Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12-27

AUTHORS

Luca Dall'Osto, Chiara Lico, Jean Alric, Giovanni Giuliano, Michel Havaux, Roberto Bassi

ABSTRACT

BackgroundLutein is the most abundant xanthophyll in the photosynthetic apparatus of higher plants. It binds to site L1 of all Lhc proteins, whose occupancy is indispensable for protein folding and quenching chlorophyll triplets. Thus, the lack of a visible phenotype in mutants lacking lutein has been surprising.ResultsWe have re-assessed the lut2.1 phenotypes through biochemical and spectroscopic methods. Lhc proteins from the lut2.1 mutant compensate the lack of lutein by binding violaxanthin in sites L1 and L2. This substitution reduces the capacity for regulatory mechanisms such as NPQ, reduces antenna size, induces the compensatory synthesis of Antheraxanthin + Zeaxanthin, and prevents the trimerization of LHCII complexes. In vitro reconstitution shows that the lack of lutein per se is sufficient to prevent trimerization. lut2.1 showed a reduced capacity for state I – state II transitions, a selective degradation of Lhcb1 and 2, and a higher level of photodamage in high light and/or low temperature, suggesting that violaxanthin cannot fully restore chlorophyll triplet quenching. In vitro photobleaching experiments and time-resolved spectroscopy of carotenoid triplet formation confirmed this hypothesis. The npq1lut2.1 double mutant, lacking both zeaxanthin and lutein, is highly susceptible to light stress.ConclusionLutein has the specific property of quenching harmful 3Chl* by binding at site L1 of the major LHCII complex and of other Lhc proteins of plants, thus preventing ROS formation. Substitution of lutein by violaxanthin decreases the efficiency of 3Chl* quenching and causes higher ROS yield. The phenotype of lut2.1 mutant in low light is weak only because rescuing mechanisms of photoprotection, namely zeaxanthin synthesis, compensate for the ROS production. We conclude that zeaxanthin is effective in photoprotection of plants lacking lutein due to the multiple effects of zeaxanthin in photoprotection, including ROS scavenging and direct quenching of Chl fluorescence by binding to the L2 allosteric site of Lhc proteins. More... »

PAGES

32

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1471-2229-6-32

DOI

http://dx.doi.org/10.1186/1471-2229-6-32

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004586919

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17192177


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cold Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophoresis, Polyacrylamide Gel", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lutein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxidation-Reduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthetic Reaction Center Complex Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pigments, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reactive Oxygen Species", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento Scientifico e Tecnologico, Universit\u00e0 di Verona, Strada Le Grazie 15, I-37134, Verona, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5611.3", 
          "name": [
            "Dipartimento Scientifico e Tecnologico, Universit\u00e0 di Verona, Strada Le Grazie 15, I-37134, Verona, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dall'Osto", 
        "givenName": "Luca", 
        "id": "sg:person.01360021350.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360021350.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ente per le Nuove tecnologie, l'Energia e l'Ambiente (ENEA), Unit\u00e0 Biotecnologie, Centro Ricerche Casaccia, C.P. 2400, 00100, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5196.b", 
          "name": [
            "Ente per le Nuove tecnologie, l'Energia e l'Ambiente (ENEA), Unit\u00e0 Biotecnologie, Centro Ricerche Casaccia, C.P. 2400, 00100, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lico", 
        "givenName": "Chiara", 
        "id": "sg:person.0600670033.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600670033.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Biologie Physico-Chimique (IBPC), rue Pierre et Marie Curie 13, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.450875.b", 
          "name": [
            "D\u00e9partement d'Ecophysiologie V\u00e9g\u00e9tale et Microbiologie \u2013 UMR 163 CEA-CNRS Universit\u00e9 de la M\u00e9diterran\u00e9e Aix-Marseille II, Laboratoire de G\u00e9n\u00e9tique et Biophysique des Plantes (LGBP), 163 Avenue de Luminy, Marseille, France", 
            "Institut de Biologie Physico-Chimique (IBPC), rue Pierre et Marie Curie 13, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alric", 
        "givenName": "Jean", 
        "id": "sg:person.0727577254.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727577254.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ente per le Nuove tecnologie, l'Energia e l'Ambiente (ENEA), Unit\u00e0 Biotecnologie, Centro Ricerche Casaccia, C.P. 2400, 00100, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5196.b", 
          "name": [
            "Ente per le Nuove tecnologie, l'Energia e l'Ambiente (ENEA), Unit\u00e0 Biotecnologie, Centro Ricerche Casaccia, C.P. 2400, 00100, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giuliano", 
        "givenName": "Giovanni", 
        "id": "sg:person.01234626731.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234626731.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA/Cadarache, DSV, DEVM, Laboratoire d'Ecophysiologie de la Photosynth\u00e8se, UMR 6191 CEA-CNRS-Aix Marseille II, F-13108, Saint-Paul-lez-Durance, France", 
          "id": "http://www.grid.ac/institutes/grid.457335.3", 
          "name": [
            "CEA/Cadarache, DSV, DEVM, Laboratoire d'Ecophysiologie de la Photosynth\u00e8se, UMR 6191 CEA-CNRS-Aix Marseille II, F-13108, Saint-Paul-lez-Durance, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Havaux", 
        "givenName": "Michel", 
        "id": "sg:person.0643073325.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643073325.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "D\u00e9partement d'Ecophysiologie V\u00e9g\u00e9tale et Microbiologie \u2013 UMR 163 CEA-CNRS Universit\u00e9 de la M\u00e9diterran\u00e9e Aix-Marseille II, Laboratoire de G\u00e9n\u00e9tique et Biophysique des Plantes (LGBP), 163 Avenue de Luminy, Marseille, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Dipartimento Scientifico e Tecnologico, Universit\u00e0 di Verona, Strada Le Grazie 15, I-37134, Verona, Italy", 
            "D\u00e9partement d'Ecophysiologie V\u00e9g\u00e9tale et Microbiologie \u2013 UMR 163 CEA-CNRS Universit\u00e9 de la M\u00e9diterran\u00e9e Aix-Marseille II, Laboratoire de G\u00e9n\u00e9tique et Biophysique des Plantes (LGBP), 163 Avenue de Luminy, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bassi", 
        "givenName": "Roberto", 
        "id": "sg:person.0605371157.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-009-0173-5_63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089706199", 
          "https://doi.org/10.1007/978-94-009-0173-5_63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014414026", 
          "https://doi.org/10.1038/nature00861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006467617697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004446606", 
          "https://doi.org/10.1023/a:1006467617697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010661102365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049477537", 
          "https://doi.org/10.1023/a:1010661102365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042993471", 
          "https://doi.org/10.1038/nature02373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00033156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004992426", 
          "https://doi.org/10.1007/bf00033156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00425-006-0356-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014231751", 
          "https://doi.org/10.1007/s00425-006-0356-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-3953-3_117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005913785", 
          "https://doi.org/10.1007/978-94-011-3953-3_117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010657000548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027489281", 
          "https://doi.org/10.1023/a:1010657000548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35000315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033381636", 
          "https://doi.org/10.1038/35000315"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12-27", 
    "datePublishedReg": "2006-12-27", 
    "description": "BackgroundLutein is the most abundant xanthophyll in the photosynthetic apparatus of higher plants. It binds to site L1 of all Lhc proteins, whose occupancy is indispensable for protein folding and quenching chlorophyll triplets. Thus, the lack of a visible phenotype in mutants lacking lutein has been surprising.ResultsWe have re-assessed the lut2.1 phenotypes through biochemical and spectroscopic methods. Lhc proteins from the lut2.1 mutant compensate the lack of lutein by binding violaxanthin in sites L1 and L2. This substitution reduces the capacity for regulatory mechanisms such as NPQ, reduces antenna size, induces the compensatory synthesis of Antheraxanthin + Zeaxanthin, and prevents the trimerization of LHCII complexes. In vitro reconstitution shows that the lack of lutein per se is sufficient to prevent trimerization. lut2.1 showed a reduced capacity for state I \u2013 state II transitions, a selective degradation of Lhcb1 and 2, and a higher level of photodamage in high light and/or low temperature, suggesting that violaxanthin cannot fully restore chlorophyll triplet quenching. In vitro photobleaching experiments and time-resolved spectroscopy of carotenoid triplet formation confirmed this hypothesis. The npq1lut2.1 double mutant, lacking both zeaxanthin and lutein, is highly susceptible to light stress.ConclusionLutein has the specific property of quenching harmful 3Chl* by binding at site L1 of the major LHCII complex and of other Lhc proteins of plants, thus preventing ROS formation. Substitution of lutein by violaxanthin decreases the efficiency of 3Chl* quenching and causes higher ROS yield. The phenotype of lut2.1 mutant in low light is weak only because rescuing mechanisms of photoprotection, namely zeaxanthin synthesis, compensate for the ROS production. We conclude that zeaxanthin is effective in photoprotection of plants lacking lutein due to the multiple effects of zeaxanthin in photoprotection, including ROS scavenging and direct quenching of Chl fluorescence by binding to the L2 allosteric site of Lhc proteins.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1471-2229-6-32", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1024638", 
        "issn": [
          "1471-2229"
        ], 
        "name": "BMC Plant Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "LHC proteins", 
      "lack of lutein", 
      "chlorophyll triplet quenching", 
      "higher plants", 
      "LHCII complexes", 
      "major LHCII complex", 
      "State I-State II transitions", 
      "photoprotection of plants", 
      "site L1", 
      "visible phenotype", 
      "mechanisms of photoprotection", 
      "photosynthetic apparatus", 
      "double mutant", 
      "vitro reconstitution", 
      "protein folding", 
      "abundant xanthophyll", 
      "light stress", 
      "Chl fluorescence", 
      "high light", 
      "regulatory mechanisms", 
      "low light", 
      "photobleaching experiments", 
      "mutants", 
      "antenna complexes", 
      "allosteric site", 
      "zeaxanthin synthesis", 
      "selective degradation", 
      "plants", 
      "protein", 
      "ROS production", 
      "chlorophyll triplet", 
      "ROS formation", 
      "photoprotection", 
      "violaxanthin", 
      "carotenoid triplet formation", 
      "phenotype", 
      "strong light", 
      "zeaxanthin", 
      "effective photoprotection", 
      "trimerization", 
      "complexes", 
      "ROS yield", 
      "Lhcb1", 
      "multiple effects", 
      "II transition", 
      "compensatory synthesis", 
      "NPQ", 
      "folding", 
      "high ROS yield", 
      "antheraxanthin", 
      "lutein", 
      "xanthophylls", 
      "ROS", 
      "high levels", 
      "mechanism", 
      "substitution", 
      "antenna size", 
      "photodamage", 
      "reconstitution", 
      "occupancy", 
      "fluorescence", 
      "formation", 
      "sites", 
      "degradation", 
      "light", 
      "synthesis", 
      "L1", 
      "stress", 
      "quenching", 
      "production", 
      "hypothesis", 
      "lack", 
      "spectroscopic methods", 
      "specific properties", 
      "yield", 
      "apparatus", 
      "compensates", 
      "capacity", 
      "levels", 
      "low temperature", 
      "triplet quenching", 
      "triplet formation", 
      "size", 
      "ResultsWe", 
      "experiments", 
      "direct quenching", 
      "triplet", 
      "effect", 
      "transition", 
      "L2", 
      "efficiency", 
      "temperature", 
      "properties", 
      "spectroscopy", 
      "method", 
      "time-resolved spectroscopy"
    ], 
    "name": "Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivounder strong light", 
    "pagination": "32", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004586919"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1471-2229-6-32"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17192177"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1471-2229-6-32", 
      "https://app.dimensions.ai/details/publication/pub.1004586919"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_432.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1471-2229-6-32"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1471-2229-6-32'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1471-2229-6-32'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1471-2229-6-32'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1471-2229-6-32'


 

This table displays all metadata directly associated to this object as RDF triples.

285 TRIPLES      21 PREDICATES      141 URIs      123 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1471-2229-6-32 schema:about N26efff7469f3409389dd717dae6f49cf
2 N383c0e89349c4287a5ebf399481d8692
3 N49812f46006343c2976f013adb60ef1b
4 N5c902a243f344e2fb506b984e1bdd326
5 N69610b395e66406caa58ae2e34bb14e7
6 N70aefa79dd5c4cd58a6a84caad937123
7 N9729a3d3c9a54368833c15f13189a53b
8 Na32d12fdd7224caebac45d4a3070fe1a
9 Nc83fa88991c5426f8b5da946e61c4f5b
10 Ne25d7a816c494bddba7b487ce40e8793
11 anzsrc-for:06
12 anzsrc-for:0607
13 schema:author Nd1b55163f3c644b0aa6714732e717235
14 schema:citation sg:pub.10.1007/978-94-009-0173-5_63
15 sg:pub.10.1007/978-94-011-3953-3_117
16 sg:pub.10.1007/bf00033156
17 sg:pub.10.1007/s00425-006-0356-3
18 sg:pub.10.1023/a:1006467617697
19 sg:pub.10.1023/a:1010657000548
20 sg:pub.10.1023/a:1010661102365
21 sg:pub.10.1038/35000315
22 sg:pub.10.1038/nature00861
23 sg:pub.10.1038/nature02373
24 schema:datePublished 2006-12-27
25 schema:datePublishedReg 2006-12-27
26 schema:description BackgroundLutein is the most abundant xanthophyll in the photosynthetic apparatus of higher plants. It binds to site L1 of all Lhc proteins, whose occupancy is indispensable for protein folding and quenching chlorophyll triplets. Thus, the lack of a visible phenotype in mutants lacking lutein has been surprising.ResultsWe have re-assessed the lut2.1 phenotypes through biochemical and spectroscopic methods. Lhc proteins from the lut2.1 mutant compensate the lack of lutein by binding violaxanthin in sites L1 and L2. This substitution reduces the capacity for regulatory mechanisms such as NPQ, reduces antenna size, induces the compensatory synthesis of Antheraxanthin + Zeaxanthin, and prevents the trimerization of LHCII complexes. In vitro reconstitution shows that the lack of lutein per se is sufficient to prevent trimerization. lut2.1 showed a reduced capacity for state I – state II transitions, a selective degradation of Lhcb1 and 2, and a higher level of photodamage in high light and/or low temperature, suggesting that violaxanthin cannot fully restore chlorophyll triplet quenching. In vitro photobleaching experiments and time-resolved spectroscopy of carotenoid triplet formation confirmed this hypothesis. The npq1lut2.1 double mutant, lacking both zeaxanthin and lutein, is highly susceptible to light stress.ConclusionLutein has the specific property of quenching harmful 3Chl* by binding at site L1 of the major LHCII complex and of other Lhc proteins of plants, thus preventing ROS formation. Substitution of lutein by violaxanthin decreases the efficiency of 3Chl* quenching and causes higher ROS yield. The phenotype of lut2.1 mutant in low light is weak only because rescuing mechanisms of photoprotection, namely zeaxanthin synthesis, compensate for the ROS production. We conclude that zeaxanthin is effective in photoprotection of plants lacking lutein due to the multiple effects of zeaxanthin in photoprotection, including ROS scavenging and direct quenching of Chl fluorescence by binding to the L2 allosteric site of Lhc proteins.
27 schema:genre article
28 schema:isAccessibleForFree true
29 schema:isPartOf N90026c5163d5428582a28849061fffe3
30 Nc3ff397108854b29866837dc6876c19a
31 sg:journal.1024638
32 schema:keywords Chl fluorescence
33 II transition
34 L1
35 L2
36 LHC proteins
37 LHCII complexes
38 Lhcb1
39 NPQ
40 ROS
41 ROS formation
42 ROS production
43 ROS yield
44 ResultsWe
45 State I-State II transitions
46 abundant xanthophyll
47 allosteric site
48 antenna complexes
49 antenna size
50 antheraxanthin
51 apparatus
52 capacity
53 carotenoid triplet formation
54 chlorophyll triplet
55 chlorophyll triplet quenching
56 compensates
57 compensatory synthesis
58 complexes
59 degradation
60 direct quenching
61 double mutant
62 effect
63 effective photoprotection
64 efficiency
65 experiments
66 fluorescence
67 folding
68 formation
69 high ROS yield
70 high levels
71 high light
72 higher plants
73 hypothesis
74 lack
75 lack of lutein
76 levels
77 light
78 light stress
79 low light
80 low temperature
81 lutein
82 major LHCII complex
83 mechanism
84 mechanisms of photoprotection
85 method
86 multiple effects
87 mutants
88 occupancy
89 phenotype
90 photobleaching experiments
91 photodamage
92 photoprotection
93 photoprotection of plants
94 photosynthetic apparatus
95 plants
96 production
97 properties
98 protein
99 protein folding
100 quenching
101 reconstitution
102 regulatory mechanisms
103 selective degradation
104 site L1
105 sites
106 size
107 specific properties
108 spectroscopic methods
109 spectroscopy
110 stress
111 strong light
112 substitution
113 synthesis
114 temperature
115 time-resolved spectroscopy
116 transition
117 trimerization
118 triplet
119 triplet formation
120 triplet quenching
121 violaxanthin
122 visible phenotype
123 vitro reconstitution
124 xanthophylls
125 yield
126 zeaxanthin
127 zeaxanthin synthesis
128 schema:name Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivounder strong light
129 schema:pagination 32
130 schema:productId Nbd9a4b850f2645a5ab0145c0eff6fde5
131 Nde88e6c06d4b42fc80412a18e8adba07
132 Neea574eebe494c63918d86f4acf26fa0
133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004586919
134 https://doi.org/10.1186/1471-2229-6-32
135 schema:sdDatePublished 2022-09-02T15:51
136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
137 schema:sdPublisher Nccfa0d9362184b45b4c2bd3ad9b0ad92
138 schema:url https://doi.org/10.1186/1471-2229-6-32
139 sgo:license sg:explorer/license/
140 sgo:sdDataset articles
141 rdf:type schema:ScholarlyArticle
142 N1182e22fcafc458385757b15e47b5219 rdf:first sg:person.0727577254.89
143 rdf:rest N1897f0384d9f47fabb55aeac935a4832
144 N1897f0384d9f47fabb55aeac935a4832 rdf:first sg:person.01234626731.61
145 rdf:rest N8693a257d4b847b4a516292e1085ea46
146 N26efff7469f3409389dd717dae6f49cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Photosynthesis
148 rdf:type schema:DefinedTerm
149 N383c0e89349c4287a5ebf399481d8692 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Light
151 rdf:type schema:DefinedTerm
152 N49812f46006343c2976f013adb60ef1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Reactive Oxygen Species
154 rdf:type schema:DefinedTerm
155 N5c902a243f344e2fb506b984e1bdd326 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Plants
157 rdf:type schema:DefinedTerm
158 N60d04339dc6c440ea5b504411cfdbdad rdf:first sg:person.0600670033.96
159 rdf:rest N1182e22fcafc458385757b15e47b5219
160 N69610b395e66406caa58ae2e34bb14e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Photosynthetic Reaction Center Complex Proteins
162 rdf:type schema:DefinedTerm
163 N70aefa79dd5c4cd58a6a84caad937123 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Lutein
165 rdf:type schema:DefinedTerm
166 N8693a257d4b847b4a516292e1085ea46 rdf:first sg:person.0643073325.06
167 rdf:rest Nca99568c55bf4407b10e0c7597dbb9c9
168 N90026c5163d5428582a28849061fffe3 schema:volumeNumber 6
169 rdf:type schema:PublicationVolume
170 N9729a3d3c9a54368833c15f13189a53b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Electrophoresis, Polyacrylamide Gel
172 rdf:type schema:DefinedTerm
173 Na32d12fdd7224caebac45d4a3070fe1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Pigments, Biological
175 rdf:type schema:DefinedTerm
176 Nbd9a4b850f2645a5ab0145c0eff6fde5 schema:name doi
177 schema:value 10.1186/1471-2229-6-32
178 rdf:type schema:PropertyValue
179 Nc3ff397108854b29866837dc6876c19a schema:issueNumber 1
180 rdf:type schema:PublicationIssue
181 Nc83fa88991c5426f8b5da946e61c4f5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Oxidation-Reduction
183 rdf:type schema:DefinedTerm
184 Nca99568c55bf4407b10e0c7597dbb9c9 rdf:first sg:person.0605371157.35
185 rdf:rest rdf:nil
186 Nccfa0d9362184b45b4c2bd3ad9b0ad92 schema:name Springer Nature - SN SciGraph project
187 rdf:type schema:Organization
188 Nd1b55163f3c644b0aa6714732e717235 rdf:first sg:person.01360021350.97
189 rdf:rest N60d04339dc6c440ea5b504411cfdbdad
190 Nde88e6c06d4b42fc80412a18e8adba07 schema:name pubmed_id
191 schema:value 17192177
192 rdf:type schema:PropertyValue
193 Ne25d7a816c494bddba7b487ce40e8793 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Cold Temperature
195 rdf:type schema:DefinedTerm
196 Neea574eebe494c63918d86f4acf26fa0 schema:name dimensions_id
197 schema:value pub.1004586919
198 rdf:type schema:PropertyValue
199 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
200 schema:name Biological Sciences
201 rdf:type schema:DefinedTerm
202 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
203 schema:name Plant Biology
204 rdf:type schema:DefinedTerm
205 sg:journal.1024638 schema:issn 1471-2229
206 schema:name BMC Plant Biology
207 schema:publisher Springer Nature
208 rdf:type schema:Periodical
209 sg:person.01234626731.61 schema:affiliation grid-institutes:grid.5196.b
210 schema:familyName Giuliano
211 schema:givenName Giovanni
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234626731.61
213 rdf:type schema:Person
214 sg:person.01360021350.97 schema:affiliation grid-institutes:grid.5611.3
215 schema:familyName Dall'Osto
216 schema:givenName Luca
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360021350.97
218 rdf:type schema:Person
219 sg:person.0600670033.96 schema:affiliation grid-institutes:grid.5196.b
220 schema:familyName Lico
221 schema:givenName Chiara
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600670033.96
223 rdf:type schema:Person
224 sg:person.0605371157.35 schema:affiliation grid-institutes:grid.5399.6
225 schema:familyName Bassi
226 schema:givenName Roberto
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35
228 rdf:type schema:Person
229 sg:person.0643073325.06 schema:affiliation grid-institutes:grid.457335.3
230 schema:familyName Havaux
231 schema:givenName Michel
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643073325.06
233 rdf:type schema:Person
234 sg:person.0727577254.89 schema:affiliation grid-institutes:grid.450875.b
235 schema:familyName Alric
236 schema:givenName Jean
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727577254.89
238 rdf:type schema:Person
239 sg:pub.10.1007/978-94-009-0173-5_63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089706199
240 https://doi.org/10.1007/978-94-009-0173-5_63
241 rdf:type schema:CreativeWork
242 sg:pub.10.1007/978-94-011-3953-3_117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005913785
243 https://doi.org/10.1007/978-94-011-3953-3_117
244 rdf:type schema:CreativeWork
245 sg:pub.10.1007/bf00033156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004992426
246 https://doi.org/10.1007/bf00033156
247 rdf:type schema:CreativeWork
248 sg:pub.10.1007/s00425-006-0356-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014231751
249 https://doi.org/10.1007/s00425-006-0356-3
250 rdf:type schema:CreativeWork
251 sg:pub.10.1023/a:1006467617697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004446606
252 https://doi.org/10.1023/a:1006467617697
253 rdf:type schema:CreativeWork
254 sg:pub.10.1023/a:1010657000548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027489281
255 https://doi.org/10.1023/a:1010657000548
256 rdf:type schema:CreativeWork
257 sg:pub.10.1023/a:1010661102365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049477537
258 https://doi.org/10.1023/a:1010661102365
259 rdf:type schema:CreativeWork
260 sg:pub.10.1038/35000315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033381636
261 https://doi.org/10.1038/35000315
262 rdf:type schema:CreativeWork
263 sg:pub.10.1038/nature00861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014414026
264 https://doi.org/10.1038/nature00861
265 rdf:type schema:CreativeWork
266 sg:pub.10.1038/nature02373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042993471
267 https://doi.org/10.1038/nature02373
268 rdf:type schema:CreativeWork
269 grid-institutes:grid.450875.b schema:alternateName Institut de Biologie Physico-Chimique (IBPC), rue Pierre et Marie Curie 13, Paris, France
270 schema:name Département d'Ecophysiologie Végétale et Microbiologie – UMR 163 CEA-CNRS Université de la Méditerranée Aix-Marseille II, Laboratoire de Génétique et Biophysique des Plantes (LGBP), 163 Avenue de Luminy, Marseille, France
271 Institut de Biologie Physico-Chimique (IBPC), rue Pierre et Marie Curie 13, Paris, France
272 rdf:type schema:Organization
273 grid-institutes:grid.457335.3 schema:alternateName CEA/Cadarache, DSV, DEVM, Laboratoire d'Ecophysiologie de la Photosynthèse, UMR 6191 CEA-CNRS-Aix Marseille II, F-13108, Saint-Paul-lez-Durance, France
274 schema:name CEA/Cadarache, DSV, DEVM, Laboratoire d'Ecophysiologie de la Photosynthèse, UMR 6191 CEA-CNRS-Aix Marseille II, F-13108, Saint-Paul-lez-Durance, France
275 rdf:type schema:Organization
276 grid-institutes:grid.5196.b schema:alternateName Ente per le Nuove tecnologie, l'Energia e l'Ambiente (ENEA), Unità Biotecnologie, Centro Ricerche Casaccia, C.P. 2400, 00100, Roma, Italy
277 schema:name Ente per le Nuove tecnologie, l'Energia e l'Ambiente (ENEA), Unità Biotecnologie, Centro Ricerche Casaccia, C.P. 2400, 00100, Roma, Italy
278 rdf:type schema:Organization
279 grid-institutes:grid.5399.6 schema:alternateName Département d'Ecophysiologie Végétale et Microbiologie – UMR 163 CEA-CNRS Université de la Méditerranée Aix-Marseille II, Laboratoire de Génétique et Biophysique des Plantes (LGBP), 163 Avenue de Luminy, Marseille, France
280 schema:name Dipartimento Scientifico e Tecnologico, Università di Verona, Strada Le Grazie 15, I-37134, Verona, Italy
281 Département d'Ecophysiologie Végétale et Microbiologie – UMR 163 CEA-CNRS Université de la Méditerranée Aix-Marseille II, Laboratoire de Génétique et Biophysique des Plantes (LGBP), 163 Avenue de Luminy, Marseille, France
282 rdf:type schema:Organization
283 grid-institutes:grid.5611.3 schema:alternateName Dipartimento Scientifico e Tecnologico, Università di Verona, Strada Le Grazie 15, I-37134, Verona, Italy
284 schema:name Dipartimento Scientifico e Tecnologico, Università di Verona, Strada Le Grazie 15, I-37134, Verona, Italy
285 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...