Classification of adults suffering from typical gastroesophageal reflux disease symptoms: contribution of latent class analysis in a European observational study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Stanislas Bruley des Varannes, Renzo Cestari, Liudmila Usova, Konstantinos Triantafyllou, Angel Alvarez Sanchez, Sofia Keim, Paul Bergmans, Silvia Marelli, Esther Grahl, Philippe Ducrotté

ABSTRACT

BACKGROUND: As illustrated by the Montreal classification, gastroesophageal reflux disease (GERD) is much more than heartburn and patients constitute a heterogeneous group. Understanding if links exist between patients' characteristics and GERD symptoms, and classify subjects based on symptom-profile could help to better understand, diagnose, and treat GERD. The aim of this study was to identify distinct classes of GERD patients according to symptom profiles, using a specific statistical tool: Latent class analysis. METHODS: An observational single-visit study was conducted in 5 European countries in 7700 adults with typical symptoms. A latent class analysis was performed to identify "latent classes" and was applied to 12 indicator symptoms. RESULTS: On 7434 subjects with non-missing indicators, latent class analysis yielded 5 latent classes. Class 1 grouped the highest severity of typical GERD symptoms during day and night, more digestive and non-digestive GERD symptoms, and bad sleep quality. Class 3 represented less frequent and less severe digestive and non-digestive GERD symptoms, and better sleep quality than in class 1. In class 2, only typical GERD symptoms at night occurred. Classes 4 and 5 represented daytime and nighttime regurgitation. In class 4, heartburn was also identified and more atypical digestive symptoms. Multinomial logistic regression showed that country, age, sex, smoking, alcohol use, low-fat diet, waist circumference, recent weight gain (>5 kg), elevated triglycerides, metabolic syndrome, and medical GERD treatment had a significant effect on latent classes. CONCLUSION: Latent class analysis classified GERD patients based on symptom profiles which related to patients' characteristics. Although further studies considering these proposed classes have to be conducted to determine the reproducibility of this classification, this new tool might contribute in better management and follow-up of patients with GERD. More... »

PAGES

112

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-230x-14-112

DOI

http://dx.doi.org/10.1186/1471-230x-14-112

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007943054

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24969728


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alcohol Drinking", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet, Fat-Restricted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "France", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gastroesophageal Reflux", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Greece", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertriglyceridemia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Italy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Russia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Smoking", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Waist Circumference", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institut des Maladies de l\u2019Appareil Digestif \u2013 CHU H\u00f4tel Dieu, 44093, Nantes Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruley des Varannes", 
        "givenName": "Stanislas", 
        "id": "sg:person.01343253222.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343253222.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Universit\u00e0 degli Studi, Spedali Civili, Brescia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cestari", 
        "givenName": "Renzo", 
        "id": "sg:person.01020200207.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020200207.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Regional Clinic Hospital, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Usova", 
        "givenName": "Liudmila", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University General Hospital Attikon", 
          "id": "https://www.grid.ac/institutes/grid.411449.d", 
          "name": [
            "University General Hospital Attikon, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Triantafyllou", 
        "givenName": "Konstantinos", 
        "id": "sg:person.01271375575.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271375575.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital Cl\u00ednico San Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411068.a", 
          "name": [
            "Hospital Clinico San Carlos, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alvarez Sanchez", 
        "givenName": "Angel", 
        "id": "sg:person.015347703753.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015347703753.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Janssen-Cilag, Barcarena, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Sofia", 
        "id": "sg:person.01134170552.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134170552.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Janssen-Cilag B.V, Tilburg, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bergmans", 
        "givenName": "Paul", 
        "id": "sg:person.01017742152.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017742152.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Janssen (Italy)", 
          "id": "https://www.grid.ac/institutes/grid.497527.a", 
          "name": [
            "Janssen-Cilag, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marelli", 
        "givenName": "Silvia", 
        "id": "sg:person.01002453073.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002453073.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Janssen (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.497524.9", 
          "name": [
            "Janssen-Cilag, Neuss, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grahl", 
        "givenName": "Esther", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier Universitaire De Rouen", 
          "id": "https://www.grid.ac/institutes/grid.41724.34", 
          "name": [
            "CHU Rouen, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ducrott\u00e9", 
        "givenName": "Philippe", 
        "id": "sg:person.0612374607.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612374607.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.gastrohep.2009.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003246011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.2000.01861.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005792924", 
          "https://doi.org/10.1111/j.1572-0241.2000.01861.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0803741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008637715", 
          "https://doi.org/10.1038/sj.ijo.0803741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2036.2004.02219.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011361407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/oby.2009.324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016804034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199903183401101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019422943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-45062-7_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023552231", 
          "https://doi.org/10.1007/978-3-540-45062-7_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-45062-7_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023552231", 
          "https://doi.org/10.1007/978-3-540-45062-7_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2036.2007.03493.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025334787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(06)68932-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030475453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mcg.0b013e31816207cb", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035162658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mcg.0b013e31816207cb", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035162658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9343(97)00354-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038894476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.2006.00723.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039844311", 
          "https://doi.org/10.1111/j.1572-0241.2006.00723.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.2005.41065.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042316371", 
          "https://doi.org/10.1111/j.1572-0241.2005.41065.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/oby.2009.275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044353485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gut.2003.034272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044790209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/oby.2010.228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045045074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.2006.00630.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048337809", 
          "https://doi.org/10.1111/j.1572-0241.2006.00630.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4135/9781412950589.n472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088002860"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: As illustrated by the Montreal classification, gastroesophageal reflux disease (GERD) is much more than heartburn and patients constitute a heterogeneous group. Understanding if links exist between patients' characteristics and GERD symptoms, and classify subjects based on symptom-profile could help to better understand, diagnose, and treat GERD. The aim of this study was to identify distinct classes of GERD patients according to symptom profiles, using a specific statistical tool: Latent class analysis.\nMETHODS: An observational single-visit study was conducted in 5 European countries in 7700 adults with typical symptoms. A latent class analysis was performed to identify \"latent classes\" and was applied to 12 indicator symptoms.\nRESULTS: On 7434 subjects with non-missing indicators, latent class analysis yielded 5 latent classes. Class 1 grouped the highest severity of typical GERD symptoms during day and night, more digestive and non-digestive GERD symptoms, and bad sleep quality. Class 3 represented less frequent and less severe digestive and non-digestive GERD symptoms, and better sleep quality than in class 1. In class 2, only typical GERD symptoms at night occurred. Classes 4 and 5 represented daytime and nighttime regurgitation. In class 4, heartburn was also identified and more atypical digestive symptoms. Multinomial logistic regression showed that country, age, sex, smoking, alcohol use, low-fat diet, waist circumference, recent weight gain (>5 kg), elevated triglycerides, metabolic syndrome, and medical GERD treatment had a significant effect on latent classes.\nCONCLUSION: Latent class analysis classified GERD patients based on symptom profiles which related to patients' characteristics. Although further studies considering these proposed classes have to be conducted to determine the reproducibility of this classification, this new tool might contribute in better management and follow-up of patients with GERD.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-230x-14-112", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024942", 
        "issn": [
          "1471-230X"
        ], 
        "name": "BMC Gastroenterology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Classification of adults suffering from typical gastroesophageal reflux disease symptoms: contribution of latent class analysis in a European observational study", 
    "pagination": "112", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "25d6c9a425be40171b1326348eb59d7fb63011759c4851359c140f7446a662d3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24969728"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968547"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-230x-14-112"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007943054"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-230x-14-112", 
      "https://app.dimensions.ai/details/publication/pub.1007943054"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-230X-14-112"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-230x-14-112'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-230x-14-112'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-230x-14-112'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-230x-14-112'


 

This table displays all metadata directly associated to this object as RDF triples.

299 TRIPLES      21 PREDICATES      69 URIs      43 LITERALS      31 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-230x-14-112 schema:about N0d0a79b964344ebcbd68815ca0af219a
2 N2775db1cee2e4d288c3e408ae64a1f02
3 N2b06fed6a9f54732aedb3bb9417803d5
4 N30ada53ce78d4354a61c5e826d31b553
5 N3a24ce162caa497fbe810384e5be7d8f
6 N59e59ef5ccf049158708f3df50c216a7
7 N6f85523af4cc441e8e2de8226616c879
8 N7163570c525b4388a301c02abd9e8763
9 N7b650548f7cc46a48661ec5d4c6c135c
10 N94d774456ac54e8dab0a29907932d55a
11 N952617feed0848c59f0116f9dae54a88
12 N9c0ffaa0b6084f81943be143b3167cf3
13 Na1dccfe81800421c8a8589c5f1003043
14 Nb01b499e8899459d8b48fda769d259d5
15 Nd32f38cc00bf4e9183c1f586696dd640
16 Nd511b4c6d9504d7d9f2997291963e0e4
17 Nd8daaad609f14de1ab78b90bc9d3a900
18 Ne03a28440a904567a655e9f11fffce81
19 Ne599d3cf83cf47dc9792ebfe01203f86
20 Ne674cc8526aa44dea6f6d2f2defde114
21 Ne92374b748284f248e205c53c7eb1382
22 Nf348a9cfd4454bf3a7d77a4acf25beb3
23 anzsrc-for:11
24 anzsrc-for:1103
25 schema:author N2f3146a3a71c4f909b627f045171867e
26 schema:citation sg:pub.10.1007/978-3-540-45062-7_2
27 sg:pub.10.1038/sj.ijo.0803741
28 sg:pub.10.1111/j.1572-0241.2000.01861.x
29 sg:pub.10.1111/j.1572-0241.2005.41065.x
30 sg:pub.10.1111/j.1572-0241.2006.00630.x
31 sg:pub.10.1111/j.1572-0241.2006.00723.x
32 https://doi.org/10.1016/j.gastrohep.2009.11.002
33 https://doi.org/10.1016/s0002-9343(97)00354-9
34 https://doi.org/10.1016/s0140-6736(06)68932-0
35 https://doi.org/10.1038/oby.2009.275
36 https://doi.org/10.1038/oby.2009.324
37 https://doi.org/10.1038/oby.2010.228
38 https://doi.org/10.1056/nejm199903183401101
39 https://doi.org/10.1097/mcg.0b013e31816207cb
40 https://doi.org/10.1111/j.1365-2036.2004.02219.x
41 https://doi.org/10.1111/j.1365-2036.2007.03493.x
42 https://doi.org/10.1136/gut.2003.034272
43 https://doi.org/10.4135/9781412950589.n472
44 schema:datePublished 2014-12
45 schema:datePublishedReg 2014-12-01
46 schema:description BACKGROUND: As illustrated by the Montreal classification, gastroesophageal reflux disease (GERD) is much more than heartburn and patients constitute a heterogeneous group. Understanding if links exist between patients' characteristics and GERD symptoms, and classify subjects based on symptom-profile could help to better understand, diagnose, and treat GERD. The aim of this study was to identify distinct classes of GERD patients according to symptom profiles, using a specific statistical tool: Latent class analysis. METHODS: An observational single-visit study was conducted in 5 European countries in 7700 adults with typical symptoms. A latent class analysis was performed to identify "latent classes" and was applied to 12 indicator symptoms. RESULTS: On 7434 subjects with non-missing indicators, latent class analysis yielded 5 latent classes. Class 1 grouped the highest severity of typical GERD symptoms during day and night, more digestive and non-digestive GERD symptoms, and bad sleep quality. Class 3 represented less frequent and less severe digestive and non-digestive GERD symptoms, and better sleep quality than in class 1. In class 2, only typical GERD symptoms at night occurred. Classes 4 and 5 represented daytime and nighttime regurgitation. In class 4, heartburn was also identified and more atypical digestive symptoms. Multinomial logistic regression showed that country, age, sex, smoking, alcohol use, low-fat diet, waist circumference, recent weight gain (>5 kg), elevated triglycerides, metabolic syndrome, and medical GERD treatment had a significant effect on latent classes. CONCLUSION: Latent class analysis classified GERD patients based on symptom profiles which related to patients' characteristics. Although further studies considering these proposed classes have to be conducted to determine the reproducibility of this classification, this new tool might contribute in better management and follow-up of patients with GERD.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf Nae521df93fd94269bb92533784ff1930
51 Nc1f39ab47b764cd68f79e6bce7c82208
52 sg:journal.1024942
53 schema:name Classification of adults suffering from typical gastroesophageal reflux disease symptoms: contribution of latent class analysis in a European observational study
54 schema:pagination 112
55 schema:productId N149ff9308d4e49439bbfdec270902c9b
56 N34f06f0dc3054cf3bb22d4f50be58f57
57 N5d688ef6b10341a4b78e666a9b9bbcbc
58 Na62b5fb0a19a47ecb045d14ec1585b58
59 Nec155dc73fac49b6b9a9d40e704e2c28
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007943054
61 https://doi.org/10.1186/1471-230x-14-112
62 schema:sdDatePublished 2019-04-11T01:05
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nf66a39ed6c884b23a5bc522f94e81d17
65 schema:url http://link.springer.com/10.1186%2F1471-230X-14-112
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N084ec5faa93341efa22394ae9d4ca773 schema:affiliation N56254d59fe114c47bc4eaf9aff5facae
70 schema:familyName Usova
71 schema:givenName Liudmila
72 rdf:type schema:Person
73 N0d0a79b964344ebcbd68815ca0af219a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Humans
75 rdf:type schema:DefinedTerm
76 N104fb76478694337af062ce35017bba9 schema:name Università degli Studi, Spedali Civili, Brescia, Italy
77 rdf:type schema:Organization
78 N149ff9308d4e49439bbfdec270902c9b schema:name readcube_id
79 schema:value 25d6c9a425be40171b1326348eb59d7fb63011759c4851359c140f7446a662d3
80 rdf:type schema:PropertyValue
81 N2754cf2bfb544a4f85b9526324b79615 rdf:first sg:person.01002453073.91
82 rdf:rest Ne1a4363839fb4042ab476d89852b9867
83 N2775db1cee2e4d288c3e408ae64a1f02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Diet, Fat-Restricted
85 rdf:type schema:DefinedTerm
86 N2b06fed6a9f54732aedb3bb9417803d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Aged
88 rdf:type schema:DefinedTerm
89 N2f3146a3a71c4f909b627f045171867e rdf:first sg:person.01343253222.45
90 rdf:rest Naa121d0ba937475286b369a7f6444e6a
91 N30ada53ce78d4354a61c5e826d31b553 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Age Factors
93 rdf:type schema:DefinedTerm
94 N34f06f0dc3054cf3bb22d4f50be58f57 schema:name dimensions_id
95 schema:value pub.1007943054
96 rdf:type schema:PropertyValue
97 N3a24ce162caa497fbe810384e5be7d8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Smoking
99 rdf:type schema:DefinedTerm
100 N3dfc011e1a5e4882bc680a51a4699bb8 rdf:first N084ec5faa93341efa22394ae9d4ca773
101 rdf:rest Na254a9a203244dab9e1980d3a84a8b1f
102 N4af3aa78d63c49af8392c1c143368d9e rdf:first sg:person.01017742152.09
103 rdf:rest N2754cf2bfb544a4f85b9526324b79615
104 N56254d59fe114c47bc4eaf9aff5facae schema:name Regional Clinic Hospital, Nizhny Novgorod, Russia
105 rdf:type schema:Organization
106 N59e59ef5ccf049158708f3df50c216a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Gastroesophageal Reflux
108 rdf:type schema:DefinedTerm
109 N5d688ef6b10341a4b78e666a9b9bbcbc schema:name nlm_unique_id
110 schema:value 100968547
111 rdf:type schema:PropertyValue
112 N6f85523af4cc441e8e2de8226616c879 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Severity of Illness Index
114 rdf:type schema:DefinedTerm
115 N7163570c525b4388a301c02abd9e8763 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Middle Aged
117 rdf:type schema:DefinedTerm
118 N7839b50ebdab4a88ad868874d0eb0f3d schema:name Institut des Maladies de l’Appareil Digestif – CHU Hôtel Dieu, 44093, Nantes Cedex, France
119 rdf:type schema:Organization
120 N7b650548f7cc46a48661ec5d4c6c135c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Greece
122 rdf:type schema:DefinedTerm
123 N7d1d2103887f4c578365b0824911533a rdf:first sg:person.015347703753.20
124 rdf:rest Nbef68916eb80435bb38b0df49c68cd85
125 N94d774456ac54e8dab0a29907932d55a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Male
127 rdf:type schema:DefinedTerm
128 N952617feed0848c59f0116f9dae54a88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Waist Circumference
130 rdf:type schema:DefinedTerm
131 N9c0ffaa0b6084f81943be143b3167cf3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Sex Factors
133 rdf:type schema:DefinedTerm
134 Na1dccfe81800421c8a8589c5f1003043 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Russia
136 rdf:type schema:DefinedTerm
137 Na254a9a203244dab9e1980d3a84a8b1f rdf:first sg:person.01271375575.20
138 rdf:rest N7d1d2103887f4c578365b0824911533a
139 Na62b5fb0a19a47ecb045d14ec1585b58 schema:name doi
140 schema:value 10.1186/1471-230x-14-112
141 rdf:type schema:PropertyValue
142 Na80de87e051c4c419247be5024025934 schema:affiliation https://www.grid.ac/institutes/grid.497524.9
143 schema:familyName Grahl
144 schema:givenName Esther
145 rdf:type schema:Person
146 Naa121d0ba937475286b369a7f6444e6a rdf:first sg:person.01020200207.23
147 rdf:rest N3dfc011e1a5e4882bc680a51a4699bb8
148 Nae521df93fd94269bb92533784ff1930 schema:volumeNumber 14
149 rdf:type schema:PublicationVolume
150 Nb01b499e8899459d8b48fda769d259d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Italy
152 rdf:type schema:DefinedTerm
153 Nbef68916eb80435bb38b0df49c68cd85 rdf:first sg:person.01134170552.37
154 rdf:rest N4af3aa78d63c49af8392c1c143368d9e
155 Nc1f39ab47b764cd68f79e6bce7c82208 schema:issueNumber 1
156 rdf:type schema:PublicationIssue
157 Nd32f38cc00bf4e9183c1f586696dd640 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Adult
159 rdf:type schema:DefinedTerm
160 Nd511b4c6d9504d7d9f2997291963e0e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Metabolic Syndrome
162 rdf:type schema:DefinedTerm
163 Nd8daaad609f14de1ab78b90bc9d3a900 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name France
165 rdf:type schema:DefinedTerm
166 Ne03a28440a904567a655e9f11fffce81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Alcohol Drinking
168 rdf:type schema:DefinedTerm
169 Ne1a4363839fb4042ab476d89852b9867 rdf:first Na80de87e051c4c419247be5024025934
170 rdf:rest Ne300f107c9ba451a8cbb9bb5c56f8fec
171 Ne300f107c9ba451a8cbb9bb5c56f8fec rdf:first sg:person.0612374607.85
172 rdf:rest rdf:nil
173 Ne599d3cf83cf47dc9792ebfe01203f86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Hypertriglyceridemia
175 rdf:type schema:DefinedTerm
176 Ne674cc8526aa44dea6f6d2f2defde114 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Female
178 rdf:type schema:DefinedTerm
179 Ne92374b748284f248e205c53c7eb1382 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Spain
181 rdf:type schema:DefinedTerm
182 Nec155dc73fac49b6b9a9d40e704e2c28 schema:name pubmed_id
183 schema:value 24969728
184 rdf:type schema:PropertyValue
185 Necdabeb0cb3d4679a79b87e999eb59cb schema:name Janssen-Cilag B.V, Tilburg, The Netherlands
186 rdf:type schema:Organization
187 Nf348a9cfd4454bf3a7d77a4acf25beb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Logistic Models
189 rdf:type schema:DefinedTerm
190 Nf66a39ed6c884b23a5bc522f94e81d17 schema:name Springer Nature - SN SciGraph project
191 rdf:type schema:Organization
192 Nfff76af3b21c42a7afb4d5135c219350 schema:name Janssen-Cilag, Barcarena, Portugal
193 rdf:type schema:Organization
194 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
195 schema:name Medical and Health Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
198 schema:name Clinical Sciences
199 rdf:type schema:DefinedTerm
200 sg:journal.1024942 schema:issn 1471-230X
201 schema:name BMC Gastroenterology
202 rdf:type schema:Periodical
203 sg:person.01002453073.91 schema:affiliation https://www.grid.ac/institutes/grid.497527.a
204 schema:familyName Marelli
205 schema:givenName Silvia
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002453073.91
207 rdf:type schema:Person
208 sg:person.01017742152.09 schema:affiliation Necdabeb0cb3d4679a79b87e999eb59cb
209 schema:familyName Bergmans
210 schema:givenName Paul
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017742152.09
212 rdf:type schema:Person
213 sg:person.01020200207.23 schema:affiliation N104fb76478694337af062ce35017bba9
214 schema:familyName Cestari
215 schema:givenName Renzo
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020200207.23
217 rdf:type schema:Person
218 sg:person.01134170552.37 schema:affiliation Nfff76af3b21c42a7afb4d5135c219350
219 schema:familyName Keim
220 schema:givenName Sofia
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134170552.37
222 rdf:type schema:Person
223 sg:person.01271375575.20 schema:affiliation https://www.grid.ac/institutes/grid.411449.d
224 schema:familyName Triantafyllou
225 schema:givenName Konstantinos
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271375575.20
227 rdf:type schema:Person
228 sg:person.01343253222.45 schema:affiliation N7839b50ebdab4a88ad868874d0eb0f3d
229 schema:familyName Bruley des Varannes
230 schema:givenName Stanislas
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343253222.45
232 rdf:type schema:Person
233 sg:person.015347703753.20 schema:affiliation https://www.grid.ac/institutes/grid.411068.a
234 schema:familyName Alvarez Sanchez
235 schema:givenName Angel
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015347703753.20
237 rdf:type schema:Person
238 sg:person.0612374607.85 schema:affiliation https://www.grid.ac/institutes/grid.41724.34
239 schema:familyName Ducrotté
240 schema:givenName Philippe
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612374607.85
242 rdf:type schema:Person
243 sg:pub.10.1007/978-3-540-45062-7_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023552231
244 https://doi.org/10.1007/978-3-540-45062-7_2
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/sj.ijo.0803741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008637715
247 https://doi.org/10.1038/sj.ijo.0803741
248 rdf:type schema:CreativeWork
249 sg:pub.10.1111/j.1572-0241.2000.01861.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005792924
250 https://doi.org/10.1111/j.1572-0241.2000.01861.x
251 rdf:type schema:CreativeWork
252 sg:pub.10.1111/j.1572-0241.2005.41065.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042316371
253 https://doi.org/10.1111/j.1572-0241.2005.41065.x
254 rdf:type schema:CreativeWork
255 sg:pub.10.1111/j.1572-0241.2006.00630.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048337809
256 https://doi.org/10.1111/j.1572-0241.2006.00630.x
257 rdf:type schema:CreativeWork
258 sg:pub.10.1111/j.1572-0241.2006.00723.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039844311
259 https://doi.org/10.1111/j.1572-0241.2006.00723.x
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/j.gastrohep.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003246011
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/s0002-9343(97)00354-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038894476
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/s0140-6736(06)68932-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030475453
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1038/oby.2009.275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044353485
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1038/oby.2009.324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016804034
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1038/oby.2010.228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045045074
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1056/nejm199903183401101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019422943
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1097/mcg.0b013e31816207cb schema:sameAs https://app.dimensions.ai/details/publication/pub.1035162658
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1111/j.1365-2036.2004.02219.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011361407
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1111/j.1365-2036.2007.03493.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025334787
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1136/gut.2003.034272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044790209
282 rdf:type schema:CreativeWork
283 https://doi.org/10.4135/9781412950589.n472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088002860
284 rdf:type schema:CreativeWork
285 https://www.grid.ac/institutes/grid.411068.a schema:alternateName Hospital Clínico San Carlos
286 schema:name Hospital Clinico San Carlos, Madrid, Spain
287 rdf:type schema:Organization
288 https://www.grid.ac/institutes/grid.411449.d schema:alternateName University General Hospital Attikon
289 schema:name University General Hospital Attikon, Athens, Greece
290 rdf:type schema:Organization
291 https://www.grid.ac/institutes/grid.41724.34 schema:alternateName Centre Hospitalier Universitaire De Rouen
292 schema:name CHU Rouen, Rouen, France
293 rdf:type schema:Organization
294 https://www.grid.ac/institutes/grid.497524.9 schema:alternateName Janssen (Germany)
295 schema:name Janssen-Cilag, Neuss, Germany
296 rdf:type schema:Organization
297 https://www.grid.ac/institutes/grid.497527.a schema:alternateName Janssen (Italy)
298 schema:name Janssen-Cilag, Milan, Italy
299 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...