Practical considerations for estimating clinical trial accrual periods: application to a multi-center effectiveness study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Rickey E Carter, Susan C Sonne, Kathleen T Brady

ABSTRACT

BACKGROUND: Adequate participant recruitment is vital to the conduct of a clinical trial. Projected recruitment rates are often over-estimated, and the time to recruit the target population (accrual period) is often under-estimated. METHODS: This report illustrates three approaches to estimating the accrual period and applies the methods to a multi-center, randomized, placebo controlled trial undergoing development. RESULTS: Incorporating known sources of accrual variation can yield a more justified estimate of the accrual period. Simulation studies can be incorporated into a clinical trial's planning phase to provide estimates for key accrual summaries including the mean and standard deviation of the accrual period. CONCLUSION: The accrual period of a clinical trial should be carefully considered, and the allocation of sufficient time for participant recruitment is a fundamental aspect of planning a clinical trial. More... »

PAGES

11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2288-5-11

DOI

http://dx.doi.org/10.1186/1471-2288-5-11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051811384

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15796782


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multicenter Studies as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Selection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Poisson Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Randomized Controlled Trials as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Medical University of South Carolina", 
          "id": "https://www.grid.ac/institutes/grid.259828.c", 
          "name": [
            "Department of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, Charleston, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carter", 
        "givenName": "Rickey E", 
        "id": "sg:person.01075000300.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075000300.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of South Carolina", 
          "id": "https://www.grid.ac/institutes/grid.259828.c", 
          "name": [
            "Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sonne", 
        "givenName": "Susan C", 
        "id": "sg:person.0620735430.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620735430.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of South Carolina", 
          "id": "https://www.grid.ac/institutes/grid.259828.c", 
          "name": [
            "Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brady", 
        "givenName": "Kathleen T", 
        "id": "sg:person.015457016677.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015457016677.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cct.2004.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000099405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019548830"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "BACKGROUND: Adequate participant recruitment is vital to the conduct of a clinical trial. Projected recruitment rates are often over-estimated, and the time to recruit the target population (accrual period) is often under-estimated.\nMETHODS: This report illustrates three approaches to estimating the accrual period and applies the methods to a multi-center, randomized, placebo controlled trial undergoing development.\nRESULTS: Incorporating known sources of accrual variation can yield a more justified estimate of the accrual period. Simulation studies can be incorporated into a clinical trial's planning phase to provide estimates for key accrual summaries including the mean and standard deviation of the accrual period.\nCONCLUSION: The accrual period of a clinical trial should be carefully considered, and the allocation of sufficient time for participant recruitment is a fundamental aspect of planning a clinical trial.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2288-5-11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2437141", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4242679", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2693744", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024940", 
        "issn": [
          "1471-2288"
        ], 
        "name": "BMC Medical Research Methodology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Practical considerations for estimating clinical trial accrual periods: application to a multi-center effectiveness study", 
    "pagination": "11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f6cd0c89c22dfa79a0de56169eb9f4c9b8e92d936ea002caf52409a7e725e7b6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15796782"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968545"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2288-5-11"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051811384"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2288-5-11", 
      "https://app.dimensions.ai/details/publication/pub.1051811384"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2288-5-11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-5-11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-5-11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-5-11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-5-11'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      39 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2288-5-11 schema:about N116aaae91bd94277a391785ffddf022b
2 N22560203f2a54a02a54f33303ff2bc11
3 N3ccda6e27a75485da105ca97b285b495
4 N4df859a0bf79426db2fbce682baac8ba
5 N8adf86a39fd84a03a08032f5c25d77b5
6 N8f174b4d5c2b4651b2e7084eaea9d9ab
7 N98c93fc18bff42d5b9f661b67cb2ae31
8 Nd8ada90afe8341989a175c1ef19dd741
9 anzsrc-for:11
10 anzsrc-for:1103
11 schema:author Nd2bbf09723324c9b8a95de24a70ea138
12 schema:citation https://doi.org/10.1002/sim.1786
13 https://doi.org/10.1016/j.cct.2004.07.002
14 schema:datePublished 2005-12
15 schema:datePublishedReg 2005-12-01
16 schema:description BACKGROUND: Adequate participant recruitment is vital to the conduct of a clinical trial. Projected recruitment rates are often over-estimated, and the time to recruit the target population (accrual period) is often under-estimated. METHODS: This report illustrates three approaches to estimating the accrual period and applies the methods to a multi-center, randomized, placebo controlled trial undergoing development. RESULTS: Incorporating known sources of accrual variation can yield a more justified estimate of the accrual period. Simulation studies can be incorporated into a clinical trial's planning phase to provide estimates for key accrual summaries including the mean and standard deviation of the accrual period. CONCLUSION: The accrual period of a clinical trial should be carefully considered, and the allocation of sufficient time for participant recruitment is a fundamental aspect of planning a clinical trial.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N35c754db5f614701b5e84a160201ab76
21 N4e999a20e7f14281b431e7cfac1010a9
22 sg:journal.1024940
23 schema:name Practical considerations for estimating clinical trial accrual periods: application to a multi-center effectiveness study
24 schema:pagination 11
25 schema:productId N28f669bfef3a48098bfb9883f0913173
26 N2db155a81dd24e5cb1dd140d77a93d8f
27 N38cfef8113ee4670bc690a9eb550122e
28 N4dc47ea381374812b814704d3344de08
29 N9bc622d123d94b12bc193db2f5912aa3
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051811384
31 https://doi.org/10.1186/1471-2288-5-11
32 schema:sdDatePublished 2019-04-10T18:19
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N64a6f0e2eb874d77973a801026e70e4e
35 schema:url http://link.springer.com/10.1186%2F1471-2288-5-11
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N116aaae91bd94277a391785ffddf022b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
40 schema:name Research Design
41 rdf:type schema:DefinedTerm
42 N22560203f2a54a02a54f33303ff2bc11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
43 schema:name Poisson Distribution
44 rdf:type schema:DefinedTerm
45 N28f669bfef3a48098bfb9883f0913173 schema:name doi
46 schema:value 10.1186/1471-2288-5-11
47 rdf:type schema:PropertyValue
48 N292c9e496c9244c69e1b85a0eceba8e2 rdf:first sg:person.015457016677.92
49 rdf:rest rdf:nil
50 N2db155a81dd24e5cb1dd140d77a93d8f schema:name readcube_id
51 schema:value f6cd0c89c22dfa79a0de56169eb9f4c9b8e92d936ea002caf52409a7e725e7b6
52 rdf:type schema:PropertyValue
53 N35c754db5f614701b5e84a160201ab76 schema:issueNumber 1
54 rdf:type schema:PublicationIssue
55 N38cfef8113ee4670bc690a9eb550122e schema:name nlm_unique_id
56 schema:value 100968545
57 rdf:type schema:PropertyValue
58 N3ccda6e27a75485da105ca97b285b495 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Multicenter Studies as Topic
60 rdf:type schema:DefinedTerm
61 N4dc47ea381374812b814704d3344de08 schema:name pubmed_id
62 schema:value 15796782
63 rdf:type schema:PropertyValue
64 N4df859a0bf79426db2fbce682baac8ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Patient Selection
66 rdf:type schema:DefinedTerm
67 N4e999a20e7f14281b431e7cfac1010a9 schema:volumeNumber 5
68 rdf:type schema:PublicationVolume
69 N64a6f0e2eb874d77973a801026e70e4e schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N8adf86a39fd84a03a08032f5c25d77b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Time Factors
73 rdf:type schema:DefinedTerm
74 N8f174b4d5c2b4651b2e7084eaea9d9ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Humans
76 rdf:type schema:DefinedTerm
77 N98c93fc18bff42d5b9f661b67cb2ae31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Randomized Controlled Trials as Topic
79 rdf:type schema:DefinedTerm
80 N9bc622d123d94b12bc193db2f5912aa3 schema:name dimensions_id
81 schema:value pub.1051811384
82 rdf:type schema:PropertyValue
83 Nd292709acec9455ab95874ed9473e759 rdf:first sg:person.0620735430.33
84 rdf:rest N292c9e496c9244c69e1b85a0eceba8e2
85 Nd2bbf09723324c9b8a95de24a70ea138 rdf:first sg:person.01075000300.08
86 rdf:rest Nd292709acec9455ab95874ed9473e759
87 Nd8ada90afe8341989a175c1ef19dd741 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Stochastic Processes
89 rdf:type schema:DefinedTerm
90 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
91 schema:name Medical and Health Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
94 schema:name Clinical Sciences
95 rdf:type schema:DefinedTerm
96 sg:grant.2437141 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2288-5-11
97 rdf:type schema:MonetaryGrant
98 sg:grant.2693744 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2288-5-11
99 rdf:type schema:MonetaryGrant
100 sg:grant.4242679 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2288-5-11
101 rdf:type schema:MonetaryGrant
102 sg:journal.1024940 schema:issn 1471-2288
103 schema:name BMC Medical Research Methodology
104 rdf:type schema:Periodical
105 sg:person.01075000300.08 schema:affiliation https://www.grid.ac/institutes/grid.259828.c
106 schema:familyName Carter
107 schema:givenName Rickey E
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075000300.08
109 rdf:type schema:Person
110 sg:person.015457016677.92 schema:affiliation https://www.grid.ac/institutes/grid.259828.c
111 schema:familyName Brady
112 schema:givenName Kathleen T
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015457016677.92
114 rdf:type schema:Person
115 sg:person.0620735430.33 schema:affiliation https://www.grid.ac/institutes/grid.259828.c
116 schema:familyName Sonne
117 schema:givenName Susan C
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620735430.33
119 rdf:type schema:Person
120 https://doi.org/10.1002/sim.1786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019548830
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.cct.2004.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000099405
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.259828.c schema:alternateName Medical University of South Carolina
125 schema:name Department of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, Charleston, SC, USA
126 Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...