Comparison of two data collection processes in clinical studies: electronic and paper case report forms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-01-17

AUTHORS

Anaïs Le Jeannic, Céline Quelen, Corinne Alberti, Isabelle Durand-Zaleski

ABSTRACT

BackgroundElectronic Case Report Forms (eCRFs) are increasingly chosen by investigators and sponsors of clinical research instead of the traditional pen-and-paper data collection (pCRFs). Previous studies suggested that eCRFs avoided mistakes, shortened the duration of clinical studies and reduced data collection costs.MethodsOur objectives were to describe and contrast both objective and subjective efficiency of pCRF and eCRF use in clinical studies. A total of 27 studies (11 eCRF, 16 pCRF) sponsored by the Paris hospital consortium, conducted and completed between 2001 and 2011 were included. Questionnaires were emailed to investigators of those studies, as well as clinical research associates and data managers working in Paris hospitals, soliciting their level of satisfaction and preferences for eCRFs and pCRFs. Mean costs and timeframes were compared using bootstrap methods, linear and logistic regression.ResultsThe total cost per patient was 374€ ±351 with eCRFs vs. 1,135€ ±1,234 with pCRFs. Time between the opening of the first center and the database lock was 31.7 months Q1 = 24.6; Q3 = 42.8 using eCRFs, vs. 39.8 months Q1 = 31.7; Q3 = 52.2 with pCRFs (p = 0.11). Electronic CRFs were globally preferred by all (31/72 vs. 15/72 for paper) for easier monitoring and improved data quality.ConclusionsThis study found that eCRFs and pCRFs are used in studies with different patient numbers, center numbers and risk. The first ones are more advantageous in large, low–risk studies and gain support from a majority of stakeholders. More... »

PAGES

7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2288-14-7

DOI

http://dx.doi.org/10.1186/1471-2288-14-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026386738

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24438227


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cost-Benefit Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Collection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electronic Health Records", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Personnel", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Management", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "the CompaRec Investigators, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "D\u00e9partement de la recherche clinique et du d\u00e9veloppement, AP-HP, Groupe hospitalier Cochin H\u00f4tel-Dieu, URC \u00c9conomie de la Sant\u00e9 Ile de France, F-75004, Paris, France", 
            "the CompaRec Investigators, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Jeannic", 
        "givenName": "Ana\u00efs", 
        "id": "sg:person.014651620101.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651620101.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "D\u00e9partement de la recherche clinique et du d\u00e9veloppement, AP-HP, Groupe hospitalier Cochin H\u00f4tel-Dieu, URC \u00c9conomie de la Sant\u00e9 Ile de France, F-75004, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.50550.35", 
          "name": [
            "D\u00e9partement de la recherche clinique et du d\u00e9veloppement, AP-HP, Groupe hospitalier Cochin H\u00f4tel-Dieu, URC \u00c9conomie de la Sant\u00e9 Ile de France, F-75004, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quelen", 
        "givenName": "C\u00e9line", 
        "id": "sg:person.01243037366.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243037366.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Paris Diderot, PRES Sorbonne Paris Cit\u00e9, F-75019, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.508487.6", 
          "name": [
            "AP-HP, H\u00f4pital Robert Debr\u00e9, Unit\u00e9 d\u2019\u00c9pid\u00e9miologie clinique, Groupe Hospitalier Robert Debr\u00e9, 48, Bld S\u00e9rurier, F-75019, Paris, France", 
            "Universit\u00e9 Paris Diderot, PRES Sorbonne Paris Cit\u00e9, F-75019, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alberti", 
        "givenName": "Corinne", 
        "id": "sg:person.01132547050.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132547050.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de Sant\u00e9 Publique, AP-HP, Groupe hospitalier Albert Chenevier- Henri Mondor, F-94010, Cr\u00e9teil, France", 
          "id": "http://www.grid.ac/institutes/grid.50550.35", 
          "name": [
            "D\u00e9partement de la recherche clinique et du d\u00e9veloppement, AP-HP, Groupe hospitalier Cochin H\u00f4tel-Dieu, URC \u00c9conomie de la Sant\u00e9 Ile de France, F-75004, Paris, France", 
            "Service de Sant\u00e9 Publique, AP-HP, Groupe hospitalier Albert Chenevier- Henri Mondor, F-94010, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durand-Zaleski", 
        "givenName": "Isabelle", 
        "id": "sg:person.01327533357.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327533357.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1745-6215-11-79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023811740", 
          "https://doi.org/10.1186/1745-6215-11-79"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2474-9-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051573813", 
          "https://doi.org/10.1186/1471-2474-9-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6947-8-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047147678", 
          "https://doi.org/10.1186/1472-6947-8-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2288-7-23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032755063", 
          "https://doi.org/10.1186/1471-2288-7-23"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-01-17", 
    "datePublishedReg": "2014-01-17", 
    "description": "BackgroundElectronic Case Report Forms (eCRFs) are increasingly chosen by investigators and sponsors of clinical research instead of the traditional pen-and-paper data collection (pCRFs). Previous studies suggested that eCRFs avoided mistakes, shortened the duration of clinical studies and reduced data collection costs.MethodsOur objectives were to describe and contrast both objective and subjective efficiency of pCRF and eCRF use in clinical studies. A total of 27 studies (11 eCRF, 16 pCRF) sponsored by the Paris hospital consortium, conducted and completed between 2001 and 2011 were included. Questionnaires were emailed to investigators of those studies, as well as clinical research associates and data managers working in Paris hospitals, soliciting their level of satisfaction and preferences for eCRFs and pCRFs. Mean costs and timeframes were compared using bootstrap methods, linear and logistic regression.ResultsThe total cost per patient was 374\u20ac \u00b1351 with eCRFs vs. 1,135\u20ac \u00b11,234 with pCRFs. Time between the opening of the first center and the database lock was 31.7 months Q1\u2009=\u200924.6; Q3\u2009=\u200942.8 using eCRFs, vs. 39.8 months Q1\u2009=\u200931.7; Q3\u2009=\u200952.2 with pCRFs (p\u2009=\u20090.11). Electronic CRFs were globally preferred by all (31/72 vs. 15/72 for paper) for easier monitoring and improved data quality.ConclusionsThis study found that eCRFs and pCRFs are used in studies with different patient numbers, center numbers and risk. The first ones are more advantageous in large, low\u2013risk studies and gain support from a majority of stakeholders.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2288-14-7", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024940", 
        "issn": [
          "1471-2288"
        ], 
        "name": "BMC Medical Research Methodology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "case report forms", 
      "clinical studies", 
      "report forms", 
      "low-risk studies", 
      "paper case report forms", 
      "clinical research associates", 
      "patient numbers", 
      "mean cost", 
      "Hospital Consortium", 
      "database lock", 
      "logistic regression", 
      "clinical research", 
      "ConclusionsThis study", 
      "Paris hospitals", 
      "MethodsOur objective", 
      "electronic CRF", 
      "eCRF", 
      "paper data collection", 
      "level of satisfaction", 
      "investigators", 
      "previous studies", 
      "center number", 
      "subjective efficiency", 
      "patients", 
      "hospital", 
      "majority of stakeholders", 
      "first center", 
      "study", 
      "PCRF", 
      "total", 
      "risk", 
      "CRF", 
      "questionnaire", 
      "duration", 
      "total cost", 
      "Q3", 
      "data collection", 
      "regression", 
      "data managers", 
      "majority", 
      "research associate", 
      "levels", 
      "Q1", 
      "satisfaction", 
      "center", 
      "number", 
      "easy monitoring", 
      "pen", 
      "objective", 
      "timeframe", 
      "monitoring", 
      "data collection process", 
      "associates", 
      "support", 
      "quality", 
      "consortium", 
      "form", 
      "time", 
      "sponsors", 
      "comparison", 
      "traditional pen", 
      "opening", 
      "data quality", 
      "cost", 
      "collection", 
      "preferences", 
      "collection process", 
      "research", 
      "method", 
      "bootstrap method", 
      "data collection costs", 
      "stakeholders", 
      "one", 
      "process", 
      "mistakes", 
      "lock", 
      "first one", 
      "managers", 
      "efficiency", 
      "collection costs"
    ], 
    "name": "Comparison of two data collection processes in clinical studies: electronic and paper case report forms", 
    "pagination": "7", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026386738"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2288-14-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24438227"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2288-14-7", 
      "https://app.dimensions.ai/details/publication/pub.1026386738"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_623.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2288-14-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-14-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-14-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-14-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-14-7'


 

This table displays all metadata directly associated to this object as RDF triples.

231 TRIPLES      21 PREDICATES      120 URIs      108 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2288-14-7 schema:about N37a8c3be3c414ab387e6031078cc49a0
2 N502b31b9c0f74d0a9907d527dd49b5ee
3 N5f4cab7d6617448b819cad5e476637b7
4 N7f778faee51447928cbc2c85ca3de243
5 N98d82186228f4880b2de373c1b3b47d5
6 N9ad2091da4124b5f927af01743af098d
7 Naf5961c00f4d480495849450da694e29
8 Nc8bc478ba1784f07ba1444949260f65c
9 Ncbbca9cc6763499fab68c96ea3b8261d
10 Nee2e4469ad734d2285ec89dac9b9aeec
11 Nfae069a26fb94d499bf5fdf5df7fe15a
12 anzsrc-for:11
13 anzsrc-for:1117
14 schema:author N01ee478a16d142bda084c409560a55fd
15 schema:citation sg:pub.10.1186/1471-2288-7-23
16 sg:pub.10.1186/1471-2474-9-4
17 sg:pub.10.1186/1472-6947-8-2
18 sg:pub.10.1186/1745-6215-11-79
19 schema:datePublished 2014-01-17
20 schema:datePublishedReg 2014-01-17
21 schema:description BackgroundElectronic Case Report Forms (eCRFs) are increasingly chosen by investigators and sponsors of clinical research instead of the traditional pen-and-paper data collection (pCRFs). Previous studies suggested that eCRFs avoided mistakes, shortened the duration of clinical studies and reduced data collection costs.MethodsOur objectives were to describe and contrast both objective and subjective efficiency of pCRF and eCRF use in clinical studies. A total of 27 studies (11 eCRF, 16 pCRF) sponsored by the Paris hospital consortium, conducted and completed between 2001 and 2011 were included. Questionnaires were emailed to investigators of those studies, as well as clinical research associates and data managers working in Paris hospitals, soliciting their level of satisfaction and preferences for eCRFs and pCRFs. Mean costs and timeframes were compared using bootstrap methods, linear and logistic regression.ResultsThe total cost per patient was 374€ ±351 with eCRFs vs. 1,135€ ±1,234 with pCRFs. Time between the opening of the first center and the database lock was 31.7 months Q1 = 24.6; Q3 = 42.8 using eCRFs, vs. 39.8 months Q1 = 31.7; Q3 = 52.2 with pCRFs (p = 0.11). Electronic CRFs were globally preferred by all (31/72 vs. 15/72 for paper) for easier monitoring and improved data quality.ConclusionsThis study found that eCRFs and pCRFs are used in studies with different patient numbers, center numbers and risk. The first ones are more advantageous in large, low–risk studies and gain support from a majority of stakeholders.
22 schema:genre article
23 schema:isAccessibleForFree true
24 schema:isPartOf N5b3744b8453f41a1b025d508ce12fa9a
25 Nb1a34b67381c4194a8485ef0ae3043aa
26 sg:journal.1024940
27 schema:keywords CRF
28 ConclusionsThis study
29 Hospital Consortium
30 MethodsOur objective
31 PCRF
32 Paris hospitals
33 Q1
34 Q3
35 associates
36 bootstrap method
37 case report forms
38 center
39 center number
40 clinical research
41 clinical research associates
42 clinical studies
43 collection
44 collection costs
45 collection process
46 comparison
47 consortium
48 cost
49 data collection
50 data collection costs
51 data collection process
52 data managers
53 data quality
54 database lock
55 duration
56 eCRF
57 easy monitoring
58 efficiency
59 electronic CRF
60 first center
61 first one
62 form
63 hospital
64 investigators
65 level of satisfaction
66 levels
67 lock
68 logistic regression
69 low-risk studies
70 majority
71 majority of stakeholders
72 managers
73 mean cost
74 method
75 mistakes
76 monitoring
77 number
78 objective
79 one
80 opening
81 paper case report forms
82 paper data collection
83 patient numbers
84 patients
85 pen
86 preferences
87 previous studies
88 process
89 quality
90 questionnaire
91 regression
92 report forms
93 research
94 research associate
95 risk
96 satisfaction
97 sponsors
98 stakeholders
99 study
100 subjective efficiency
101 support
102 time
103 timeframe
104 total
105 total cost
106 traditional pen
107 schema:name Comparison of two data collection processes in clinical studies: electronic and paper case report forms
108 schema:pagination 7
109 schema:productId N3f7a8293dab34b24a5228b6aed134402
110 N5a087ceb41154d7298b8a680280bc8b9
111 Nbfcbdb6e4d72472196c6385ff54209c2
112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026386738
113 https://doi.org/10.1186/1471-2288-14-7
114 schema:sdDatePublished 2022-10-01T06:39
115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
116 schema:sdPublisher N32cdaca2af0e47d5a71a51119cac4e97
117 schema:url https://doi.org/10.1186/1471-2288-14-7
118 sgo:license sg:explorer/license/
119 sgo:sdDataset articles
120 rdf:type schema:ScholarlyArticle
121 N01ee478a16d142bda084c409560a55fd rdf:first sg:person.014651620101.05
122 rdf:rest N934d0fab69ce458f9d76d173fde9ceef
123 N32cdaca2af0e47d5a71a51119cac4e97 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 N37a8c3be3c414ab387e6031078cc49a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Cost-Benefit Analysis
127 rdf:type schema:DefinedTerm
128 N3f7a8293dab34b24a5228b6aed134402 schema:name pubmed_id
129 schema:value 24438227
130 rdf:type schema:PropertyValue
131 N502b31b9c0f74d0a9907d527dd49b5ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Adult
133 rdf:type schema:DefinedTerm
134 N5a087ceb41154d7298b8a680280bc8b9 schema:name doi
135 schema:value 10.1186/1471-2288-14-7
136 rdf:type schema:PropertyValue
137 N5b3744b8453f41a1b025d508ce12fa9a schema:issueNumber 1
138 rdf:type schema:PublicationIssue
139 N5f4cab7d6617448b819cad5e476637b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Databases, Factual
141 rdf:type schema:DefinedTerm
142 N7b9799845aa945288a7b44f644f2d473 rdf:first sg:person.01132547050.16
143 rdf:rest Naf29a4ddddd945a0a6a58d6cc1651915
144 N7f778faee51447928cbc2c85ca3de243 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Female
146 rdf:type schema:DefinedTerm
147 N934d0fab69ce458f9d76d173fde9ceef rdf:first sg:person.01243037366.63
148 rdf:rest N7b9799845aa945288a7b44f644f2d473
149 N98d82186228f4880b2de373c1b3b47d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Electronic Health Records
151 rdf:type schema:DefinedTerm
152 N9ad2091da4124b5f927af01743af098d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Data Collection
154 rdf:type schema:DefinedTerm
155 Naf29a4ddddd945a0a6a58d6cc1651915 rdf:first sg:person.01327533357.46
156 rdf:rest rdf:nil
157 Naf5961c00f4d480495849450da694e29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Time Management
159 rdf:type schema:DefinedTerm
160 Nb1a34b67381c4194a8485ef0ae3043aa schema:volumeNumber 14
161 rdf:type schema:PublicationVolume
162 Nbfcbdb6e4d72472196c6385ff54209c2 schema:name dimensions_id
163 schema:value pub.1026386738
164 rdf:type schema:PropertyValue
165 Nc8bc478ba1784f07ba1444949260f65c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Surveys and Questionnaires
167 rdf:type schema:DefinedTerm
168 Ncbbca9cc6763499fab68c96ea3b8261d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Humans
170 rdf:type schema:DefinedTerm
171 Nee2e4469ad734d2285ec89dac9b9aeec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Health Personnel
173 rdf:type schema:DefinedTerm
174 Nfae069a26fb94d499bf5fdf5df7fe15a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Male
176 rdf:type schema:DefinedTerm
177 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
178 schema:name Medical and Health Sciences
179 rdf:type schema:DefinedTerm
180 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
181 schema:name Public Health and Health Services
182 rdf:type schema:DefinedTerm
183 sg:journal.1024940 schema:issn 1471-2288
184 schema:name BMC Medical Research Methodology
185 schema:publisher Springer Nature
186 rdf:type schema:Periodical
187 sg:person.01132547050.16 schema:affiliation grid-institutes:grid.508487.6
188 schema:familyName Alberti
189 schema:givenName Corinne
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132547050.16
191 rdf:type schema:Person
192 sg:person.01243037366.63 schema:affiliation grid-institutes:grid.50550.35
193 schema:familyName Quelen
194 schema:givenName Céline
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243037366.63
196 rdf:type schema:Person
197 sg:person.01327533357.46 schema:affiliation grid-institutes:grid.50550.35
198 schema:familyName Durand-Zaleski
199 schema:givenName Isabelle
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327533357.46
201 rdf:type schema:Person
202 sg:person.014651620101.05 schema:affiliation grid-institutes:None
203 schema:familyName Le Jeannic
204 schema:givenName Anaïs
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651620101.05
206 rdf:type schema:Person
207 sg:pub.10.1186/1471-2288-7-23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032755063
208 https://doi.org/10.1186/1471-2288-7-23
209 rdf:type schema:CreativeWork
210 sg:pub.10.1186/1471-2474-9-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051573813
211 https://doi.org/10.1186/1471-2474-9-4
212 rdf:type schema:CreativeWork
213 sg:pub.10.1186/1472-6947-8-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047147678
214 https://doi.org/10.1186/1472-6947-8-2
215 rdf:type schema:CreativeWork
216 sg:pub.10.1186/1745-6215-11-79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023811740
217 https://doi.org/10.1186/1745-6215-11-79
218 rdf:type schema:CreativeWork
219 grid-institutes:None schema:alternateName the CompaRec Investigators, France
220 schema:name Département de la recherche clinique et du développement, AP-HP, Groupe hospitalier Cochin Hôtel-Dieu, URC Économie de la Santé Ile de France, F-75004, Paris, France
221 the CompaRec Investigators, France
222 rdf:type schema:Organization
223 grid-institutes:grid.50550.35 schema:alternateName Département de la recherche clinique et du développement, AP-HP, Groupe hospitalier Cochin Hôtel-Dieu, URC Économie de la Santé Ile de France, F-75004, Paris, France
224 Service de Santé Publique, AP-HP, Groupe hospitalier Albert Chenevier- Henri Mondor, F-94010, Créteil, France
225 schema:name Département de la recherche clinique et du développement, AP-HP, Groupe hospitalier Cochin Hôtel-Dieu, URC Économie de la Santé Ile de France, F-75004, Paris, France
226 Service de Santé Publique, AP-HP, Groupe hospitalier Albert Chenevier- Henri Mondor, F-94010, Créteil, France
227 rdf:type schema:Organization
228 grid-institutes:grid.508487.6 schema:alternateName Université Paris Diderot, PRES Sorbonne Paris Cité, F-75019, Paris, France
229 schema:name AP-HP, Hôpital Robert Debré, Unité d’Épidémiologie clinique, Groupe Hospitalier Robert Debré, 48, Bld Sérurier, F-75019, Paris, France
230 Université Paris Diderot, PRES Sorbonne Paris Cité, F-75019, Paris, France
231 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...