Practical considerations for estimating clinical trial accrual periods: application to a multi-center effectiveness study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Rickey E Carter, Susan C Sonne, Kathleen T Brady

ABSTRACT

BACKGROUND: Adequate participant recruitment is vital to the conduct of a clinical trial. Projected recruitment rates are often over-estimated, and the time to recruit the target population (accrual period) is often under-estimated. METHODS: This report illustrates three approaches to estimating the accrual period and applies the methods to a multi-center, randomized, placebo controlled trial undergoing development. RESULTS: Incorporating known sources of accrual variation can yield a more justified estimate of the accrual period. Simulation studies can be incorporated into a clinical trial's planning phase to provide estimates for key accrual summaries including the mean and standard deviation of the accrual period. CONCLUSION: The accrual period of a clinical trial should be carefully considered, and the allocation of sufficient time for participant recruitment is a fundamental aspect of planning a clinical trial. More... »

PAGES

11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2288-5-11

DOI

http://dx.doi.org/10.1186/1471-2288-5-11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051811384

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15796782


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multicenter Studies as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Selection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Poisson Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Randomized Controlled Trials as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Medical University of South Carolina", 
          "id": "https://www.grid.ac/institutes/grid.259828.c", 
          "name": [
            "Department of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, Charleston, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carter", 
        "givenName": "Rickey E", 
        "id": "sg:person.01075000300.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075000300.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of South Carolina", 
          "id": "https://www.grid.ac/institutes/grid.259828.c", 
          "name": [
            "Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sonne", 
        "givenName": "Susan C", 
        "id": "sg:person.0620735430.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620735430.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of South Carolina", 
          "id": "https://www.grid.ac/institutes/grid.259828.c", 
          "name": [
            "Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brady", 
        "givenName": "Kathleen T", 
        "id": "sg:person.015457016677.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015457016677.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cct.2004.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000099405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019548830"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "BACKGROUND: Adequate participant recruitment is vital to the conduct of a clinical trial. Projected recruitment rates are often over-estimated, and the time to recruit the target population (accrual period) is often under-estimated.\nMETHODS: This report illustrates three approaches to estimating the accrual period and applies the methods to a multi-center, randomized, placebo controlled trial undergoing development.\nRESULTS: Incorporating known sources of accrual variation can yield a more justified estimate of the accrual period. Simulation studies can be incorporated into a clinical trial's planning phase to provide estimates for key accrual summaries including the mean and standard deviation of the accrual period.\nCONCLUSION: The accrual period of a clinical trial should be carefully considered, and the allocation of sufficient time for participant recruitment is a fundamental aspect of planning a clinical trial.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2288-5-11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2437141", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4242679", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2693744", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1024940", 
        "issn": [
          "1471-2288"
        ], 
        "name": "BMC Medical Research Methodology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Practical considerations for estimating clinical trial accrual periods: application to a multi-center effectiveness study", 
    "pagination": "11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f6cd0c89c22dfa79a0de56169eb9f4c9b8e92d936ea002caf52409a7e725e7b6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15796782"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968545"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2288-5-11"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051811384"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2288-5-11", 
      "https://app.dimensions.ai/details/publication/pub.1051811384"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2288-5-11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-5-11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-5-11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-5-11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-5-11'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      39 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2288-5-11 schema:about N67079f10c4664ac98149c2f722524b7b
2 N68d2240f5b5042e6a6aa025cd0c81e48
3 N71975f20433d48bdb403c6ead3d88d1d
4 N71c44ba3837c4cc0be51a0e51d68038b
5 N99ff8f7aa5e847929b387f9dc69f24d4
6 Nb3c09b09904f4cb18a5ad44ac9ecb760
7 Nd1359bac6a8f48b1ab92a6811fbe0400
8 Ned2c4d072986431e986ff14b86ed998b
9 anzsrc-for:11
10 anzsrc-for:1103
11 schema:author N593aaecff2c14d01a52c89e1f64786f8
12 schema:citation https://doi.org/10.1002/sim.1786
13 https://doi.org/10.1016/j.cct.2004.07.002
14 schema:datePublished 2005-12
15 schema:datePublishedReg 2005-12-01
16 schema:description BACKGROUND: Adequate participant recruitment is vital to the conduct of a clinical trial. Projected recruitment rates are often over-estimated, and the time to recruit the target population (accrual period) is often under-estimated. METHODS: This report illustrates three approaches to estimating the accrual period and applies the methods to a multi-center, randomized, placebo controlled trial undergoing development. RESULTS: Incorporating known sources of accrual variation can yield a more justified estimate of the accrual period. Simulation studies can be incorporated into a clinical trial's planning phase to provide estimates for key accrual summaries including the mean and standard deviation of the accrual period. CONCLUSION: The accrual period of a clinical trial should be carefully considered, and the allocation of sufficient time for participant recruitment is a fundamental aspect of planning a clinical trial.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N32c1d83153bd497b9daeb6b3d6859c7a
21 N8db53aa4375743c7b2cd15515b3cef80
22 sg:journal.1024940
23 schema:name Practical considerations for estimating clinical trial accrual periods: application to a multi-center effectiveness study
24 schema:pagination 11
25 schema:productId N039c5ec95d094b178fb04731241043d0
26 N0953a28027e840e59197bc6e18c3853f
27 N140d9a7752a9496b85dafe802dc77731
28 N802fe42f815b4a488aacc0770def8549
29 N8a69f5ace1bb48d482ca128121eee2be
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051811384
31 https://doi.org/10.1186/1471-2288-5-11
32 schema:sdDatePublished 2019-04-10T18:19
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N5bf97c6074a7497997c12f3642735458
35 schema:url http://link.springer.com/10.1186%2F1471-2288-5-11
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N039c5ec95d094b178fb04731241043d0 schema:name dimensions_id
40 schema:value pub.1051811384
41 rdf:type schema:PropertyValue
42 N0953a28027e840e59197bc6e18c3853f schema:name nlm_unique_id
43 schema:value 100968545
44 rdf:type schema:PropertyValue
45 N140d9a7752a9496b85dafe802dc77731 schema:name readcube_id
46 schema:value f6cd0c89c22dfa79a0de56169eb9f4c9b8e92d936ea002caf52409a7e725e7b6
47 rdf:type schema:PropertyValue
48 N32c1d83153bd497b9daeb6b3d6859c7a schema:volumeNumber 5
49 rdf:type schema:PublicationVolume
50 N593aaecff2c14d01a52c89e1f64786f8 rdf:first sg:person.01075000300.08
51 rdf:rest Nf8c9e23d3a4449d4ae006b9e8864cc52
52 N5bf97c6074a7497997c12f3642735458 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N67079f10c4664ac98149c2f722524b7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
55 schema:name Humans
56 rdf:type schema:DefinedTerm
57 N68d2240f5b5042e6a6aa025cd0c81e48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Time Factors
59 rdf:type schema:DefinedTerm
60 N71975f20433d48bdb403c6ead3d88d1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Research Design
62 rdf:type schema:DefinedTerm
63 N71c44ba3837c4cc0be51a0e51d68038b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Stochastic Processes
65 rdf:type schema:DefinedTerm
66 N802fe42f815b4a488aacc0770def8549 schema:name pubmed_id
67 schema:value 15796782
68 rdf:type schema:PropertyValue
69 N8a69f5ace1bb48d482ca128121eee2be schema:name doi
70 schema:value 10.1186/1471-2288-5-11
71 rdf:type schema:PropertyValue
72 N8db53aa4375743c7b2cd15515b3cef80 schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 N99ff8f7aa5e847929b387f9dc69f24d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Multicenter Studies as Topic
76 rdf:type schema:DefinedTerm
77 Nb3c09b09904f4cb18a5ad44ac9ecb760 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Poisson Distribution
79 rdf:type schema:DefinedTerm
80 Nd1359bac6a8f48b1ab92a6811fbe0400 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Randomized Controlled Trials as Topic
82 rdf:type schema:DefinedTerm
83 Ned2c4d072986431e986ff14b86ed998b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Patient Selection
85 rdf:type schema:DefinedTerm
86 Nf8c9e23d3a4449d4ae006b9e8864cc52 rdf:first sg:person.0620735430.33
87 rdf:rest Nfc0f212904534410aeecb7e5a99229ef
88 Nfc0f212904534410aeecb7e5a99229ef rdf:first sg:person.015457016677.92
89 rdf:rest rdf:nil
90 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
91 schema:name Medical and Health Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
94 schema:name Clinical Sciences
95 rdf:type schema:DefinedTerm
96 sg:grant.2437141 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2288-5-11
97 rdf:type schema:MonetaryGrant
98 sg:grant.2693744 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2288-5-11
99 rdf:type schema:MonetaryGrant
100 sg:grant.4242679 http://pending.schema.org/fundedItem sg:pub.10.1186/1471-2288-5-11
101 rdf:type schema:MonetaryGrant
102 sg:journal.1024940 schema:issn 1471-2288
103 schema:name BMC Medical Research Methodology
104 rdf:type schema:Periodical
105 sg:person.01075000300.08 schema:affiliation https://www.grid.ac/institutes/grid.259828.c
106 schema:familyName Carter
107 schema:givenName Rickey E
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075000300.08
109 rdf:type schema:Person
110 sg:person.015457016677.92 schema:affiliation https://www.grid.ac/institutes/grid.259828.c
111 schema:familyName Brady
112 schema:givenName Kathleen T
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015457016677.92
114 rdf:type schema:Person
115 sg:person.0620735430.33 schema:affiliation https://www.grid.ac/institutes/grid.259828.c
116 schema:familyName Sonne
117 schema:givenName Susan C
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620735430.33
119 rdf:type schema:Person
120 https://doi.org/10.1002/sim.1786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019548830
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.cct.2004.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000099405
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.259828.c schema:alternateName Medical University of South Carolina
125 schema:name Department of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, Charleston, SC, USA
126 Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...