A systematic review of models to predict recruitment to multicentre clinical trials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Katharine D Barnard, Louise Dent, Andrew Cook

ABSTRACT

BACKGROUND: Less than one third of publicly funded trials managed to recruit according to their original plan often resulting in request for additional funding and/or time extensions. The aim was to identify models which might be useful to a major public funder of randomised controlled trials when estimating likely time requirements for recruiting trial participants. The requirements of a useful model were identified as usability, based on experience, able to reflect time trends, accounting for centre recruitment and contribution to a commissioning decision. METHODS: A systematic review of English language articles using MEDLINE and EMBASE. Search terms included: randomised controlled trial, patient, accrual, predict, enroll, models, statistical; Bayes Theorem; Decision Theory; Monte Carlo Method and Poisson. Only studies discussing prediction of recruitment to trials using a modelling approach were included. Information was extracted from articles by one author, and checked by a second, using a pre-defined form. RESULTS: Out of 326 identified abstracts, only 8 met all the inclusion criteria. Of these 8 studies examined, there are five major classes of model discussed: the unconditional model, the conditional model, the Poisson model, Bayesian models and Monte Carlo simulation of Markov models. None of these meet all the pre-identified needs of the funder. CONCLUSIONS: To meet the needs of a number of research programmes, a new model is required as a matter of importance. Any model chosen should be validated against both retrospective and prospective data, to ensure the predictions it gives are superior to those currently used. More... »

PAGES

63

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2288-10-63

DOI

http://dx.doi.org/10.1186/1471-2288-10-63

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043640186

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20604946


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multicenter Studies as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Selection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Poisson Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Randomized Controlled Trials as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Southampton", 
          "id": "https://www.grid.ac/institutes/grid.5491.9", 
          "name": [
            "National Institute for Health Research Evaluation, Trials and Studies Coordinating Centre (NETSCC), University of Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barnard", 
        "givenName": "Katharine D", 
        "id": "sg:person.0666032124.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666032124.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southampton", 
          "id": "https://www.grid.ac/institutes/grid.5491.9", 
          "name": [
            "National Institute for Health Research Evaluation, Trials and Studies Coordinating Centre (NETSCC), University of Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dent", 
        "givenName": "Louise", 
        "id": "sg:person.01124112622.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124112622.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southampton", 
          "id": "https://www.grid.ac/institutes/grid.5491.9", 
          "name": [
            "National Institute for Health Research Evaluation, Trials and Studies Coordinating Centre (NETSCC), University of Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cook", 
        "givenName": "Andrew", 
        "id": "sg:person.01350470035.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350470035.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cct.2004.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000099405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9681(87)90045-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016144923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-468x(84)90049-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026270915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-468x(84)90049-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026270915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cct.2006.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026332558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1248/cpb.58.293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027559979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1248/cpb.58.293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027559979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038870123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2288-5-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051811384", 
          "https://doi.org/10.1186/1471-2288-5-11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2288-1-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051932867", 
          "https://doi.org/10.1186/1471-2288-1-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053003852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.b2535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062802292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.b2535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062802292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta10290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071138930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta11370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071138988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta11480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071138999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta12310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071139035"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: Less than one third of publicly funded trials managed to recruit according to their original plan often resulting in request for additional funding and/or time extensions. The aim was to identify models which might be useful to a major public funder of randomised controlled trials when estimating likely time requirements for recruiting trial participants. The requirements of a useful model were identified as usability, based on experience, able to reflect time trends, accounting for centre recruitment and contribution to a commissioning decision.\nMETHODS: A systematic review of English language articles using MEDLINE and EMBASE. Search terms included: randomised controlled trial, patient, accrual, predict, enroll, models, statistical; Bayes Theorem; Decision Theory; Monte Carlo Method and Poisson. Only studies discussing prediction of recruitment to trials using a modelling approach were included. Information was extracted from articles by one author, and checked by a second, using a pre-defined form.\nRESULTS: Out of 326 identified abstracts, only 8 met all the inclusion criteria. Of these 8 studies examined, there are five major classes of model discussed: the unconditional model, the conditional model, the Poisson model, Bayesian models and Monte Carlo simulation of Markov models. None of these meet all the pre-identified needs of the funder.\nCONCLUSIONS: To meet the needs of a number of research programmes, a new model is required as a matter of importance. Any model chosen should be validated against both retrospective and prospective data, to ensure the predictions it gives are superior to those currently used.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2288-10-63", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024940", 
        "issn": [
          "1471-2288"
        ], 
        "name": "BMC Medical Research Methodology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "A systematic review of models to predict recruitment to multicentre clinical trials", 
    "pagination": "63", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cfdfba42398bac1a122a9731c35957671a1b0b9879e5ab3be4c60559c4e6bdd5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20604946"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968545"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2288-10-63"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043640186"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2288-10-63", 
      "https://app.dimensions.ai/details/publication/pub.1043640186"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2288-10-63"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-10-63'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-10-63'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-10-63'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-10-63'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      52 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2288-10-63 schema:about N0c6dccd2f467419c8340660615e17a2e
2 N4cefb79167804b5cbb2d03fa76aa9be6
3 N596f59495f614a969b391bfb98d91558
4 N5fb6b76b75304c4ab6947b32c8abebc2
5 N691afc65237e45299a1a8e7158210259
6 N7d208373076443778228d20d065a5495
7 N83e9c78b2db64970b421c69c2838c066
8 Nb3ef18b95b124c9ca1c4eceb3a9f6a3a
9 Nfc46eaaad3a342249eb27a74a4d6c4c5
10 anzsrc-for:01
11 anzsrc-for:0104
12 schema:author Nb2d8e2884ee8461ab9377b890b38bca9
13 schema:citation sg:pub.10.1186/1471-2288-1-4
14 sg:pub.10.1186/1471-2288-5-11
15 https://doi.org/10.1002/sim.2956
16 https://doi.org/10.1002/sim.3128
17 https://doi.org/10.1016/0010-468x(84)90049-7
18 https://doi.org/10.1016/0021-9681(87)90045-2
19 https://doi.org/10.1016/j.cct.2004.07.002
20 https://doi.org/10.1016/j.cct.2006.08.002
21 https://doi.org/10.1136/bmj.b2535
22 https://doi.org/10.1248/cpb.58.293
23 https://doi.org/10.3310/hta10290
24 https://doi.org/10.3310/hta11370
25 https://doi.org/10.3310/hta11480
26 https://doi.org/10.3310/hta12310
27 schema:datePublished 2010-12
28 schema:datePublishedReg 2010-12-01
29 schema:description BACKGROUND: Less than one third of publicly funded trials managed to recruit according to their original plan often resulting in request for additional funding and/or time extensions. The aim was to identify models which might be useful to a major public funder of randomised controlled trials when estimating likely time requirements for recruiting trial participants. The requirements of a useful model were identified as usability, based on experience, able to reflect time trends, accounting for centre recruitment and contribution to a commissioning decision. METHODS: A systematic review of English language articles using MEDLINE and EMBASE. Search terms included: randomised controlled trial, patient, accrual, predict, enroll, models, statistical; Bayes Theorem; Decision Theory; Monte Carlo Method and Poisson. Only studies discussing prediction of recruitment to trials using a modelling approach were included. Information was extracted from articles by one author, and checked by a second, using a pre-defined form. RESULTS: Out of 326 identified abstracts, only 8 met all the inclusion criteria. Of these 8 studies examined, there are five major classes of model discussed: the unconditional model, the conditional model, the Poisson model, Bayesian models and Monte Carlo simulation of Markov models. None of these meet all the pre-identified needs of the funder. CONCLUSIONS: To meet the needs of a number of research programmes, a new model is required as a matter of importance. Any model chosen should be validated against both retrospective and prospective data, to ensure the predictions it gives are superior to those currently used.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N0b57a9568e17491088f8d0dc35d2d852
34 N1166f10a7a5143d095314bdfa8a58059
35 sg:journal.1024940
36 schema:name A systematic review of models to predict recruitment to multicentre clinical trials
37 schema:pagination 63
38 schema:productId N1f66f4916ec54e7bac969dc37b870470
39 N34d5dac7cd704591b18c73d042faa5f0
40 N713ac296cc7247ff97059ba34ae38b8c
41 N8bb8b67918d644e58e39abf3166168f9
42 Ncbc23e53c464448d952aeded8131d9fc
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043640186
44 https://doi.org/10.1186/1471-2288-10-63
45 schema:sdDatePublished 2019-04-10T19:56
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nacb29c50143d4b06913087091c9fec9a
48 schema:url http://link.springer.com/10.1186%2F1471-2288-10-63
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0b57a9568e17491088f8d0dc35d2d852 schema:volumeNumber 10
53 rdf:type schema:PublicationVolume
54 N0c6dccd2f467419c8340660615e17a2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
55 schema:name Randomized Controlled Trials as Topic
56 rdf:type schema:DefinedTerm
57 N1166f10a7a5143d095314bdfa8a58059 schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 N1f66f4916ec54e7bac969dc37b870470 schema:name pubmed_id
60 schema:value 20604946
61 rdf:type schema:PropertyValue
62 N34d5dac7cd704591b18c73d042faa5f0 schema:name doi
63 schema:value 10.1186/1471-2288-10-63
64 rdf:type schema:PropertyValue
65 N4cefb79167804b5cbb2d03fa76aa9be6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Time Factors
67 rdf:type schema:DefinedTerm
68 N596f59495f614a969b391bfb98d91558 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Models, Statistical
70 rdf:type schema:DefinedTerm
71 N59d843f8090c49039d7c04824289e98f rdf:first sg:person.01124112622.41
72 rdf:rest Nd954b542dd7841c886651039eb4632e1
73 N5fb6b76b75304c4ab6947b32c8abebc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Multicenter Studies as Topic
75 rdf:type schema:DefinedTerm
76 N691afc65237e45299a1a8e7158210259 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Humans
78 rdf:type schema:DefinedTerm
79 N713ac296cc7247ff97059ba34ae38b8c schema:name readcube_id
80 schema:value cfdfba42398bac1a122a9731c35957671a1b0b9879e5ab3be4c60559c4e6bdd5
81 rdf:type schema:PropertyValue
82 N7d208373076443778228d20d065a5495 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Monte Carlo Method
84 rdf:type schema:DefinedTerm
85 N83e9c78b2db64970b421c69c2838c066 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Poisson Distribution
87 rdf:type schema:DefinedTerm
88 N8bb8b67918d644e58e39abf3166168f9 schema:name nlm_unique_id
89 schema:value 100968545
90 rdf:type schema:PropertyValue
91 Nacb29c50143d4b06913087091c9fec9a schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Nb2d8e2884ee8461ab9377b890b38bca9 rdf:first sg:person.0666032124.11
94 rdf:rest N59d843f8090c49039d7c04824289e98f
95 Nb3ef18b95b124c9ca1c4eceb3a9f6a3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Bayes Theorem
97 rdf:type schema:DefinedTerm
98 Ncbc23e53c464448d952aeded8131d9fc schema:name dimensions_id
99 schema:value pub.1043640186
100 rdf:type schema:PropertyValue
101 Nd954b542dd7841c886651039eb4632e1 rdf:first sg:person.01350470035.54
102 rdf:rest rdf:nil
103 Nfc46eaaad3a342249eb27a74a4d6c4c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Patient Selection
105 rdf:type schema:DefinedTerm
106 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
107 schema:name Mathematical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
110 schema:name Statistics
111 rdf:type schema:DefinedTerm
112 sg:journal.1024940 schema:issn 1471-2288
113 schema:name BMC Medical Research Methodology
114 rdf:type schema:Periodical
115 sg:person.01124112622.41 schema:affiliation https://www.grid.ac/institutes/grid.5491.9
116 schema:familyName Dent
117 schema:givenName Louise
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124112622.41
119 rdf:type schema:Person
120 sg:person.01350470035.54 schema:affiliation https://www.grid.ac/institutes/grid.5491.9
121 schema:familyName Cook
122 schema:givenName Andrew
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350470035.54
124 rdf:type schema:Person
125 sg:person.0666032124.11 schema:affiliation https://www.grid.ac/institutes/grid.5491.9
126 schema:familyName Barnard
127 schema:givenName Katharine D
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666032124.11
129 rdf:type schema:Person
130 sg:pub.10.1186/1471-2288-1-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051932867
131 https://doi.org/10.1186/1471-2288-1-4
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/1471-2288-5-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051811384
134 https://doi.org/10.1186/1471-2288-5-11
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/sim.2956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053003852
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/sim.3128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038870123
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0010-468x(84)90049-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026270915
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0021-9681(87)90045-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016144923
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.cct.2004.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000099405
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.cct.2006.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026332558
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1136/bmj.b2535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062802292
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1248/cpb.58.293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027559979
151 rdf:type schema:CreativeWork
152 https://doi.org/10.3310/hta10290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071138930
153 rdf:type schema:CreativeWork
154 https://doi.org/10.3310/hta11370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071138988
155 rdf:type schema:CreativeWork
156 https://doi.org/10.3310/hta11480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071138999
157 rdf:type schema:CreativeWork
158 https://doi.org/10.3310/hta12310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071139035
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.5491.9 schema:alternateName University of Southampton
161 schema:name National Institute for Health Research Evaluation, Trials and Studies Coordinating Centre (NETSCC), University of Southampton, UK
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...