The "lipid accumulation product" performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Henry S Kahn

ABSTRACT

BACKGROUND: Body mass index (BMI, kg/m2) may not be the best marker for estimating the risk of obesity-related disease. Consistent with physiologic observations, an alternative index uses waist circumference (WC) and fasting triglycerides (TG) concentration to describe lipid overaccumulation. METHODS: The WC (estimated population minimum 65 cm for men and 58 cm for women) and TG concentration from the third National Health and Nutrition Examination Survey (N = 9,180, statistically weighted to represent 100.05 million US adults) were used to compute a "lipid accumulation product" [LAP = (WC-65) x TG for men and (WC-58) x TG for women] and to describe the population distribution of LAP. LAP and BMI were compared as categorical variables and as log-transformed continuous variables for their ability to identify adverse levels of 11 cardiovascular risk factors. RESULTS: Nearly half of the represented population was discordant for their quartile assignments to LAP and BMI. When 23.54 million with ordinal LAP quartile > BMI quartile were compared with 25.36 million with ordinal BMI quartile > LAP quartile (regression models adjusted for race-ethnicity and sex) the former had more adverse risk levels than the latter (p < 0.002) for seven lipid variables, uric acid concentration, heart rate, systolic and diastolic blood pressure. Further adjustment for age did not materially alter these comparisons except for blood pressures (p > 0.1). As continuous variables, LAP provided a consistently more adverse beta coefficient (slope) than BMI for nine cardiovascular risk variables (p < 0.01), but not for blood pressures (p > 0.2). CONCLUSION: LAP (describing lipid overaccumulation) performed better than BMI (describing weight overaccumulation) for identifying US adults at cardiovascular risk. Compared to BMI, LAP might better predict the incidence of cardiovascular disease, but this hypothesis needs prospective testing. More... »

PAGES

26

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2261-5-26

DOI

http://dx.doi.org/10.1186/1471-2261-5-26

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012836628

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16150143


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Size", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiovascular Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intra-Abdominal Fat", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triglycerides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uric Acid", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Center for Chronic Disease Prevention and Health Promotion", 
          "id": "https://www.grid.ac/institutes/grid.416781.d", 
          "name": [
            "National Center for Chronic Disease Prevention and Health Promotion, CDC, Mail-stop K-10, 4770 Buford Highway, 30341-3717, Atlanta, Georgia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kahn", 
        "givenName": "Henry S", 
        "id": "sg:person.0654774016.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654774016.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1001/jama.279.24.1955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001547762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1601924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004661908", 
          "https://doi.org/10.1038/sj.ejcn.1601924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1601924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004661908", 
          "https://doi.org/10.1038/sj.ejcn.1601924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tem.2003.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005503130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tem.2003.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005503130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-002-0873-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007237668", 
          "https://doi.org/10.1007/s00125-002-0873-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-002-0873-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007237668", 
          "https://doi.org/10.1007/s00125-002-0873-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.annepidem.2004.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013720082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0802858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014704033", 
          "https://doi.org/10.1038/sj.ijo.0802858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0802858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014704033", 
          "https://doi.org/10.1038/sj.ijo.0802858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9149(97)00797-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015453857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000102950.15230.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019243498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00467.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021307167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s005920200037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023326914", 
          "https://doi.org/10.1007/s005920200037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.53.8.2087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027108061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00041433-200306000-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028479775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00041433-200306000-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028479775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-8223(95)00003-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029747193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-8223(95)00003-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029747193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00019501-199809080-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030459741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00019501-199809080-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030459741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9149(98)00031-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030722847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0026-0495(03)00106-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036293958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0026-0495(03)00106-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036293958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.307.6916.1385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036694283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.28.6.1295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037280054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000126485.80373.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037411832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000126485.80373.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037411832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.97.11.1029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039681802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0802326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042841844", 
          "https://doi.org/10.1038/sj.ijo.0802326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0802326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042841844", 
          "https://doi.org/10.1038/sj.ijo.0802326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000125702.26272.f6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042971831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000125702.26272.f6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042971831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000161801.65408.8d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043394936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.102.2.179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046935194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0800813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048007735", 
          "https://doi.org/10.1038/sj.ijo.0800813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0800813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048007735", 
          "https://doi.org/10.1038/sj.ijo.0800813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.53.2007.s143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049678195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.25.3.579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052763548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0801582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052844387", 
          "https://doi.org/10.1038/sj.ijo.0801582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0801582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052844387", 
          "https://doi.org/10.1038/sj.ijo.0801582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0195-668x(03)00319-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054625434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/en.2003-0870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064246331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2002-020848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064286234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2003-031619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064287338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2004-0165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064287681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074455500", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/77.2.379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075222090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/78.5.928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076590719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/79.3.379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076801476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080284174", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082590760", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083139515", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/66.3.712a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100216761"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "BACKGROUND: Body mass index (BMI, kg/m2) may not be the best marker for estimating the risk of obesity-related disease. Consistent with physiologic observations, an alternative index uses waist circumference (WC) and fasting triglycerides (TG) concentration to describe lipid overaccumulation.\nMETHODS: The WC (estimated population minimum 65 cm for men and 58 cm for women) and TG concentration from the third National Health and Nutrition Examination Survey (N = 9,180, statistically weighted to represent 100.05 million US adults) were used to compute a \"lipid accumulation product\" [LAP = (WC-65) x TG for men and (WC-58) x TG for women] and to describe the population distribution of LAP. LAP and BMI were compared as categorical variables and as log-transformed continuous variables for their ability to identify adverse levels of 11 cardiovascular risk factors.\nRESULTS: Nearly half of the represented population was discordant for their quartile assignments to LAP and BMI. When 23.54 million with ordinal LAP quartile > BMI quartile were compared with 25.36 million with ordinal BMI quartile > LAP quartile (regression models adjusted for race-ethnicity and sex) the former had more adverse risk levels than the latter (p < 0.002) for seven lipid variables, uric acid concentration, heart rate, systolic and diastolic blood pressure. Further adjustment for age did not materially alter these comparisons except for blood pressures (p > 0.1). As continuous variables, LAP provided a consistently more adverse beta coefficient (slope) than BMI for nine cardiovascular risk variables (p < 0.01), but not for blood pressures (p > 0.2).\nCONCLUSION: LAP (describing lipid overaccumulation) performed better than BMI (describing weight overaccumulation) for identifying US adults at cardiovascular risk. Compared to BMI, LAP might better predict the incidence of cardiovascular disease, but this hypothesis needs prospective testing.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1471-2261-5-26", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024935", 
        "issn": [
          "1471-2261"
        ], 
        "name": "BMC Cardiovascular Disorders", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "The \"lipid accumulation product\" performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison", 
    "pagination": "26", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d26cec8d2c5536618195df948d7afd8f1a99305ee57c69db01d5e9a71b407c6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16150143"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100968539"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2261-5-26"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012836628"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2261-5-26", 
      "https://app.dimensions.ai/details/publication/pub.1012836628"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70028_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1471-2261-5-26"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2261-5-26'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2261-5-26'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2261-5-26'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2261-5-26'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      21 PREDICATES      88 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2261-5-26 schema:about N0f2a68f2a5334398a32a9acafa4ed7d7
2 N13fe215f9c294cc593566dcc9c12fe6b
3 N19b763995df3475ab0c38abdc5e43691
4 N1c5082041a9741f89b63fe62aec1c3d7
5 N1fcdf076943644e1bb8fcdea5f8325c6
6 N23749dc2ba4245a593f29cfba7857099
7 N3ff8c398af3146b0a55bfdd77f68d574
8 N6c3cc1c1b2fb4be7a3b8c837ec31f09c
9 N8f6391472c854115990341a2af8c11d9
10 N9b2a87ef0e6e49069d152a795fda4787
11 N9ea241b50530442ba30630977679b30b
12 Na69946e369554e73a54538c79038694c
13 Nb41e99d6f4ef4987ba4fc660eb888d1a
14 Nc85087e154354f3e854e73c079a1ca19
15 Nc8b6f1399b274c3386e112de47748548
16 Nd686fc65e68e4a018f6067fd35c62fa0
17 Ndbb0c1a6aadb45f498fd374aa0cc55f4
18 Ne5a70c3fd6e64a12933108067e051508
19 anzsrc-for:11
20 anzsrc-for:1102
21 schema:author Nd0833e9e416649fd84e5d90e751d6639
22 schema:citation sg:pub.10.1007/s00125-002-0873-y
23 sg:pub.10.1007/s005920200037
24 sg:pub.10.1038/sj.ejcn.1601924
25 sg:pub.10.1038/sj.ijo.0800813
26 sg:pub.10.1038/sj.ijo.0801582
27 sg:pub.10.1038/sj.ijo.0802326
28 sg:pub.10.1038/sj.ijo.0802858
29 https://app.dimensions.ai/details/publication/pub.1074455500
30 https://app.dimensions.ai/details/publication/pub.1080284174
31 https://app.dimensions.ai/details/publication/pub.1082590760
32 https://app.dimensions.ai/details/publication/pub.1083139515
33 https://doi.org/10.1001/jama.279.24.1955
34 https://doi.org/10.1016/j.annepidem.2004.05.012
35 https://doi.org/10.1016/j.tem.2003.09.008
36 https://doi.org/10.1016/s0002-8223(95)00003-8
37 https://doi.org/10.1016/s0002-9149(97)00797-2
38 https://doi.org/10.1016/s0002-9149(98)00031-9
39 https://doi.org/10.1016/s0026-0495(03)00106-9
40 https://doi.org/10.1016/s0195-668x(03)00319-1
41 https://doi.org/10.1093/ajcn/66.3.712a
42 https://doi.org/10.1093/ajcn/77.2.379
43 https://doi.org/10.1093/ajcn/78.5.928
44 https://doi.org/10.1093/ajcn/79.3.379
45 https://doi.org/10.1097/00019501-199809080-00002
46 https://doi.org/10.1097/00041433-200306000-00008
47 https://doi.org/10.1136/bmj.307.6916.1385
48 https://doi.org/10.1152/ajpendo.00467.2001
49 https://doi.org/10.1161/01.atv.0000125702.26272.f6
50 https://doi.org/10.1161/01.atv.0000126485.80373.33
51 https://doi.org/10.1161/01.cir.0000102950.15230.95
52 https://doi.org/10.1161/01.cir.0000161801.65408.8d
53 https://doi.org/10.1161/01.cir.102.2.179
54 https://doi.org/10.1161/01.cir.97.11.1029
55 https://doi.org/10.1210/en.2003-0870
56 https://doi.org/10.1210/jc.2002-020848
57 https://doi.org/10.1210/jc.2003-031619
58 https://doi.org/10.1210/jc.2004-0165
59 https://doi.org/10.2337/diabetes.53.2007.s143
60 https://doi.org/10.2337/diabetes.53.8.2087
61 https://doi.org/10.2337/diacare.25.3.579
62 https://doi.org/10.2337/diacare.28.6.1295
63 schema:datePublished 2005-12
64 schema:datePublishedReg 2005-12-01
65 schema:description BACKGROUND: Body mass index (BMI, kg/m2) may not be the best marker for estimating the risk of obesity-related disease. Consistent with physiologic observations, an alternative index uses waist circumference (WC) and fasting triglycerides (TG) concentration to describe lipid overaccumulation. METHODS: The WC (estimated population minimum 65 cm for men and 58 cm for women) and TG concentration from the third National Health and Nutrition Examination Survey (N = 9,180, statistically weighted to represent 100.05 million US adults) were used to compute a "lipid accumulation product" [LAP = (WC-65) x TG for men and (WC-58) x TG for women] and to describe the population distribution of LAP. LAP and BMI were compared as categorical variables and as log-transformed continuous variables for their ability to identify adverse levels of 11 cardiovascular risk factors. RESULTS: Nearly half of the represented population was discordant for their quartile assignments to LAP and BMI. When 23.54 million with ordinal LAP quartile > BMI quartile were compared with 25.36 million with ordinal BMI quartile > LAP quartile (regression models adjusted for race-ethnicity and sex) the former had more adverse risk levels than the latter (p < 0.002) for seven lipid variables, uric acid concentration, heart rate, systolic and diastolic blood pressure. Further adjustment for age did not materially alter these comparisons except for blood pressures (p > 0.1). As continuous variables, LAP provided a consistently more adverse beta coefficient (slope) than BMI for nine cardiovascular risk variables (p < 0.01), but not for blood pressures (p > 0.2). CONCLUSION: LAP (describing lipid overaccumulation) performed better than BMI (describing weight overaccumulation) for identifying US adults at cardiovascular risk. Compared to BMI, LAP might better predict the incidence of cardiovascular disease, but this hypothesis needs prospective testing.
66 schema:genre research_article
67 schema:inLanguage en
68 schema:isAccessibleForFree true
69 schema:isPartOf N12578edaa3594fe2ba15963ca773f06c
70 N929a134264a048df9e7821d6612003be
71 sg:journal.1024935
72 schema:name The "lipid accumulation product" performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison
73 schema:pagination 26
74 schema:productId N96996aceaecc4514ba0337bae20058fb
75 Nc0006eac46794148bccbe12ac3c2d839
76 Nc0a8fe648ed14c1dab6930688befb40f
77 Ndc0c4f695c4247ba9fecc28c5b72effe
78 Nf3d8d1c04e0f488dabbfc2c9c4df72f6
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012836628
80 https://doi.org/10.1186/1471-2261-5-26
81 schema:sdDatePublished 2019-04-11T12:35
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N0aa2ef5a18b74d54831c0841a7711fa3
84 schema:url https://link.springer.com/10.1186%2F1471-2261-5-26
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N0aa2ef5a18b74d54831c0841a7711fa3 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N0f2a68f2a5334398a32a9acafa4ed7d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Adolescent
92 rdf:type schema:DefinedTerm
93 N12578edaa3594fe2ba15963ca773f06c schema:volumeNumber 5
94 rdf:type schema:PublicationVolume
95 N13fe215f9c294cc593566dcc9c12fe6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Risk Factors
97 rdf:type schema:DefinedTerm
98 N19b763995df3475ab0c38abdc5e43691 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Intra-Abdominal Fat
100 rdf:type schema:DefinedTerm
101 N1c5082041a9741f89b63fe62aec1c3d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Cardiovascular Diseases
103 rdf:type schema:DefinedTerm
104 N1fcdf076943644e1bb8fcdea5f8325c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Heart Rate
106 rdf:type schema:DefinedTerm
107 N23749dc2ba4245a593f29cfba7857099 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Uric Acid
109 rdf:type schema:DefinedTerm
110 N3ff8c398af3146b0a55bfdd77f68d574 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Adult
112 rdf:type schema:DefinedTerm
113 N6c3cc1c1b2fb4be7a3b8c837ec31f09c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name United States
115 rdf:type schema:DefinedTerm
116 N8f6391472c854115990341a2af8c11d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Body Size
118 rdf:type schema:DefinedTerm
119 N929a134264a048df9e7821d6612003be schema:issueNumber 1
120 rdf:type schema:PublicationIssue
121 N96996aceaecc4514ba0337bae20058fb schema:name nlm_unique_id
122 schema:value 100968539
123 rdf:type schema:PropertyValue
124 N9b2a87ef0e6e49069d152a795fda4787 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Incidence
126 rdf:type schema:DefinedTerm
127 N9ea241b50530442ba30630977679b30b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Middle Aged
129 rdf:type schema:DefinedTerm
130 Na69946e369554e73a54538c79038694c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Female
132 rdf:type schema:DefinedTerm
133 Nb41e99d6f4ef4987ba4fc660eb888d1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Humans
135 rdf:type schema:DefinedTerm
136 Nc0006eac46794148bccbe12ac3c2d839 schema:name dimensions_id
137 schema:value pub.1012836628
138 rdf:type schema:PropertyValue
139 Nc0a8fe648ed14c1dab6930688befb40f schema:name pubmed_id
140 schema:value 16150143
141 rdf:type schema:PropertyValue
142 Nc85087e154354f3e854e73c079a1ca19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Body Mass Index
144 rdf:type schema:DefinedTerm
145 Nc8b6f1399b274c3386e112de47748548 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Triglycerides
147 rdf:type schema:DefinedTerm
148 Nd0833e9e416649fd84e5d90e751d6639 rdf:first sg:person.0654774016.22
149 rdf:rest rdf:nil
150 Nd686fc65e68e4a018f6067fd35c62fa0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Regression Analysis
152 rdf:type schema:DefinedTerm
153 Ndbb0c1a6aadb45f498fd374aa0cc55f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Male
155 rdf:type schema:DefinedTerm
156 Ndc0c4f695c4247ba9fecc28c5b72effe schema:name doi
157 schema:value 10.1186/1471-2261-5-26
158 rdf:type schema:PropertyValue
159 Ne5a70c3fd6e64a12933108067e051508 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Obesity
161 rdf:type schema:DefinedTerm
162 Nf3d8d1c04e0f488dabbfc2c9c4df72f6 schema:name readcube_id
163 schema:value 3d26cec8d2c5536618195df948d7afd8f1a99305ee57c69db01d5e9a71b407c6
164 rdf:type schema:PropertyValue
165 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
166 schema:name Medical and Health Sciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
169 schema:name Cardiorespiratory Medicine and Haematology
170 rdf:type schema:DefinedTerm
171 sg:journal.1024935 schema:issn 1471-2261
172 schema:name BMC Cardiovascular Disorders
173 rdf:type schema:Periodical
174 sg:person.0654774016.22 schema:affiliation https://www.grid.ac/institutes/grid.416781.d
175 schema:familyName Kahn
176 schema:givenName Henry S
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654774016.22
178 rdf:type schema:Person
179 sg:pub.10.1007/s00125-002-0873-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007237668
180 https://doi.org/10.1007/s00125-002-0873-y
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s005920200037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023326914
183 https://doi.org/10.1007/s005920200037
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/sj.ejcn.1601924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004661908
186 https://doi.org/10.1038/sj.ejcn.1601924
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/sj.ijo.0800813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048007735
189 https://doi.org/10.1038/sj.ijo.0800813
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/sj.ijo.0801582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052844387
192 https://doi.org/10.1038/sj.ijo.0801582
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/sj.ijo.0802326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042841844
195 https://doi.org/10.1038/sj.ijo.0802326
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/sj.ijo.0802858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014704033
198 https://doi.org/10.1038/sj.ijo.0802858
199 rdf:type schema:CreativeWork
200 https://app.dimensions.ai/details/publication/pub.1074455500 schema:CreativeWork
201 https://app.dimensions.ai/details/publication/pub.1080284174 schema:CreativeWork
202 https://app.dimensions.ai/details/publication/pub.1082590760 schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1083139515 schema:CreativeWork
204 https://doi.org/10.1001/jama.279.24.1955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001547762
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.annepidem.2004.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013720082
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.tem.2003.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005503130
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0002-8223(95)00003-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029747193
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s0002-9149(97)00797-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015453857
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s0002-9149(98)00031-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030722847
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/s0026-0495(03)00106-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036293958
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/s0195-668x(03)00319-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054625434
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/ajcn/66.3.712a schema:sameAs https://app.dimensions.ai/details/publication/pub.1100216761
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/ajcn/77.2.379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075222090
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/ajcn/78.5.928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076590719
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/ajcn/79.3.379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076801476
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1097/00019501-199809080-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030459741
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1097/00041433-200306000-00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028479775
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1136/bmj.307.6916.1385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036694283
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1152/ajpendo.00467.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021307167
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1161/01.atv.0000125702.26272.f6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042971831
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1161/01.atv.0000126485.80373.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037411832
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1161/01.cir.0000102950.15230.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019243498
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1161/01.cir.0000161801.65408.8d schema:sameAs https://app.dimensions.ai/details/publication/pub.1043394936
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1161/01.cir.102.2.179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046935194
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1161/01.cir.97.11.1029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039681802
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1210/en.2003-0870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064246331
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1210/jc.2002-020848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064286234
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1210/jc.2003-031619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064287338
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1210/jc.2004-0165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064287681
255 rdf:type schema:CreativeWork
256 https://doi.org/10.2337/diabetes.53.2007.s143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049678195
257 rdf:type schema:CreativeWork
258 https://doi.org/10.2337/diabetes.53.8.2087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027108061
259 rdf:type schema:CreativeWork
260 https://doi.org/10.2337/diacare.25.3.579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052763548
261 rdf:type schema:CreativeWork
262 https://doi.org/10.2337/diacare.28.6.1295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037280054
263 rdf:type schema:CreativeWork
264 https://www.grid.ac/institutes/grid.416781.d schema:alternateName National Center for Chronic Disease Prevention and Health Promotion
265 schema:name National Center for Chronic Disease Prevention and Health Promotion, CDC, Mail-stop K-10, 4770 Buford Highway, 30341-3717, Atlanta, Georgia, USA
266 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...