A systematic review of models to predict recruitment to multicentre clinical trials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Katharine D Barnard, Louise Dent, Andrew Cook

ABSTRACT

BACKGROUND: Less than one third of publicly funded trials managed to recruit according to their original plan often resulting in request for additional funding and/or time extensions. The aim was to identify models which might be useful to a major public funder of randomised controlled trials when estimating likely time requirements for recruiting trial participants. The requirements of a useful model were identified as usability, based on experience, able to reflect time trends, accounting for centre recruitment and contribution to a commissioning decision. METHODS: A systematic review of English language articles using MEDLINE and EMBASE. Search terms included: randomised controlled trial, patient, accrual, predict, enroll, models, statistical; Bayes Theorem; Decision Theory; Monte Carlo Method and Poisson. Only studies discussing prediction of recruitment to trials using a modelling approach were included. Information was extracted from articles by one author, and checked by a second, using a pre-defined form. RESULTS: Out of 326 identified abstracts, only 8 met all the inclusion criteria. Of these 8 studies examined, there are five major classes of model discussed: the unconditional model, the conditional model, the Poisson model, Bayesian models and Monte Carlo simulation of Markov models. None of these meet all the pre-identified needs of the funder. CONCLUSIONS: To meet the needs of a number of research programmes, a new model is required as a matter of importance. Any model chosen should be validated against both retrospective and prospective data, to ensure the predictions it gives are superior to those currently used. More... »

PAGES

63

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2288-10-63

DOI

http://dx.doi.org/10.1186/1471-2288-10-63

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043640186

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20604946


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multicenter Studies as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Selection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Poisson Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Randomized Controlled Trials as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Southampton", 
          "id": "https://www.grid.ac/institutes/grid.5491.9", 
          "name": [
            "National Institute for Health Research Evaluation, Trials and Studies Coordinating Centre (NETSCC), University of Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barnard", 
        "givenName": "Katharine D", 
        "id": "sg:person.0666032124.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666032124.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southampton", 
          "id": "https://www.grid.ac/institutes/grid.5491.9", 
          "name": [
            "National Institute for Health Research Evaluation, Trials and Studies Coordinating Centre (NETSCC), University of Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dent", 
        "givenName": "Louise", 
        "id": "sg:person.01124112622.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124112622.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southampton", 
          "id": "https://www.grid.ac/institutes/grid.5491.9", 
          "name": [
            "National Institute for Health Research Evaluation, Trials and Studies Coordinating Centre (NETSCC), University of Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cook", 
        "givenName": "Andrew", 
        "id": "sg:person.01350470035.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350470035.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cct.2004.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000099405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9681(87)90045-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016144923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-468x(84)90049-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026270915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-468x(84)90049-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026270915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cct.2006.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026332558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1248/cpb.58.293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027559979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1248/cpb.58.293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027559979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038870123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2288-5-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051811384", 
          "https://doi.org/10.1186/1471-2288-5-11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2288-1-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051932867", 
          "https://doi.org/10.1186/1471-2288-1-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053003852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.b2535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062802292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.b2535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062802292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta10290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071138930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta11370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071138988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta11480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071138999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta12310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071139035"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: Less than one third of publicly funded trials managed to recruit according to their original plan often resulting in request for additional funding and/or time extensions. The aim was to identify models which might be useful to a major public funder of randomised controlled trials when estimating likely time requirements for recruiting trial participants. The requirements of a useful model were identified as usability, based on experience, able to reflect time trends, accounting for centre recruitment and contribution to a commissioning decision.\nMETHODS: A systematic review of English language articles using MEDLINE and EMBASE. Search terms included: randomised controlled trial, patient, accrual, predict, enroll, models, statistical; Bayes Theorem; Decision Theory; Monte Carlo Method and Poisson. Only studies discussing prediction of recruitment to trials using a modelling approach were included. Information was extracted from articles by one author, and checked by a second, using a pre-defined form.\nRESULTS: Out of 326 identified abstracts, only 8 met all the inclusion criteria. Of these 8 studies examined, there are five major classes of model discussed: the unconditional model, the conditional model, the Poisson model, Bayesian models and Monte Carlo simulation of Markov models. None of these meet all the pre-identified needs of the funder.\nCONCLUSIONS: To meet the needs of a number of research programmes, a new model is required as a matter of importance. Any model chosen should be validated against both retrospective and prospective data, to ensure the predictions it gives are superior to those currently used.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2288-10-63", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024940", 
        "issn": [
          "1471-2288"
        ], 
        "name": "BMC Medical Research Methodology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "A systematic review of models to predict recruitment to multicentre clinical trials", 
    "pagination": "63", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cfdfba42398bac1a122a9731c35957671a1b0b9879e5ab3be4c60559c4e6bdd5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20604946"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968545"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2288-10-63"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043640186"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2288-10-63", 
      "https://app.dimensions.ai/details/publication/pub.1043640186"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2288-10-63"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-10-63'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-10-63'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-10-63'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-10-63'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      52 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2288-10-63 schema:about N0d45bac9a4a84430a96c47b431e4b324
2 N0ef7d042b16147de8a066bef05576ce2
3 N1ca64e1ba41d42cda9aca2ae35cadd26
4 N22680d6d2c4248cf98efb91fb3e5ebd2
5 N691814f13d5a44dab63cafffb5c0dbcd
6 N782377f7706b46d3bb42f3e714ca22ec
7 N9232a42a3caf420a8e51a48ee9e30116
8 Nc02dce64e0554831878c8179e9613ce8
9 Nce45815753ae4d9598c02620c8221c11
10 anzsrc-for:01
11 anzsrc-for:0104
12 schema:author Nc83d834399804348a498e478a32f818c
13 schema:citation sg:pub.10.1186/1471-2288-1-4
14 sg:pub.10.1186/1471-2288-5-11
15 https://doi.org/10.1002/sim.2956
16 https://doi.org/10.1002/sim.3128
17 https://doi.org/10.1016/0010-468x(84)90049-7
18 https://doi.org/10.1016/0021-9681(87)90045-2
19 https://doi.org/10.1016/j.cct.2004.07.002
20 https://doi.org/10.1016/j.cct.2006.08.002
21 https://doi.org/10.1136/bmj.b2535
22 https://doi.org/10.1248/cpb.58.293
23 https://doi.org/10.3310/hta10290
24 https://doi.org/10.3310/hta11370
25 https://doi.org/10.3310/hta11480
26 https://doi.org/10.3310/hta12310
27 schema:datePublished 2010-12
28 schema:datePublishedReg 2010-12-01
29 schema:description BACKGROUND: Less than one third of publicly funded trials managed to recruit according to their original plan often resulting in request for additional funding and/or time extensions. The aim was to identify models which might be useful to a major public funder of randomised controlled trials when estimating likely time requirements for recruiting trial participants. The requirements of a useful model were identified as usability, based on experience, able to reflect time trends, accounting for centre recruitment and contribution to a commissioning decision. METHODS: A systematic review of English language articles using MEDLINE and EMBASE. Search terms included: randomised controlled trial, patient, accrual, predict, enroll, models, statistical; Bayes Theorem; Decision Theory; Monte Carlo Method and Poisson. Only studies discussing prediction of recruitment to trials using a modelling approach were included. Information was extracted from articles by one author, and checked by a second, using a pre-defined form. RESULTS: Out of 326 identified abstracts, only 8 met all the inclusion criteria. Of these 8 studies examined, there are five major classes of model discussed: the unconditional model, the conditional model, the Poisson model, Bayesian models and Monte Carlo simulation of Markov models. None of these meet all the pre-identified needs of the funder. CONCLUSIONS: To meet the needs of a number of research programmes, a new model is required as a matter of importance. Any model chosen should be validated against both retrospective and prospective data, to ensure the predictions it gives are superior to those currently used.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N76605add20464d22aa1a3cb766ef79f2
34 Nf3a3d0d28f664157a6386cb6a8a81582
35 sg:journal.1024940
36 schema:name A systematic review of models to predict recruitment to multicentre clinical trials
37 schema:pagination 63
38 schema:productId N0fd08d982986481fbb31e8fb687591e1
39 N5d5f346fff1a4842a0854ede8cf0931c
40 Na9c4e03f244f4ed9a26881cf47e23aa0
41 Nc2d4a2857d3546ab84b817fdbe653221
42 Ne8c19947616447b2849762ea954fdba4
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043640186
44 https://doi.org/10.1186/1471-2288-10-63
45 schema:sdDatePublished 2019-04-10T19:56
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N14d13d382f0d4bb4b8bc1271a1639f03
48 schema:url http://link.springer.com/10.1186%2F1471-2288-10-63
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0d45bac9a4a84430a96c47b431e4b324 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Poisson Distribution
54 rdf:type schema:DefinedTerm
55 N0ef7d042b16147de8a066bef05576ce2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Monte Carlo Method
57 rdf:type schema:DefinedTerm
58 N0fd08d982986481fbb31e8fb687591e1 schema:name nlm_unique_id
59 schema:value 100968545
60 rdf:type schema:PropertyValue
61 N14d13d382f0d4bb4b8bc1271a1639f03 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N1813431d76704d08b290bef3630e7d69 rdf:first sg:person.01350470035.54
64 rdf:rest rdf:nil
65 N1ca64e1ba41d42cda9aca2ae35cadd26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Randomized Controlled Trials as Topic
67 rdf:type schema:DefinedTerm
68 N22680d6d2c4248cf98efb91fb3e5ebd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Time Factors
70 rdf:type schema:DefinedTerm
71 N3139614487a34afb9285cc5b1cf0e02f rdf:first sg:person.01124112622.41
72 rdf:rest N1813431d76704d08b290bef3630e7d69
73 N5d5f346fff1a4842a0854ede8cf0931c schema:name doi
74 schema:value 10.1186/1471-2288-10-63
75 rdf:type schema:PropertyValue
76 N691814f13d5a44dab63cafffb5c0dbcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Humans
78 rdf:type schema:DefinedTerm
79 N76605add20464d22aa1a3cb766ef79f2 schema:volumeNumber 10
80 rdf:type schema:PublicationVolume
81 N782377f7706b46d3bb42f3e714ca22ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Multicenter Studies as Topic
83 rdf:type schema:DefinedTerm
84 N9232a42a3caf420a8e51a48ee9e30116 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Patient Selection
86 rdf:type schema:DefinedTerm
87 Na9c4e03f244f4ed9a26881cf47e23aa0 schema:name pubmed_id
88 schema:value 20604946
89 rdf:type schema:PropertyValue
90 Nc02dce64e0554831878c8179e9613ce8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Bayes Theorem
92 rdf:type schema:DefinedTerm
93 Nc2d4a2857d3546ab84b817fdbe653221 schema:name readcube_id
94 schema:value cfdfba42398bac1a122a9731c35957671a1b0b9879e5ab3be4c60559c4e6bdd5
95 rdf:type schema:PropertyValue
96 Nc83d834399804348a498e478a32f818c rdf:first sg:person.0666032124.11
97 rdf:rest N3139614487a34afb9285cc5b1cf0e02f
98 Nce45815753ae4d9598c02620c8221c11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Models, Statistical
100 rdf:type schema:DefinedTerm
101 Ne8c19947616447b2849762ea954fdba4 schema:name dimensions_id
102 schema:value pub.1043640186
103 rdf:type schema:PropertyValue
104 Nf3a3d0d28f664157a6386cb6a8a81582 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
107 schema:name Mathematical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
110 schema:name Statistics
111 rdf:type schema:DefinedTerm
112 sg:journal.1024940 schema:issn 1471-2288
113 schema:name BMC Medical Research Methodology
114 rdf:type schema:Periodical
115 sg:person.01124112622.41 schema:affiliation https://www.grid.ac/institutes/grid.5491.9
116 schema:familyName Dent
117 schema:givenName Louise
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124112622.41
119 rdf:type schema:Person
120 sg:person.01350470035.54 schema:affiliation https://www.grid.ac/institutes/grid.5491.9
121 schema:familyName Cook
122 schema:givenName Andrew
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350470035.54
124 rdf:type schema:Person
125 sg:person.0666032124.11 schema:affiliation https://www.grid.ac/institutes/grid.5491.9
126 schema:familyName Barnard
127 schema:givenName Katharine D
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666032124.11
129 rdf:type schema:Person
130 sg:pub.10.1186/1471-2288-1-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051932867
131 https://doi.org/10.1186/1471-2288-1-4
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/1471-2288-5-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051811384
134 https://doi.org/10.1186/1471-2288-5-11
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/sim.2956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053003852
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/sim.3128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038870123
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0010-468x(84)90049-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026270915
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0021-9681(87)90045-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016144923
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.cct.2004.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000099405
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.cct.2006.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026332558
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1136/bmj.b2535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062802292
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1248/cpb.58.293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027559979
151 rdf:type schema:CreativeWork
152 https://doi.org/10.3310/hta10290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071138930
153 rdf:type schema:CreativeWork
154 https://doi.org/10.3310/hta11370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071138988
155 rdf:type schema:CreativeWork
156 https://doi.org/10.3310/hta11480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071138999
157 rdf:type schema:CreativeWork
158 https://doi.org/10.3310/hta12310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071139035
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.5491.9 schema:alternateName University of Southampton
161 schema:name National Institute for Health Research Evaluation, Trials and Studies Coordinating Centre (NETSCC), University of Southampton, UK
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...