similar results were observed in HD, 0.23 (0.07-0.80) but not in FL, 1.28 (0.43-3.77). Estimated benefits of Allo-SCT for the original population using IPW were erased in HR for death at 0.72 (0.37-1.39) for MM patients, 0.60 (0.19-1.89) for HD patients, and 2.02 (0.88-4.66) for FL patients.ConclusionDifferences in estimated benefits rely on whether the underlying population to which they apply is an ideal randomized experimental population (PS) or the original population (IPW). These useful methods should be employed when assessing the effects of innovative treatment in non-randomized experiments. More... »

PAGES

10

References to SciGraph publications

  • 2012-05-11. Intensive chemotherapy for elderly patients with acute myelogeneous leukemia: a propensity score analysis by the Japan Hematology and Oncology Clinical Study Group (J-HOCS) in ANNALS OF HEMATOLOGY
  • 2010-08-06. Propensity scores in intensive care and anaesthesiology literature: a systematic review in INTENSIVE CARE MEDICINE
  • 2006-09-21. Reduced-intensity conditioning allogeneic stem cell transplantation: hype, reality or time for a rethink? in LEUKEMIA
  • 2011-05-03. Fragment length analysis screening for detection of CEBPA mutations in intermediate-risk karyotype acute myeloid leukemia in ANNALS OF HEMATOLOGY
  • 2001-12. Estimation of Causal Effects using Propensity Score Weighting: An Application to Data on Right Heart Catheterization in HEALTH SERVICES AND OUTCOMES RESEARCH METHODOLOGY
  • 2005-09-29. Comparative outcome of reduced intensity and myeloablative conditioning regimen in HLA identical sibling allogeneic haematopoietic stem cell transplantation for patients older than 50 years of age with acute myeloblastic leukaemia: a retrospective survey from the Acute Leukemia Working Party (ALWP) of the European group for Blood and Marrow Transplantation (EBMT) in LEUKEMIA
  • 2010-04-19. Tandem autologous non-myeloablative allogeneic transplantation in patients with multiple myeloma relapsing after a first high dose therapy in BONE MARROW TRANSPLANTATION
  • 2001-12. Using Propensity Scores to Help Design Observational Studies: Application to the Tobacco Litigation in HEALTH SERVICES AND OUTCOMES RESEARCH METHODOLOGY
  • 2003-04-01. An EBMT registry matched study of allogeneic stem cell transplants for lymphoma: allogeneic transplantation is associated with a lower relapse rate but a higher procedure-related mortality rate than autologous transplantation in BONE MARROW TRANSPLANTATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1471-2326-12-10

    DOI

    http://dx.doi.org/10.1186/1471-2326-12-10

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002694933

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22898556


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Denis Diderot Paris 7, 75010, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.508487.6", 
              "name": [
                "D\u00e9partement de Biostatistique et Informatique M\u00e9dicale, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France", 
                "INSERM, UMRS 717, 75010, Paris, France", 
                "Universit\u00e9 Denis Diderot Paris 7, 75010, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Resche-Rigon", 
            "givenName": "Matthieu", 
            "id": "sg:person.01036155166.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036155166.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "D\u00e9partement de Biostatistique et Informatique M\u00e9dicale, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.413328.f", 
              "name": [
                "D\u00e9partement de Biostatistique et Informatique M\u00e9dicale, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pirracchio", 
            "givenName": "Romain", 
            "id": "sg:person.01047623565.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047623565.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Service d\u2019H\u00e9matologie Greffe, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.413328.f", 
              "name": [
                "Service d\u2019H\u00e9matologie Greffe, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Robin", 
            "givenName": "Marie", 
            "id": "sg:person.01261354403.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261354403.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Service d\u2019H\u00e9matologie Greffe, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.413328.f", 
              "name": [
                "Service d\u2019H\u00e9matologie Greffe, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "De Latour", 
            "givenName": "Regis Peffault", 
            "id": "sg:person.01350217670.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350217670.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Service d'Onco-H\u00e9matologie, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.413328.f", 
              "name": [
                "Service d'Onco-H\u00e9matologie, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sibon", 
            "givenName": "David", 
            "id": "sg:person.01244702643.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244702643.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Service d'H\u00e9matologie Clinique, H\u00f4pital Avicenne, AP-HP, 93100, Bobigny, France", 
              "id": "http://www.grid.ac/institutes/grid.413780.9", 
              "name": [
                "Service d'H\u00e9matologie Clinique, H\u00f4pital Avicenne, AP-HP, 93100, Bobigny, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ades", 
            "givenName": "Lionel", 
            "id": "sg:person.01315012176.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315012176.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Service d\u2019H\u00e9matologie Greffe, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.413328.f", 
              "name": [
                "Service d\u2019H\u00e9matologie Greffe, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ribaud", 
            "givenName": "Patricia", 
            "id": "sg:person.0716640136.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716640136.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Service d'Immuno-H\u00e9matologie, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.413328.f", 
              "name": [
                "Service d'Immuno-H\u00e9matologie, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fermand", 
            "givenName": "Jean-Paul", 
            "id": "sg:person.0705756272.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705756272.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Service d'Onco-H\u00e9matologie, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.413328.f", 
              "name": [
                "Service d'Onco-H\u00e9matologie, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thieblemont", 
            "givenName": "Catherine", 
            "id": "sg:person.01153464243.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153464243.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Service d\u2019H\u00e9matologie Greffe, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.413328.f", 
              "name": [
                "Service d\u2019H\u00e9matologie Greffe, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Soci\u00e9", 
            "givenName": "G\u00e9rard", 
            "id": "sg:person.015747476457.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015747476457.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Denis Diderot Paris 7, 75010, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.508487.6", 
              "name": [
                "D\u00e9partement de Biostatistique et Informatique M\u00e9dicale, H\u00f4pital Saint-Louis, AP-HP, 75010, Paris, France", 
                "INSERM, UMRS 717, 75010, Paris, France", 
                "Universit\u00e9 Denis Diderot Paris 7, 75010, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chevret", 
            "givenName": "Sylvie", 
            "id": "sg:person.0625147223.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625147223.89"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1020371312283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001396516", 
              "https://doi.org/10.1023/a:1020371312283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.leu.2403967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023301181", 
              "https://doi.org/10.1038/sj.leu.2403967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00134-010-1991-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005546328", 
              "https://doi.org/10.1007/s00134-010-1991-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bmt.1703891", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011788047", 
              "https://doi.org/10.1038/sj.bmt.1703891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bmt.2010.90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042034040", 
              "https://doi.org/10.1038/bmt.2010.90"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00277-012-1487-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035516538", 
              "https://doi.org/10.1007/s00277-012-1487-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020363010465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022248795", 
              "https://doi.org/10.1023/a:1020363010465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.leu.2404336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040052874", 
              "https://doi.org/10.1038/sj.leu.2404336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00277-011-1234-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043901981", 
              "https://doi.org/10.1007/s00277-011-1234-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-08-16", 
        "datePublishedReg": "2012-08-16", 
        "description": "BackgroundIn some clinical situations, for which RCT are rare or impossible, the majority of the evidence comes from observational studies, but standard estimations could be biased because they ignore covariates that confound treatment decisions and outcomes.MethodsThree observational studies were conducted to assess the benefit of Allo-SCT in hematological malignancies of multiple myeloma, follicular lymphoma and Hodgkin\u2019s disease. Two statistical analyses were performed: the propensity score (PS) matching approach and the inverse probability weighting (IPW) approach.ResultsBased on PS-matched samples, a survival benefit in MM patients treated by Allo-SCT, as compared to similar non-allo treated patients, was observed with an HR of death at 0.35 (95%CI: 0.14-0.88). Similar results were observed in HD, 0.23 (0.07-0.80) but not in FL, 1.28 (0.43-3.77). Estimated benefits of Allo-SCT for the original population using IPW were erased in HR for death at 0.72 (0.37-1.39) for MM patients, 0.60 (0.19-1.89) for HD patients, and 2.02 (0.88-4.66) for FL patients.ConclusionDifferences in estimated benefits rely on whether the underlying population to which they apply is an ideal randomized experimental population (PS) or the original population (IPW). These useful methods should be employed when assessing the effects of innovative treatment in non-randomized experiments.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1471-2326-12-10", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1024945", 
            "issn": [
              "2052-1839"
            ], 
            "name": "BMC Hematology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "allo-SCT", 
          "propensity score", 
          "MM patients", 
          "observational study", 
          "reduced intensity conditioning allogeneic stem cell transplantation", 
          "intensity conditioning allogeneic stem cell transplantation", 
          "allogeneic stem cell transplantation", 
          "stem cell transplantation", 
          "non-randomized studies", 
          "HR of death", 
          "survival benefit", 
          "Hodgkin's disease", 
          "HD patients", 
          "FL patients", 
          "cell transplantation", 
          "treatment decisions", 
          "hematological malignancies", 
          "follicular lymphoma", 
          "hematological diseases", 
          "patients", 
          "clinical situations", 
          "innovative treatments", 
          "disease", 
          "treatment effects", 
          "death", 
          "hr", 
          "population", 
          "inverse probability weighting approach", 
          "similar results", 
          "RCTs", 
          "useful method", 
          "statistical analysis", 
          "transplantation", 
          "malignancy", 
          "lymphoma", 
          "ConclusionDifferences", 
          "benefits", 
          "study", 
          "outcomes", 
          "BackgroundIn", 
          "treatment", 
          "scores", 
          "covariates", 
          "original population", 
          "effect", 
          "HD", 
          "majority", 
          "non-randomized experiment", 
          "evidence", 
          "FL", 
          "IPW", 
          "standard estimation", 
          "samples", 
          "analysis", 
          "results", 
          "approach", 
          "decisions", 
          "method", 
          "situation", 
          "experiments", 
          "weighting approach", 
          "experimental populations", 
          "estimation", 
          "example"
        ], 
        "name": "Estimating the treatment effect from non-randomized studies: The example of reduced intensity conditioning allogeneic stem cell transplantation in hematological diseases", 
        "pagination": "10", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002694933"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1471-2326-12-10"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22898556"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1471-2326-12-10", 
          "https://app.dimensions.ai/details/publication/pub.1002694933"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_567.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1471-2326-12-10"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2326-12-10'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2326-12-10'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2326-12-10'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2326-12-10'


     

    This table displays all metadata directly associated to this object as RDF triples.

    244 TRIPLES      21 PREDICATES      98 URIs      81 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1471-2326-12-10 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author N4dbd14761c7349aaba4389cc683910e0
    4 schema:citation sg:pub.10.1007/s00134-010-1991-5
    5 sg:pub.10.1007/s00277-011-1234-z
    6 sg:pub.10.1007/s00277-012-1487-1
    7 sg:pub.10.1023/a:1020363010465
    8 sg:pub.10.1023/a:1020371312283
    9 sg:pub.10.1038/bmt.2010.90
    10 sg:pub.10.1038/sj.bmt.1703891
    11 sg:pub.10.1038/sj.leu.2403967
    12 sg:pub.10.1038/sj.leu.2404336
    13 schema:datePublished 2012-08-16
    14 schema:datePublishedReg 2012-08-16
    15 schema:description BackgroundIn some clinical situations, for which RCT are rare or impossible, the majority of the evidence comes from observational studies, but standard estimations could be biased because they ignore covariates that confound treatment decisions and outcomes.MethodsThree observational studies were conducted to assess the benefit of Allo-SCT in hematological malignancies of multiple myeloma, follicular lymphoma and Hodgkin’s disease. Two statistical analyses were performed: the propensity score (PS) matching approach and the inverse probability weighting (IPW) approach.ResultsBased on PS-matched samples, a survival benefit in MM patients treated by Allo-SCT, as compared to similar non-allo treated patients, was observed with an HR of death at 0.35 (95%CI: 0.14-0.88). Similar results were observed in HD, 0.23 (0.07-0.80) but not in FL, 1.28 (0.43-3.77). Estimated benefits of Allo-SCT for the original population using IPW were erased in HR for death at 0.72 (0.37-1.39) for MM patients, 0.60 (0.19-1.89) for HD patients, and 2.02 (0.88-4.66) for FL patients.ConclusionDifferences in estimated benefits rely on whether the underlying population to which they apply is an ideal randomized experimental population (PS) or the original population (IPW). These useful methods should be employed when assessing the effects of innovative treatment in non-randomized experiments.
    16 schema:genre article
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N55e4751ec7a44455a28f20e09ae7dd0e
    19 N9c7bfcb3e3514590b5ae51211182a1e5
    20 sg:journal.1024945
    21 schema:keywords BackgroundIn
    22 ConclusionDifferences
    23 FL
    24 FL patients
    25 HD
    26 HD patients
    27 HR of death
    28 Hodgkin's disease
    29 IPW
    30 MM patients
    31 RCTs
    32 allo-SCT
    33 allogeneic stem cell transplantation
    34 analysis
    35 approach
    36 benefits
    37 cell transplantation
    38 clinical situations
    39 covariates
    40 death
    41 decisions
    42 disease
    43 effect
    44 estimation
    45 evidence
    46 example
    47 experimental populations
    48 experiments
    49 follicular lymphoma
    50 hematological diseases
    51 hematological malignancies
    52 hr
    53 innovative treatments
    54 intensity conditioning allogeneic stem cell transplantation
    55 inverse probability weighting approach
    56 lymphoma
    57 majority
    58 malignancy
    59 method
    60 non-randomized experiment
    61 non-randomized studies
    62 observational study
    63 original population
    64 outcomes
    65 patients
    66 population
    67 propensity score
    68 reduced intensity conditioning allogeneic stem cell transplantation
    69 results
    70 samples
    71 scores
    72 similar results
    73 situation
    74 standard estimation
    75 statistical analysis
    76 stem cell transplantation
    77 study
    78 survival benefit
    79 transplantation
    80 treatment
    81 treatment decisions
    82 treatment effects
    83 useful method
    84 weighting approach
    85 schema:name Estimating the treatment effect from non-randomized studies: The example of reduced intensity conditioning allogeneic stem cell transplantation in hematological diseases
    86 schema:pagination 10
    87 schema:productId N432f615a79a44c1e8b4d1aba57752f4c
    88 N4540a028d5a54b4e844cacffc5f3dc6c
    89 Nea90c1b95366463386b40e5fc30d1f49
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002694933
    91 https://doi.org/10.1186/1471-2326-12-10
    92 schema:sdDatePublished 2022-09-02T15:56
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher Ne557783a3dfa4ed6a244ee5b127064b0
    95 schema:url https://doi.org/10.1186/1471-2326-12-10
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N0e7d80ab699c4eeaa02eb58cb7a27b84 rdf:first sg:person.0716640136.50
    100 rdf:rest Na13164fb5c504213be244e6edef25af3
    101 N432f615a79a44c1e8b4d1aba57752f4c schema:name pubmed_id
    102 schema:value 22898556
    103 rdf:type schema:PropertyValue
    104 N435b921e55e24fadad81d0574a892c0f rdf:first sg:person.01244702643.44
    105 rdf:rest Na3daca2a9f614220a73d13a85580b16f
    106 N4540a028d5a54b4e844cacffc5f3dc6c schema:name dimensions_id
    107 schema:value pub.1002694933
    108 rdf:type schema:PropertyValue
    109 N470d40238e9544838b1ca5c82b56587f rdf:first sg:person.01047623565.27
    110 rdf:rest N5fe87adb6d144f43887a3b22671d3ffc
    111 N4dbd14761c7349aaba4389cc683910e0 rdf:first sg:person.01036155166.50
    112 rdf:rest N470d40238e9544838b1ca5c82b56587f
    113 N55e4751ec7a44455a28f20e09ae7dd0e schema:volumeNumber 12
    114 rdf:type schema:PublicationVolume
    115 N5b1421d1415043b5a3093bd84de0cb14 rdf:first sg:person.01153464243.58
    116 rdf:rest Ndb83b1f3bf0044d2ba25f737e73e7ac4
    117 N5fe87adb6d144f43887a3b22671d3ffc rdf:first sg:person.01261354403.95
    118 rdf:rest Nef036fc98ee74b2e8c1b1fffebcd555a
    119 N85e0fd20fc73412ba4d23de479bd3498 rdf:first sg:person.0625147223.89
    120 rdf:rest rdf:nil
    121 N9c7bfcb3e3514590b5ae51211182a1e5 schema:issueNumber 1
    122 rdf:type schema:PublicationIssue
    123 Na13164fb5c504213be244e6edef25af3 rdf:first sg:person.0705756272.89
    124 rdf:rest N5b1421d1415043b5a3093bd84de0cb14
    125 Na3daca2a9f614220a73d13a85580b16f rdf:first sg:person.01315012176.37
    126 rdf:rest N0e7d80ab699c4eeaa02eb58cb7a27b84
    127 Ndb83b1f3bf0044d2ba25f737e73e7ac4 rdf:first sg:person.015747476457.00
    128 rdf:rest N85e0fd20fc73412ba4d23de479bd3498
    129 Ne557783a3dfa4ed6a244ee5b127064b0 schema:name Springer Nature - SN SciGraph project
    130 rdf:type schema:Organization
    131 Nea90c1b95366463386b40e5fc30d1f49 schema:name doi
    132 schema:value 10.1186/1471-2326-12-10
    133 rdf:type schema:PropertyValue
    134 Nef036fc98ee74b2e8c1b1fffebcd555a rdf:first sg:person.01350217670.92
    135 rdf:rest N435b921e55e24fadad81d0574a892c0f
    136 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Medical and Health Sciences
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Clinical Sciences
    141 rdf:type schema:DefinedTerm
    142 sg:journal.1024945 schema:issn 2052-1839
    143 schema:name BMC Hematology
    144 schema:publisher Springer Nature
    145 rdf:type schema:Periodical
    146 sg:person.01036155166.50 schema:affiliation grid-institutes:grid.508487.6
    147 schema:familyName Resche-Rigon
    148 schema:givenName Matthieu
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036155166.50
    150 rdf:type schema:Person
    151 sg:person.01047623565.27 schema:affiliation grid-institutes:grid.413328.f
    152 schema:familyName Pirracchio
    153 schema:givenName Romain
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047623565.27
    155 rdf:type schema:Person
    156 sg:person.01153464243.58 schema:affiliation grid-institutes:grid.413328.f
    157 schema:familyName Thieblemont
    158 schema:givenName Catherine
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153464243.58
    160 rdf:type schema:Person
    161 sg:person.01244702643.44 schema:affiliation grid-institutes:grid.413328.f
    162 schema:familyName Sibon
    163 schema:givenName David
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244702643.44
    165 rdf:type schema:Person
    166 sg:person.01261354403.95 schema:affiliation grid-institutes:grid.413328.f
    167 schema:familyName Robin
    168 schema:givenName Marie
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261354403.95
    170 rdf:type schema:Person
    171 sg:person.01315012176.37 schema:affiliation grid-institutes:grid.413780.9
    172 schema:familyName Ades
    173 schema:givenName Lionel
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315012176.37
    175 rdf:type schema:Person
    176 sg:person.01350217670.92 schema:affiliation grid-institutes:grid.413328.f
    177 schema:familyName De Latour
    178 schema:givenName Regis Peffault
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350217670.92
    180 rdf:type schema:Person
    181 sg:person.015747476457.00 schema:affiliation grid-institutes:grid.413328.f
    182 schema:familyName Socié
    183 schema:givenName Gérard
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015747476457.00
    185 rdf:type schema:Person
    186 sg:person.0625147223.89 schema:affiliation grid-institutes:grid.508487.6
    187 schema:familyName Chevret
    188 schema:givenName Sylvie
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625147223.89
    190 rdf:type schema:Person
    191 sg:person.0705756272.89 schema:affiliation grid-institutes:grid.413328.f
    192 schema:familyName Fermand
    193 schema:givenName Jean-Paul
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705756272.89
    195 rdf:type schema:Person
    196 sg:person.0716640136.50 schema:affiliation grid-institutes:grid.413328.f
    197 schema:familyName Ribaud
    198 schema:givenName Patricia
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716640136.50
    200 rdf:type schema:Person
    201 sg:pub.10.1007/s00134-010-1991-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005546328
    202 https://doi.org/10.1007/s00134-010-1991-5
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s00277-011-1234-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1043901981
    205 https://doi.org/10.1007/s00277-011-1234-z
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s00277-012-1487-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035516538
    208 https://doi.org/10.1007/s00277-012-1487-1
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1023/a:1020363010465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022248795
    211 https://doi.org/10.1023/a:1020363010465
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1023/a:1020371312283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001396516
    214 https://doi.org/10.1023/a:1020371312283
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/bmt.2010.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042034040
    217 https://doi.org/10.1038/bmt.2010.90
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/sj.bmt.1703891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011788047
    220 https://doi.org/10.1038/sj.bmt.1703891
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/sj.leu.2403967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023301181
    223 https://doi.org/10.1038/sj.leu.2403967
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/sj.leu.2404336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040052874
    226 https://doi.org/10.1038/sj.leu.2404336
    227 rdf:type schema:CreativeWork
    228 grid-institutes:grid.413328.f schema:alternateName Département de Biostatistique et Informatique Médicale, Hôpital Saint-Louis, AP-HP, 75010, Paris, France
    229 Service d'Immuno-Hématologie, Hôpital Saint-Louis, AP-HP, 75010, Paris, France
    230 Service d'Onco-Hématologie, Hôpital Saint-Louis, AP-HP, 75010, Paris, France
    231 Service d’Hématologie Greffe, Hôpital Saint-Louis, AP-HP, 75010, Paris, France
    232 schema:name Département de Biostatistique et Informatique Médicale, Hôpital Saint-Louis, AP-HP, 75010, Paris, France
    233 Service d'Immuno-Hématologie, Hôpital Saint-Louis, AP-HP, 75010, Paris, France
    234 Service d'Onco-Hématologie, Hôpital Saint-Louis, AP-HP, 75010, Paris, France
    235 Service d’Hématologie Greffe, Hôpital Saint-Louis, AP-HP, 75010, Paris, France
    236 rdf:type schema:Organization
    237 grid-institutes:grid.413780.9 schema:alternateName Service d'Hématologie Clinique, Hôpital Avicenne, AP-HP, 93100, Bobigny, France
    238 schema:name Service d'Hématologie Clinique, Hôpital Avicenne, AP-HP, 93100, Bobigny, France
    239 rdf:type schema:Organization
    240 grid-institutes:grid.508487.6 schema:alternateName Université Denis Diderot Paris 7, 75010, Paris, France
    241 schema:name Département de Biostatistique et Informatique Médicale, Hôpital Saint-Louis, AP-HP, 75010, Paris, France
    242 INSERM, UMRS 717, 75010, Paris, France
    243 Université Denis Diderot Paris 7, 75010, Paris, France
    244 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...