Determinants of patient recruitment in a multicenter clinical trials group: trends, seasonality and the effect of large studies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-12

AUTHORS

Anna-Bettina Haidich, John PA Ioannidis

ABSTRACT

BACKGROUND: We examined whether quarterly patient enrollment in a large multicenter clinical trials group could be modeled in terms of predictors including time parameters (such as long-term trends and seasonality), the effect of large trials and the number of new studies launched each quarter. We used the database of all clinical studies launched by the AIDS Clinical Trials Group (ACTG) between October 1986 and November 1999. Analyses were performed in two datasets: one included all studies and substudies (n = 475, total enrollment 69,992 patients) and the other included only main studies (n = 352, total enrollment 57,563 patients). RESULTS: Enrollment differed across different months of the year with peaks in spring and late fall. Enrollment accelerated over time (+27 patients per quarter for all studies and +16 patients per quarter for the main studies, p < 0.001) and was affected by the performance of large studies with target sample size > 1,000 (p < 0.001). These relationships remained significant in multivariate autoregressive modeling. A time series based on enrollment during the first 32 quarters could forecast adequately the remaining 21 quarters. CONCLUSIONS: The fate and popularity of large trials may determine the overall recruitment of multicenter groups. Modeling of enrollment rates may be used to comprehend long-term patterns and to perform future strategic planning. More... »

PAGES

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2288-1-4

DOI

http://dx.doi.org/10.1186/1471-2288-1-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051932867

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11423002


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Trials as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epidemiologic Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evaluation Studies as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multicenter Studies as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Selection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seasons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ioannina", 
          "id": "https://www.grid.ac/institutes/grid.9594.1", 
          "name": [
            "Clinical Trials and Evidence-Based Medicine Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haidich", 
        "givenName": "Anna-Bettina", 
        "id": "sg:person.01002201047.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002201047.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tufts University", 
          "id": "https://www.grid.ac/institutes/grid.429997.8", 
          "name": [
            "Clinical Trials and Evidence-Based Medicine Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece", 
            "Department of Medicine, Tufts University School of Medicine, Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ioannidis", 
        "givenName": "John PA", 
        "id": "sg:person.015607417277.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015607417277.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0197-2456(96)00225-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007835156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(90)90177-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008209536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(90)90177-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008209536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198110083051503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013040868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(92)90204-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017556924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(92)90204-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017556924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199709113371101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017575068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.279.14.1089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026984974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780090124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029037290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(92)90035-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036988874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(92)90035-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036988874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-8049(99)00330-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040921147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(93)90032-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041461381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(93)90032-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041461381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.1996.03540160054033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049840110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.1989.03430130071037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050859129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-4356(01)00353-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051593716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.276.16.1332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054160223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00042560-199709010-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060296545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00042560-199709010-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060296545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00042560-199709010-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060296545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082723734", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082839720", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-12", 
    "datePublishedReg": "2001-12-01", 
    "description": "BACKGROUND: We examined whether quarterly patient enrollment in a large multicenter clinical trials group could be modeled in terms of predictors including time parameters (such as long-term trends and seasonality), the effect of large trials and the number of new studies launched each quarter. We used the database of all clinical studies launched by the AIDS Clinical Trials Group (ACTG) between October 1986 and November 1999. Analyses were performed in two datasets: one included all studies and substudies (n = 475, total enrollment 69,992 patients) and the other included only main studies (n = 352, total enrollment 57,563 patients).\nRESULTS: Enrollment differed across different months of the year with peaks in spring and late fall. Enrollment accelerated over time (+27 patients per quarter for all studies and +16 patients per quarter for the main studies, p < 0.001) and was affected by the performance of large studies with target sample size > 1,000 (p < 0.001). These relationships remained significant in multivariate autoregressive modeling. A time series based on enrollment during the first 32 quarters could forecast adequately the remaining 21 quarters.\nCONCLUSIONS: The fate and popularity of large trials may determine the overall recruitment of multicenter groups. Modeling of enrollment rates may be used to comprehend long-term patterns and to perform future strategic planning.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2288-1-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024940", 
        "issn": [
          "1471-2288"
        ], 
        "name": "BMC Medical Research Methodology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Determinants of patient recruitment in a multicenter clinical trials group: trends, seasonality and the effect of large studies", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f760c1271be3b5ef552d7640419f19eb2547f0c1665b63d297365f5dfa1f27bc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11423002"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968545"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2288-1-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051932867"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2288-1-4", 
      "https://app.dimensions.ai/details/publication/pub.1051932867"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1471-2288-1-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-1-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-1-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-1-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2288-1-4'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      58 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2288-1-4 schema:about N30e8e7220ed74648a505f95a5976e1cf
2 N4e0d5884544246b29b917843772c5d60
3 N570b8f22379d4965b32b703dce3c3a39
4 N5e2bf24429e04f55993da2781b86ac7d
5 N6a57d3c13037498b8937180a5179340e
6 N8692b2dbbc174d3384d2b2dfc7c0ba36
7 N895a73eceafd4ae08ad16abddd7e354d
8 N9a779de532cc4dbbadee6113329789ea
9 Nbbc4863e47034207a77d48f6e8f4e9a2
10 Nf1108939e53743e99c3367cf1734da2d
11 Nf75b8494c9a744869c86b8d862d86798
12 Nfcd415fba8a64b6fad113a726bcbaaa8
13 anzsrc-for:11
14 anzsrc-for:1103
15 schema:author N31871706213a451fb4d562b2db765361
16 schema:citation https://app.dimensions.ai/details/publication/pub.1082723734
17 https://app.dimensions.ai/details/publication/pub.1082839720
18 https://doi.org/10.1001/jama.1989.03430130071037
19 https://doi.org/10.1001/jama.1996.03540160054033
20 https://doi.org/10.1001/jama.276.16.1332
21 https://doi.org/10.1001/jama.279.14.1089
22 https://doi.org/10.1002/sim.4780090124
23 https://doi.org/10.1016/0197-2456(90)90177-4
24 https://doi.org/10.1016/0197-2456(92)90035-x
25 https://doi.org/10.1016/0197-2456(92)90204-d
26 https://doi.org/10.1016/0197-2456(93)90032-9
27 https://doi.org/10.1016/s0197-2456(96)00225-5
28 https://doi.org/10.1016/s0895-4356(01)00353-5
29 https://doi.org/10.1016/s0959-8049(99)00330-5
30 https://doi.org/10.1056/nejm198110083051503
31 https://doi.org/10.1056/nejm199709113371101
32 https://doi.org/10.1097/00042560-199709010-00004
33 schema:datePublished 2001-12
34 schema:datePublishedReg 2001-12-01
35 schema:description BACKGROUND: We examined whether quarterly patient enrollment in a large multicenter clinical trials group could be modeled in terms of predictors including time parameters (such as long-term trends and seasonality), the effect of large trials and the number of new studies launched each quarter. We used the database of all clinical studies launched by the AIDS Clinical Trials Group (ACTG) between October 1986 and November 1999. Analyses were performed in two datasets: one included all studies and substudies (n = 475, total enrollment 69,992 patients) and the other included only main studies (n = 352, total enrollment 57,563 patients). RESULTS: Enrollment differed across different months of the year with peaks in spring and late fall. Enrollment accelerated over time (+27 patients per quarter for all studies and +16 patients per quarter for the main studies, p < 0.001) and was affected by the performance of large studies with target sample size > 1,000 (p < 0.001). These relationships remained significant in multivariate autoregressive modeling. A time series based on enrollment during the first 32 quarters could forecast adequately the remaining 21 quarters. CONCLUSIONS: The fate and popularity of large trials may determine the overall recruitment of multicenter groups. Modeling of enrollment rates may be used to comprehend long-term patterns and to perform future strategic planning.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N22150abdb2444f7bb2cf4b035c739f53
40 N5fee53a2b8bd4b2c8fb443e67bfbea67
41 sg:journal.1024940
42 schema:name Determinants of patient recruitment in a multicenter clinical trials group: trends, seasonality and the effect of large studies
43 schema:pagination 4
44 schema:productId N24132b2289b34baf87b48cba79b59765
45 N30f4177ad1d04a3c848d5e1ce69c8e90
46 N9765db927dfc44159acb3e0b89b223f5
47 N9a109141acb243f39628953417210a51
48 Nd82fae7bbcc5421490af98e354d2780a
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051932867
50 https://doi.org/10.1186/1471-2288-1-4
51 schema:sdDatePublished 2019-04-10T22:30
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N085d978773fa4d2ba597e528cff64e91
54 schema:url http://link.springer.com/10.1186%2F1471-2288-1-4
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N085d978773fa4d2ba597e528cff64e91 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N22150abdb2444f7bb2cf4b035c739f53 schema:volumeNumber 1
61 rdf:type schema:PublicationVolume
62 N24132b2289b34baf87b48cba79b59765 schema:name doi
63 schema:value 10.1186/1471-2288-1-4
64 rdf:type schema:PropertyValue
65 N30e8e7220ed74648a505f95a5976e1cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Humans
67 rdf:type schema:DefinedTerm
68 N30f4177ad1d04a3c848d5e1ce69c8e90 schema:name nlm_unique_id
69 schema:value 100968545
70 rdf:type schema:PropertyValue
71 N31871706213a451fb4d562b2db765361 rdf:first sg:person.01002201047.41
72 rdf:rest N6c8febc278b6480aa5049da0ecf90054
73 N4e0d5884544246b29b917843772c5d60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Models, Statistical
75 rdf:type schema:DefinedTerm
76 N570b8f22379d4965b32b703dce3c3a39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Patient Selection
78 rdf:type schema:DefinedTerm
79 N5e2bf24429e04f55993da2781b86ac7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Clinical Trials as Topic
81 rdf:type schema:DefinedTerm
82 N5fee53a2b8bd4b2c8fb443e67bfbea67 schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 N6a57d3c13037498b8937180a5179340e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Predictive Value of Tests
86 rdf:type schema:DefinedTerm
87 N6c8febc278b6480aa5049da0ecf90054 rdf:first sg:person.015607417277.46
88 rdf:rest rdf:nil
89 N8692b2dbbc174d3384d2b2dfc7c0ba36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Multivariate Analysis
91 rdf:type schema:DefinedTerm
92 N895a73eceafd4ae08ad16abddd7e354d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Seasons
94 rdf:type schema:DefinedTerm
95 N9765db927dfc44159acb3e0b89b223f5 schema:name readcube_id
96 schema:value f760c1271be3b5ef552d7640419f19eb2547f0c1665b63d297365f5dfa1f27bc
97 rdf:type schema:PropertyValue
98 N9a109141acb243f39628953417210a51 schema:name dimensions_id
99 schema:value pub.1051932867
100 rdf:type schema:PropertyValue
101 N9a779de532cc4dbbadee6113329789ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Multicenter Studies as Topic
103 rdf:type schema:DefinedTerm
104 Nbbc4863e47034207a77d48f6e8f4e9a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Time
106 rdf:type schema:DefinedTerm
107 Nd82fae7bbcc5421490af98e354d2780a schema:name pubmed_id
108 schema:value 11423002
109 rdf:type schema:PropertyValue
110 Nf1108939e53743e99c3367cf1734da2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Epidemiologic Factors
112 rdf:type schema:DefinedTerm
113 Nf75b8494c9a744869c86b8d862d86798 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Regression Analysis
115 rdf:type schema:DefinedTerm
116 Nfcd415fba8a64b6fad113a726bcbaaa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Evaluation Studies as Topic
118 rdf:type schema:DefinedTerm
119 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
120 schema:name Medical and Health Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
123 schema:name Clinical Sciences
124 rdf:type schema:DefinedTerm
125 sg:journal.1024940 schema:issn 1471-2288
126 schema:name BMC Medical Research Methodology
127 rdf:type schema:Periodical
128 sg:person.01002201047.41 schema:affiliation https://www.grid.ac/institutes/grid.9594.1
129 schema:familyName Haidich
130 schema:givenName Anna-Bettina
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002201047.41
132 rdf:type schema:Person
133 sg:person.015607417277.46 schema:affiliation https://www.grid.ac/institutes/grid.429997.8
134 schema:familyName Ioannidis
135 schema:givenName John PA
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015607417277.46
137 rdf:type schema:Person
138 https://app.dimensions.ai/details/publication/pub.1082723734 schema:CreativeWork
139 https://app.dimensions.ai/details/publication/pub.1082839720 schema:CreativeWork
140 https://doi.org/10.1001/jama.1989.03430130071037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050859129
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1001/jama.1996.03540160054033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049840110
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1001/jama.276.16.1332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054160223
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1001/jama.279.14.1089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026984974
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/sim.4780090124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029037290
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/0197-2456(90)90177-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008209536
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/0197-2456(92)90035-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036988874
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0197-2456(92)90204-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1017556924
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/0197-2456(93)90032-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041461381
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0197-2456(96)00225-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007835156
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0895-4356(01)00353-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051593716
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0959-8049(99)00330-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040921147
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1056/nejm198110083051503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013040868
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1056/nejm199709113371101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017575068
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1097/00042560-199709010-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060296545
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.429997.8 schema:alternateName Tufts University
171 schema:name Clinical Trials and Evidence-Based Medicine Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
172 Department of Medicine, Tufts University School of Medicine, Boston, USA
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.9594.1 schema:alternateName University of Ioannina
175 schema:name Clinical Trials and Evidence-Based Medicine Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...